

Reporte de Caso

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

Eslamiyeh y Col.

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

THE IMPACT OF GESTATIONAL DIABETES ON INFANTS' NEURODEVELOPMENTAL

STATUS: A COHORT STUDY

Eslamiyeh Hosein, Nikukar Habib, Karimi Mehran, Mohsenolhoseini Zahra

Department of Pediatrics, Shahid Sadoughi Universityof Medical Science, Yazd, Iran

EMAIL: zmh213213@gmail.com

CORRESPONDENCE: Zahra Mohsenolhoseini, Resident of Pediatrics, Shahid Sadoughi University of Medical Science, Yazd, Iran.

ABSTRACT

Objective: The prevalence of gestational diabetes is increasing worldwide. Several studies have indicated that gestational diabetes can cause neurodevelopmental disorders in children. None of them has examined all areas of neurodevelopment. We conducted this pilot study to compare the neurodevelopmental status in infants of mothers with and without gestational diabetes. **Materials and Methods:** Forty infants of mothers with gestational diabetes and 40 infants of healthy mothers were included and followed up at 6 and 12 months old of age. The primary data of the study were extracted from a cohort study (PERSIAN Birth Cohort) done in Yazd province, Iran. Ages and Stages Questionnaire (ASQ) was used as a standard test to assess all domains of neurodevelopment. Finally, the data obtained from the questionnaire were statistically analyzed using SPSS software.

Reporte de Caso Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

Results: Data analysis showed a significant relationship between gestational diabetes and neurodevelopment in the area of problem solving at one year old, but its relationship with other domains was not significant. In the case group, there was a significant relationship between the type of treatment (insulin therapy) and neurodevelopment in the area of gross motor skills at one year of age. **Conclusion:** Based on this study, it seems that infants' neurodevelopment in the area of problem solving has been affected by gestational diabetes. Thus, the role of physicians in follow up of the neurodevelopmental progress of infants of diabetic mothers is significant.

KEYWORDS: Gestational Diabetes; Neurodevelopment; ASQ.

EL IMPACTO DE LA DIABETES GESTACIONAL EN EL ESTADO DE NEURODESARROLLO DE LOS LACTANTES: UN ESTUDIO DE COHORTES

RESUMEN

Objetivo: La prevalencia de la diabetes gestacional está aumentando en todo el mundo. Varios estudios han indicado que la diabetes gestacional puede causar trastornos del neurodesarrollo en los niños. Ninguno de ellos ha examinado todas las áreas del neurodesarrollo. Realizamos este estudio piloto para comparar el estado del neurodesarrollo en niños de madres con y sin diabetes gestacional. **Materiales y métodos:** Se incluyeron 40 lactantes de madres con diabetes gestacional y 40 lactantes de madres Received: 04/13/2024 Accepted: 05/07/2024 250

Reporte de Caso

Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

sanas, a los que se realizó un seguimiento a los 6 y 12 meses de edad. Los datos primarios del estudio se extrajeron de un estudio de cohortes (PERSIAN Birth Cohort) realizado en la provincia de Yazd, Irán. Se utilizó el Cuestionario de Edades y Estadios (ASQ) como prueba estándar para evaluar todos los dominios del neurodesarrollo. Por último, los datos obtenidos a partir del cuestionario se analizaron estadísticamente mediante el programa SPSS. **Resultados:** El análisis de los datos mostró una relación significativa entre la diabetes gestacional y el neurodesarrollo en el área de resolución de problemas al año de edad, pero su relación con otros dominios no fue significativa. En el grupo de casos, hubo una relación significativa entre el tipo de tratamiento (insulinoterapia) y el neurodesarrollo en el área de motricidad gruesa al año de edad. **Conclusiones:** Sobre la base de este estudio, parece que el neurodesarrollo de los lactantes en el área de la resolución de problemas se ha visto afectado por la diabetes gestacional. Por lo tanto, el papel de los médicos en el seguimiento de la evolución del neurodesarrollo de los lactantes de madres diabéticas es importante.

PALABRAS CLAVE: Diabetes gestacional; neurodesarrollo; ASQ.

INTRODUCTION

The neurodevelopmental status of children is affected by many factors. Any

Reporte de Caso Eslamiyeh y Col.

throughout embryonic problems development and birth or even after birth can affect the growth and development of the infant. In a study conducted in 2017, possible maternal factors causing developmental disorders were evaluated. The results revealed that mothers' lifestyle (e.g. history of smoking, alcohol consumption, malnutrition, and high-fat diet as well as maternal age), metabolic issues (i.e. Gestational diabetes. hypothyroidism, and obesity), and viral and bacterial infections during pregnancy could cause brain damage and finally lead to neurodevelopmental disorders (1).

Gestational diabetes is one of the most common worldwide metabolic disorders during pregnancy (2). The prevalence of gestational diabetes varies from 1 to 14% in different communities (3). The prevalence of gestational diabetes was 12% in Yazd, Iran (4). The general outcome of diabetes during pregnancy depends on the time of onset, duration, and severity of maternal diabetes. If gestational diabetes is not completely

Received: 04/13/2024 Accepted: 05/07/2024

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

treated, it can increase the risk of fetal, neonatal, and long-term complications, as a silent disease. Studies suggest that the side effects of hyperglycemia on the fetus and infant can be reduced by optimally controlling maternal blood sugar levels during pregnancy and even during childbirth(5).

Pregnancy hyperglycemia causes fetal hyperglycemia, and fetal pancreatic response to the high serum glucose concentration causes fetal hyperinsulinemia. Due to fetal hyperglycemia, glucose uptake into the liver increases and consequently glycogen synthesis, lipogenesis, and increased protein synthesis, resulting in the weight gain of the placenta, fetus, and internal organs (6).Hyperglycemia and hyperinsulinemia can cause fetal acidosis and increased stillbirth. Since the first trimester of pregnancy is a crucial time and organogenesis occurs in this period, the teratogenic effects of hyperglycemia in the first trimester are more prominent and congenital may cause severe

Reporte de Caso Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

anomalies (7). Hence, hyperglycemia, hyperinsulinemia, and macrosomia are among the fetal complications induced by gestational diabetes mellitus (8). Fetal macrosomia and organomegaly increase the need for oxygen and may cause fetal hypoxia. Chronic fetal hypoxia in pregnancy polycythemia, causes reduction of iron stores, and respiratory distress (9).In the long term, gestational diabetes can cause behavioral, cognitive, and memory disorders. Some studies have shown that gestational diabetes mellitus associated with (GDM) is neurodevelopmental disorders (10).

GDM has milder and less severe side effects than overt diabetes mellitus. Several studies have indicated that gestational diabetes can cause developmental disorders in the long term (11). However, there are conflicting findings in this regard. No study has investigated the all developmental The indicators yet. present study attempted to investigate the effect of GDM on neurodevelopment.

Material & Methods

Gestational diabetes mellitus is diagnosed in pregnancy screening and approved by a gynecologist and endocrinologist. Mothers' information was recorded in the cohort study (The Prospective Epidemiological Research Studies in Iran, Persian Birth Cohort) at Yazd province, Iran. The primary data of mothers was extracted from a cohort study. Mothers who met the inclusion criteria were selected. The children of these mothers were followed up at 6 months and 1 year.

The statistical population of the study included 6-month-old and 12-month-old infants who entered the study obtaining their parents' consent and meeting the inclusion criteria.

The inclusion criteria were:

1. Not to be preterm.

2. The mothers of the infants in both groups should have no history of alcohol consumption, smoking, and drug abuse.

Reporte de Caso Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

3. The mothers of infants in the case group have proven GDM (at least one abnormal value for fasting, one-hour and two-hour plasma glucose concentration: =92, 180, and 153 mg/dl, in routine screening tests of first and second trimester respectively). Mothers with GDM were treated with metformin or insulin therapy or diet modification.

4. For the control group, the mothers should be healthy without any other problems such as preeclampsia or gestational or overt diabetes (first and second trimester screenings).

5. The infants of both groups did not have another serious systemic disorder or major fetal abnormalities.

6. Infants had no history of moderate to severe asphyxia at birth, either Exclusion criteria were: lack of parental cooperation, family migration, and death.

These infants were divided into two groups: infants of mothers with GDM (case group) and infants of healthy mothers (control group). The sample size was determined to be 80 (40 infants of

mothers with gestational diabetes and 40 infants of healthy mothers. Since no study evaluated all aspects of neurological development and the number of similar studies is very limited, we conducted a study to assess all neurodevelopmental domains. The Ages and Stages Questionnaires® (ASQ) was used as a different standard test to assess neurodevelopmental domains (12)

This questionnaire contains 30 questions in 5 developmental areas. Developmental areas include the following:

- 1. Establishing communication
- 2. Gross motor
- 3. Fine motor
- 4. Problem-solving area
- 5. Individual-social areas

The Questions in the field of communication are related to making noise, listening,

The questions in the field of the gross motor are related to the movements of the trunk and limbs.

Reporte de Caso Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

The Questions in the field of the fine motor are related to finger movements The Questions in the field of Problemsolving are related to learning and playing with toys.

The Questions in the field of Individualsocial are related to individual play, and social work.

A pediatric resident completed the ASQ with the cooperation of the infants 'parents. Based on the ASQ questionnaire scoring, scores higher than (-1) mean having normal neurodevelopment, and scores lower than (-2) mean having abnormal neurodevelopment. ASQ Scores between -1 and -2 should be repeated 2 weeks later and at this time according to the results, it is considered normal or abnormal. The data obtained were statistically analyzed by SPSS 20.

Results

Eighty infants (40 infants of mothers with GDM and 40 infants of healthy mothers) were included in the study and followed up. During the first year of life, infants

Received: 04/13/2024 Accepted: 05/07/2024

who met the inclusion criteria entered the study. Of 80 studied cases, 48 were female and 32 were male. None of the studied infants were preterm. They did not have any other serious systemic illness, major fetal abnormalities, or a history of moderate to severe asphyxia at birth. The mothers of infants in the case group had proven GDM (at least one abnormal value for fasting, one-hour and two-hour plasma glucose concentration: =92, 180 and 153 mg/dl, respectively) and had no history of diseases other than GDM. Two groups had no statistical difference in term of gender. The results revealed significant relationship no between establishing communication, gross motor, fine motor, and individualsocial areas and GDM.

However, a significant relationship was found between problem solving area and GDM in the case group, In the other words, the infants of diabetic mothers had more difficulty in solving the problem than infants of healthy ones (Table 1).

Reporte de Caso

Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

Table 1. Frequency of neurodevelopmental changes in infants of healthy and gestational diabetic

mothers

Establishing communication	Normal	Abnorm	P value
		al	
Infants of Gestational Diabetes	39	1	1.000
Mothers			
Infants of healthy mothers	40	0	
Total	79	1	
Gross motor skills			0.840
Infants with Gestational Diabetic	33	7	
Mothers			
Normal infants	33	7	
Total	66	14	
Fine motor skills			1.000
Infants of Gestational Diabetic	40	0	
Mothers			
Normal infants	40	0	
Total	80	0	
Problem solving area			*0.001
Infants of Gestational Diabetes	28	12	
Mothers			

Reporte de Caso

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

Eslamiyeh y Col.

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

Infants of healthy mother	39	1	
Total	67	13	
Individual-social areas			1.000
Infants with Gestational Diabetic	40	0	-
Mothers			
Infants of healthy mothers	39	1	
Total	79	1	1

*P- value less than 0.05 was considered as significant.

The results revealed a significant relationship between the gross motor area and the type of GDM treatment. Infants whose mothers were treated with insulin had more impaired gross motor. The results also showed, no significant

relationship between the fine motor, problem solving, and the individual-social areas and the type of GDM treatment (Insulin therapy, metformin and Diet modification) (Table 2).

Table 2. Frequency of neurodevelopmental changes in infants of healthy and gestational

 diabetic mothers based on the type of treatment.

Diabetic			Non-dia	betic	P value
Establishing	Norm	Abnorm	Normal	Abnorm	1.000
communication	al	al		al	
Insulin therapy	9	0			

Reporte de Caso

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

Eslamiyeh y Col.

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

Oral hypoglycemic	22	0	39	1	
agents					
Diet therapy	9	0			
Gross motor skills					*0.009
Insulin therapy	6	3			
Oral hypoglycemic	19	3	32	8	
agents			_		
Diet therapy	9	0			
Fine motor skills					1.000
Insulin therapy	9	0			
Oral hypoglycemic	22	0	40	0	
agents					
Diet therapy	9	0			
Problem solving area					*0.048
Insulin therapy	9	0			
Oral hypoglycemic	19	3	39	1	
agents					
Diet therapy	9	0			
Individual-social areas		I	<u>I</u>	I	1.000
Insulin therapy	9	0			
Oral hypoglycemic	22	0	39	1	
				_	

Acta

ACTA BIOCLINICA

Reporte de Caso

Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

agents			
Diet therapy	9	0	

*P- value less than 0.05 was considered as significant.

The difference of ASQ scores between 6month-old and 12-month-old groups was significant in case group. It was revealed that neurodevelopment was better in 6month-old group than 12-month-old group (Table 3).

Table 3. Frequency of ASQ score in neurodevelopmental changes in infants of healthy and

 gestational diabetic mothers

Diabetic	Normal	Neurodevelopment area in six months old
55.2	53.6	Establishing communication
54.6	50.7	Gross motor
57.4	56.9	Fine motor
57.5	54.6	Problem solving area
56.6	53.5	Individual-social areas
		Neurodevelopment area in one year old
53.7	52.07	Establishing communication
53.2	52.07	Gross motor
	55.2 54.6 57.4 57.5 56.6 53.7	55.2 53.6 54.6 50.7 57.4 56.9 57.5 54.6 56.6 53.5 53.7 52.07

Reporte de Caso

Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

1.000	56.9	55.8	Fine motor
0.001*	52.02	55.4	Problem solving area
1.000	53.40	54.02	Individual-social areas

*P- value less than 0.05 is considered as significant.

Discussion

The effect of GDM on neurodevelopment was significant at 12-month-old age. GDM affected the area of solvingproblem in 12-month-old infants. Several studies investigated the effect of GDM on infants' neural function. Most of these studies confirmed the effect of overt DM on neural function, but less attention was paid to the effect of GDM (13-17). Overt DM patients were excluded from the statistical population of this study and this study emphasized the effect of GDM only on infants' developmental status. Since the first trimester of pregnancy is a critical period and organogenesis occurs during this period, the teratogenic effects of hyperglycemia in overt DM are significant (15). Since GDM occurs during the last trimester of pregnancy, its side effects are milder than overt DM. Received: 04/13/2024 Accepted: 05/07/2024

Two systematic reviews indicated the prominent neurological adverse effects of infants of mothers with gestational diabetes (18). Overt DM has been investigated in most studies and GDM studies have provided contradictory results, and there is disagreement in this regard. The results of a study conducted by Cai et al. showed that GDM mostly affects the left hemisphere (which is related to memory, concentration, and attention) and it reduces neural function in the face of sensory stimuli (19). Similarly, in our study, GDM affected the problem-solving area, which is related to concentration and attention, and probably the left hemisphere of the brain. The mechanism of action of GDM on brain function has not been clarified exactly. Based on previous studies, the most important complications of GDM are

Reporte de Caso Eslamiyeh y Col.

hyperglycemia, hyperinsulinemia, and macrosomia (20, 21). In the embryonic hyperglycemia period, can cause morphological changes in the presynaptic nerve terminals. Hyperglycemia-induced oxidative stress can cause vascular and neurological damage. The hippocampus is a sensitive area of the brain that will be damaged quickly by any stress such as hypoglycemia and finally impairs memory, learning, and problem-solving skills. In our study, GDM had a significant relationship only with the area of problem-solving and had no significant relationship with other areas of neurodevelopment. We also found that 12-month-old infants of mothers treated with insulin had а poorer motor performance. Tertti et al. investigated the neurodevelopment of GDM infants exposed to anti-diabetic drugs (metformin and insulin) and concluded that there was no significant difference between insulintreated and metformin-treated groups in terms of neurodevelopment (23). The white classification was used to assess the severity of GDM in the past, but this

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

classification is not currently in use, and the distinction between overt DM and GDM is more important (24). In GDM treatment, the drug of choice is insulin. Usually, those who need insulin have higher levels of hyperglycemia and do not respond well to diet modification and oral medications (25, 26). Thus, impaired development of the infants 'gross motor in the present study can be attributed to the increase in blood glucose and requiring insulin. Insulin more administered to pregnant mothers does not pass through the placenta and it reduces fetal complications with the mechanism of regulating the mother's blood sugar (27). Therefore, it cannot be stated that the infant's neurological complications could be due to the adverse effects of insulin treatment. Several trials on the complications of treatment with metformin and insulin revealed that metformin was associated with milder infantile hypoglycemia, lower birth weight, and a lower rate of macrosomia. Since oral drugs pass through the placenta in higher doses, they increase the risk of

Reporte de Caso Eslamiyeh y Col.

hypoglycemia and the need for NICU care (28-30). Studies conducted so far to assess infants' neural function have used IQ tests, the Bayley-III questionnaire, and physical examination. None of the studies examined all of the areas neurodevelopment. In our study, the ASQ was used as a standard test to assess all the areas of neurodevelopment. In the present study, infants of mothers with GDM showed a significant difference in terms of ASQ scores at the ages of 6month-old and 12-month-old, so they had a lower ASQ score at 12-month-old age than 6-month-old age. Birgitte et al. and Ornoy et al. also reported diabetes-related intelligence and cognitive developmental disorders (16, 22). Our results indicated that GDM might have a long-term effect on neural function, and it seems that neural function can be detected and measured more accurately with increasing age.

Conclusion

A significant relationship was found between GDM and neurodevelopmental

Received: 04/13/2024 Accepted: 05/07/2024

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

progress in the area of problem-solving. One year after treatment, insulin-treated mothers' infants had lower gross motor scores than their peers. Neurodevelopmental scores were better in 6-month-old infants of diabetic mothers than in 12-month-old infants. It may indicate that GDM manifests its effects in the long term. Consequently, it is recommended that larger sample sizes and older infants be recruited for future studies.

Ethics approval

This study was approved by the Ethics Committee of Shahid Sadoughi University of Medical Sciences (IR.SSU.MEDICINE. REC.1399.17)5.

Conflict of interests

There is no conflict of interest in this research.

Funding Support

None

Acknowledgement

Reporte de Caso

Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

None

Authors' Contribution

In this study, all authors contributed to design, management, and review of the manuscript. Hosein Eslamiye contributed to data collection and analysis. Habib Nikukar contributed to data collection. Mehran Karimi contributed to data analysis. Zahra Mohsenolhoseini did the data interpretation and managed and supervised the experiments and results.

REFERENCES

 Rothstein A, Miskovic A, Nitsch K.
 Brief review of psychometric properties and clinical utility of the Ages and Stages Questionnaires, for evaluating pediatric development.
 Archives of Physical Medicine and Rehabilitation. 2017; 98(4):809-10.

2. Robles MC, Campoy C, Fernandez LG, Lopez-Pedrosa JM, Rueda R, Martin MJ. Maternal diabetes and cognitive performance in the offspring: a systematic review and meta-analysis. PloS one. 2015; 10(11):e0142583.

3. Xiong X, Saunders L, Wang F, Demianczuk N. Gestational diabetes mellitus: prevalence, risk factors, maternal and infant outcomes. International Journal of Gynecology & Obstetrics. 2001; 75(3):221-8.

4. Vakili M, Rahimi Pardanjani S, Alipour N, Taheri M, Baeradeh N, Hashemi A. The prevalence of gestational diabetes and associated factors in pregnant women referred to health care centers of Yazd in 2012. Journal of Sabzevar University of Medical Sciences. 2014 Dec 22; 21(6):1214-24.

5. King H. Epidemiology of glucose intolerance and gestational diabetes in women of childbearing age. Diabetes care. 1998; 21:B9.

6. Rani PR, Begum J. Screening and diagnosis of gestational diabetes mellitus, where do we stand. Journal of clinical and diagnostic research: JCDR. 2016; 10(4):QE01.

Reporte de Caso Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

7. Kallem VR, Pandita A, and Pillai
A. Infant of diabetic mother: what one needs to know? The Journal of
Maternal-Fetal & Neonatal Medicine.
2020; 33(3):482-92.

 Kaman K, Shakya S, Zhang H.
 Gestational diabetes mellitus and macrosomia: a literature review.
 Annals of Nutrition and Metabolism.
 2015; 66(Suppl. 2):14-20.

9. Boulvain M, Irion O, Dowswell T, Thornton JG. Induction of labour at or near term for suspected fetal macrosomia. Cochrane Database of Systematic Reviews. 2016(5).

10. Adane AA, Mishra GD, Tooth LR. Diabetes in pregnancy and childhood cognitive development: a systematic review. Pediatrics. 2016; 137(5).

11. Ferrara A. Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes care. 2007; 30(Supplement 2):S141-S6.

12. Squires J, Bricker D, and Potter L.Revision of a parent-completeddevelopment screening tool: ages and

stages questionnaires. J Pediatric Psychol. 1997; 22(3): 313–28.

13. Cai S, Qiu A, Broekman BF, Wong EQ, Gluckman PD, Godfrey KM, *et al.* The influence of gestational diabetes on neurodevelopment of children in the first two years of life: a prospective study. PloS one. 2016; 11(9):e0162113.

14. Jones C. Gestational diabetes and its impact on the neonate. Neonatal Network. 2001; 20(6):17-23.

15. Salman L, Arbib N, Shmueli A, Krispin E, Wiznitzer A, *et al.* The association between pre-pregnancy impaired fasting glucose and adverse perinatal outcome. Diabetes Res Clin Pract. 2018 Jun; 140:148-153.

16. Facchinetti F, Cavalli P, Copp AJ,
D'Anna R, Kandaraki E, Greene ND, *et al.* An update on the use of inositols
in preventing gestational diabetes
mellitus (GDM) and neural tube
defects (NTDs). Expert Opinion on
Drug Metabolism & Toxicology.
2020; 16(12):1187-98.

Reporte de Caso Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

17. Crowther CA, Hiller JE, Moss JR,
McPhee AJ, Jeffries WS, Robinson
JS. Effect of treatment of gestational
diabetes mellitus on pregnancy
outcomes. New England Journal of
Medicine. 2005; 352(24):2477-86.

Aguilar Cordero MJ, Baena García
 Rodríguez Blanque R, Latorre
 García J, Mur Villar N, Sánchez
 López AM. Diabetes mellitus materna
 y su influencia en el neurodesarrollo
 Del niño: revisión sistemática.
 Nutrición Hospitalaria. 2015;
 32(6):2484-95.

19. Cai S, Qiu A, Broekman BF,
Wong EQ, Gluckman PD, Godfrey
KM, *et al.* The Influence of
Gestational Diabetes on
Neurodevelopment of Children in the
First Two Years of Life: A
Prospective Study. PloS one. 2016;
11(9):e0162113.

20. Kc K, Shakya S, Zhang H.Gestational Diabetes Mellitus and Macrosomia: A Literature Review.Annals of Nutrition and Metabolism.2015; 66(suppl 2) (Suppl. 2):14-20. 21. Plows JF, Stanley JL, Baker PN,Reynolds CM, Vickers MH. ThePathophysiology of GestationalDiabetes Mellitus. Int J Mol Sci. 2018;19(11):3342.

22. Ornoy A, Ratzon N, Greenbaum C, Peretz E, Soriano D, Dulitzky M. Neurobehaviour of school age children born to diabetic mothers. Archives of Disease in Childhood-Fetal and Neonatal Edition. 1998; 79(2):F94-F9.

23. Tertti K, Ekblad U, Koskinen P, Vahlberg T, Rönnemaa T. Metformin vs. insulin in gestational diabetes. A randomized study characterizing metformin patients needing additional insulin. Diabetes, obesity & metabolism. 2013; 15(3):246-51.

24. Bennett SN, Tita A, Owen J, Biggio JR, Harper LM. Assessing White's classification of pregestational diabetes in a contemporary diabetic population. Obstet Gynecol. 2015; 125(5):1217-23.

25. Pintaudi B, Bonomo MA. Pharmacological Treatment of

Reporte de Caso

Eslamiyeh y Col.

Volumen 14, N° 28 Julio/Diciembre 2024 Depósito Legal: PPI201102ME3815 ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBio/2024.14.28.15

Gestational Diabetes Mellitus: When Lifestyle Intervention Is Not Enough.

26. Mukerji G, Feig DS.Pharmacological Management ofGestational Diabetes Mellitus. Drugs.2017; 77(16):1723-32.

27. Blum AK. Insulin Use inPregnancy: An Update. DiabetesSpectr. 2016; 29(2):92-7.

28. Priya G, Kalra S. Metformin in the management of diabetes during pregnancy and lactation. Drugs Context. 2018; 7:212523-.

29. Reece SW, Parihar HS, LoBello C.Metformin in gestational diabetesmellitus. Diabetes Spectr. 2014;27(4):289-95.

30. Feig DS, Murphy K, Asztalos E, Tomlinson G, Sanchez J, and Zinman B, *et al.* Metformin in women with type 2 diabetes in pregnancy (MiTy): a multi-center randomized controlled trial. BMC Pregnancy and Childbirth. 2016; 16(1):173.