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Introduction: Cone-beam computed tomography (CBCT) has revolutionized dentistry by 

providing high-resolution 3D views for evaluating mandibular nutrient canal systems. 

However, manual measurements are time-consuming. This study employs self-supervised 

learning to predict nutrient canal measurements from mandibular CBCT scans. Objective: 

To enhance accuracy and treatment planning using explainable artificial intelligence (AI), 

optimizing strategies for implant surgeries and personalized care. Methods: A total of 398 

CBCT images were collected from the DIAS system at Saveetha Dental College. A 

periodontist annotated data, including nutrient canal diameter, lingual artery visibility, and 

distances. Data were split into training and testing sets. The self-supervised model utilized 

autoencoders with encoder, decoder, and regression heads, compressing data into a 16-

dimensional latent space to predict canal diameter. Results: The model reduced 

reconstruction and regression losses, achieving final losses of 0.2543 for reconstruction and 

0.3336 for regression. Conclusion: Self-supervised learning can enhance CBCT scan 

analysis by predicting canal diameters. However, success depends on high-quality data, 

robust validation, and multimodal integration. 

KEYWORDS: Cone Beam Computed Tomography; dentistry; high-resolution; three-

dimensional views; dental anatomy; nutrient canal systems; machine learning. 
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APRENDIZAJE AUTO-SUPERVISADO EXPLICABLE PARA PREDECIR Y 

GENERAR LOS DIÁMETROS DE CANALES NUTRICIOS EN TOMOGRAFÍA 

COMPUTARIZADA DE HAZ CÓNICO 

 

Introducción: La tomografía computarizada de haz cónico (CBCT) ha transformado la 

odontología al proporcionar vistas tridimensionales de alta resolución para evaluar los 

sistemas de canales nutricios mandibulares. Sin embargo, las mediciones manuales son 

laboriosas. Este estudio utiliza aprendizaje auto-supervisado para predecir mediciones de 

los canales nutricios a partir de escaneos CBCT mandibulares. Objetivo: Mejorar la 

precisión y la planificación del tratamiento mediante inteligencia artificial explicable (IA), 

optimizando estrategias para cirugías de implantes y atención personalizada. Métodos: Se 

recopilaron 398 imágenes CBCT del sistema DIAS del Saveetha Dental College. Un 

periodoncista calificó los datos, incluyendo mediciones del diámetro del canal nutricio, 

visibilidad de la arteria lingual y distancia. Los datos se dividieron en conjuntos de 

entrenamiento y prueba. El modelo auto-supervisado empleó autoencoders con codificador, 

decodificador y cabeza de regresión, comprimiendo los datos en un espacio latente de 16 

dimensiones para predecir el diámetro del canal. Resultados: El modelo redujo pérdidas de 

reconstrucción y regresión, logrando una pérdida final de 0.2543 para reconstrucción y 

0.3336 para regresión. Conclusión: El aprendizaje auto-supervisado puede mejorar el 

RESUMEN 
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análisis de escaneos CBCT al predecir diámetros de los canales, aunque su éxito depende 

de datos de alta calidad, validación robusta e integración multimodal. 

PALABRAS CLAVE: Tomografía computarizada de haz cónico; odontología; alta 

resolución; vistas tridimensionales; anatomía dental; sistemas de canales nutricios; 

aprendizaje automático. 

 

INTRODUCTION  

Cone Beam Computed Tomography 

(CBCT) has emerged as a revolutionary 

imaging modality in dentistry, offering 

high-resolution three-dimensional views 

of dental anatomy (1). This advanced 

imaging technique allows for a more 

detailed evaluation of the nutrient canal 

system than traditional two-dimensional 

radiographs, providing critical insights 

into nutrient canal dimensions. CBCT 

offers advantages, but manual canal 

diameter measurement is labor-intensive. 

Advances in dental imaging are 

enhancing accuracy using machine 

learning algorithms, leading to improved 

implant planning and personalized 

interventions (2). 

A previous study of 194 patients found 

nutrient canals in 94.3% of cases, mainly 

in the front area, with an average of 2.7 

canals and 1.0 mm diameter. 

Understanding these canals can prevent 

dental procedures (3). A study on 50 

CBCT scans of the mandible found 243 

accessory canals and 245 accessory 
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foramina, with males having a higher 

prevalence (53%). Most were located in 

the anterior region, with females having 

more accessory canals and foramina (4). 

These studies have shown the presence 

and diameter of nutrient canals, but their 

prediction of the diameter of nutrient 

canals has not been analyzed much.  

CBCT is crucial for predicting nutrient 

canals, which carry blood vessels and 

nerves, enabling better treatment planning 

and influencing surgical outcomes, 

especially in complex cases like implants 

and extractions (5). Predictive models for 

nutrient canals enable practitioners to 

tailor their surgical approaches, 

improving overall treatment outcomes. 

Recent work on 104 patients found 

discrepancies in mandibular canal 

localization accuracy between three 

experienced clinicians and five tracings. 

The posterior and anterior loops had 

higher mean RMS error experienced 

clinicians who take longer to trace canal 

localizations than AI-driven 

segmentation, indicating that clinician 

experience significantly influences 

accuracy  (6). 

AI-driven segmentation is time-efficient 

but requires verification to avoid errors 

similar to this study's accuracy. These 

studies have identified the mandibular 

canal's location but have not determined 

the nutrient canal's diameter (7). So, we 

used the supervised learning method to 

predict and generate the nutrient canal 

dimensions in mandibular CBCT. Recent 

advancements in self-supervised learning 

and deep learning methodologies present 

exciting opportunities to improve the 
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modeling of complex patterns in dental 

images. These innovative techniques can 

leverage vast amounts of unlabeled data 

from CBCT scans (8) to develop robust 

predictive models that learn to identify 

significant features associated with canal 

dimensions. This study chose self-

supervised learning for nutrient canal 

prediction and generation due to its 

ability to utilize unlabeled data 

effectively, enhancing the model's ability 

to discern complex patterns, especially in 

the intricate nature of nutrient canal 

generation (9). By accurately predicting 

canal diameters using AI, practitioners 

can better understand the nutrient canal 

system, optimize treatment strategies, and 

ultimately enhance patient care. This 

study explores the effectiveness of self-

supervised learning methods in predicting 

dental canal diameters from CBCT 

images, aiming to improve accuracy and 

decision-making with explainable AI. 

 

Materials and Methods  

Figure 1 shows the workflow of the 

nutrient canal diameter. 
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Figure 1. Workflow of the nutrient canal diameter. 

 

Data Preparation 

The dataset for this study was obtained 

from Saveetha Dental College utilizing 

the DIAS information system. A total of 

398 images with their data were collected 

from cone beam computed tomography 

(CBCT) images, which included essential 

demographic details such as age and 

gender and information regarding the 

presence and characteristics of nutrient 

canals. Specifically, the dataset 

encompassed measurements including the 

diameter of the canals, visibility of the 

lingual artery, and the distances from the 
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lingual artery to the inferior border (in 

millimeters). A qualified periodontist 

meticulously obtained these 

measurements, and a data frame was 

subsequently prepared based on this 

comprehensive dataset (Figure 1). 

 

Data preprocessing  

The study normalizes nine input features 

using an 80-20 train-test split and a 32-

batch batch size. Preprocessing of the 

data includes removing duplicates and 

missing values. 

Self-supervised learning architecture  

The self-supervised approach combines 

unsupervised feature learning with 

supervised regression (10, 11), allowing 

the model to learn meaningful 

representations while maintaining 

predictive accuracy for nutrient canal 

diameter estimation. The architecture 

details include a sequenced encoder, a 

linear decoder, and a linear regression. 

The training configuration includes an 

optimizer, a learning rate of 0.001, 100 

epochs, 32 batch sizes, and weight 

initialization by Xavier/Glorot. The 

model is designed to reconstruct input 

data and predict a specific target variable, 

such as nutrient canal dieter. The model's 

architecture includes a custom 

`Autoencoder` class, compressing the 

input data into a lower-dimensional 

representation using ReLU activation 

functions. The decoder reconstructs the 

original input from the latent 

representation using ReLU activations. 

The regressor is a regression head that 

predicts the target variable using two 
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linear layers. A forward pass method 

passes a tensor `x` as input, obtains the 

encoded representation, and generates the 

reconstructed output. An Adam optimizer 

is initialized to optimize model 

parameters with a learning rate of 0.001. 

The self-supervised model is an 

autoencoder-based architecture with three 

main components: 

Encoder: Compresses the input data into a 

16-dimensional latent space using fully 

connected layers (64 → 32 → 16 

neurons) with ReLU activations. 

Decoder: Reconstructs the input data 

from the latent space using a mirrored 

structure (16 → 32 → 64 → 9 

neurons).Regression Head: A single 

linear layer (16 → 1) predicts the nutrient 

canal diameter from the latent 

representation. 

The architecture ensures that the encoder 

learns meaningful representations while 

simultaneously predicting the target 

variable. 

Training Objectives 

The model was trained with two 

objectives: reconstruction loss (measured 

using Mean Squared Error) and 

regression loss (measured using MSE), 

with the total loss being a weighted sum 

of these components. 

 

Input Data Format 

The input data consisted of 9 features, 

including demographic, anatomical, and 

clinical variables. These features were 

normalized to ensure consistent scaling. 



 

 

ACTA BIOCLINICA 

Artículo Original 

Rajabhau Pawar y  Col. 

 

Volumen 15, N° 30 Especial, 2025 

Depósito Legal: PPI201102ME3815 

ISSN: 2244-8136 

 

DOI: https://doi.org/10.53766/AcBio/2025.15.30.e.06 

 
 

    

 

69 
 

The target variable was the nutrient canal 

diameter, a continuous variable. 

The proposed model uses a structured 

architecture with an encoder, decoder 

network, and a regression head to predict 

nutrient canal diameter from a latent 

representation. The encoder network 

compresses input data into a 16-

dimensional latent space, while the 

decoder network mirrors the encoder 

structure, extending the latent 

representation to the original nine 

features. ReLU activations are applied 

between the decoder layers to maintain 

nonlinear transformations. The model is 

trained for 100 epochs, with a summary 

output printed every 10. The training 

process follows a systematic approach, 

beginning with data preparation that 

includes normalization of the nine input 

features. The dataset is split into training 

and test sets, with an 80-20 ratio (320 

training samples and 80 testing samples), 

and a batch size of 32 is employed during 

training. For optimization, the Adam 

optimizer is selected with a learning rate 

of 0.001, and the model is trained over 

100 epochs. Weight initialization is 

carried out using the Xavier/Glorot 

method, ensuring appropriate weight 

distribution at the start of training. The 

forward pass involves data processing 

through an encoder, decoder, and 

regressor, combining reconstruction and 

regression losses to derive a total loss. 

In contrast, the backward pass computes 

gradients for model parameter updates. 

The self-supervised approach combines 

unsupervised feature learning with 

supervised regression to estimate nutrient 
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canal diameter accurately. The model 

summary provides a comprehensive 

overview of layers, training 

configurations, optimizer, learning rate, 

epochs, batch size, and weight 

initialization method. 

Comparison with SOTA- deep neural 

networks. 

The SOTA (State-Of-The-Art) model is a 

deep neural network comprising three 

hidden layers with sizes 64, 32, and 16. It 

uses ReLU activation functions and 

concludes with a regression layer. The 

model was trained over 100 epochs using 

the Adam optimizer. 

 

 

Results  

The self-supervised model has improved 

performance, reduced reconstruction and 

regression losses, and resulted in 

acceptable test losses. The test losses are 

recorded as a Test Reconstruction Loss of 

0.2291 and a Test Regression Loss of 

0.3135. The evaluation metrics included 

an R-squared of 0.2138, a mean absolute 

error of 0.4454, and a root mean squared 

error of 0.5599. The reconstruction 

objective aims to assess the fidelity of the 

input reconstruction through Mean 

Squared Error (MSE) loss, achieving a 

final reconstruction loss of 0.2543. This 

objective ensures meaningful feature 

extraction, allowing the model to learn 

compact and relevant representations of 

the input data. 

Meanwhile, the regression objective is 

centered on predicting the nutrient canal 
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diameter, also utilizing MSE loss, with a 

final regression loss calculated at 0.3336. 

After evaluating and comparing this 

model with a self-supervised model, the 

results indicate that the SOTA  deep 

neural network model showed 

comparable results with a test loss of 

0.2409 compared to 0.3135. Both models 

show a good correlation between 

predicted and actual values, as the scatter 

plots illustrate. 

Figure 2 shows epoch loss curves for 

three metrics over 100 training epochs. 

The self-supervised reconstruction loss, 

self-supervised regression loss, and 

SOTA model loss all decrease over 

epochs, indicating successful learning and 

adaptation of the model. The convergence 

of the curves around low loss values (0.5) 

suggests effective performance across 

self-supervised tasks and the SOTA 

model. Overall, the training process has 

been successful, with a notable reduction 

in loss values. 
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Figure 2. Epoch loss curves for three metrics over 100 training epochs. 

 

Figure 3 shows a scatter plot showing a 

2D visualization of encoded features, 

likely derived from Principal Component 

Analysis (PCA). It includes axes 

representing Principal Components 1 and 

2 and data points representing 

observations. The data is analyzed using 

Principal Components 1 (PC1) and 2 

(PC2), linear combinations of original 

features. The points represent data 

samples in a 2D space, with color 

gradients corresponding to diameters. The 

data is not separable, but subtle patterns 

or trends may exist. PC1 and PC2 explain 

the most variance in the data, while the 

color gradient suggests a relationship with 

the diameter. 
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Figure 3.  Scatter plot showing a 2D visualization of encoded features. 

 

Figure 4 shows a self-supervised model's 

loss curve over 100 epochs, showing 

Reconstruction and Regression losses. 

The graph shows a successful training 

process with a high initial spike, a rapid 

drop in losses after 20 epochs, and 

minimal improvements by the end. 
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Figure 4. Self-supervised model's loss curve over 100 epochs. 

 

Figure 5 shows scatter plots comparing 

actual and predicted diameters for self-

supervised and state-of-the-art (SOTA) 

models. The self-supervised model shows 

variability and under-prediction, while the 

SOTA model aligns better with actual 

values. Both models show some 

alignment with actual measurements, but 

the SOTA model demonstrates 

comparable predictive accuracy. The self-

supervised model's spread of points 

indicates variability and potential 
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underestimation and  Mean Squared Error 

(MSE) loss function, resulting in a final 

training loss of 0.2290, reflecting 

effective learning. Additional evaluation 

metrics for the self-supervised model 

were provided: R-squared at 0.2138, 

Mean Absolute Error (MAE) at 0.4454, 

and Root Mean Squared Error (RMSE) at 

0.5599, indicating moderate predictive 

ability. 

 

Figure 5. Scatter plots comparing actual and predicted diameters for self-supervised and 

state-of-the-art (SOTA) models. 

 

 

Explainable AI-SHAP ANALYSIS  The feature importance analysis revealed 

three key attributes significantly 
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influencing the models' predictions. The 

feature 'Gender_encoded' scored highest 

at '0.253', indicating its significant role in 

determining the target variable. The 

predictive model identifies the number of 

nutrient canals as a key factor with an 

importance score of 0.238, indicating its 

relevance in solving the problem. The 

feature 'Presence_encoded' was given a 

score of '0.221', indicating its significant 

role in the model's decision-making 

process. The study found a weak but 

positive correlation between visibility and 

location features and the target variable, 

with visibility_encoded showing the 

highest correlation at 0.076. 

Table 1 shows the dataset's shap plot-

correlation analysis revealed a linear 

relationship between various features and 

the target variable. Visibility_encoded 

showed the highest positive correlation 

with the target variable at 0.0756, 

suggesting a slight positive relationship. 

The number of nutrient canals and 

distance from the lingual artery to the 

inferior border had moderate positive 

correlations. Gender_encoded had a 

minimal positive correlation, while age 

and distance from the lingual artery 

showed negligible or negative 

correlations. The location_encoded 

feature had a slight negative correlation, 

suggesting it may contribute less to 

predicting the target variable. The model's 

encoder weights were used to assess the 

importance of three key features: 

Gender_encoded, Number of Nutrient 

Canals, and Presence_encoded. 

Visibility_encoded had the highest 

correlation with the target variable, while 
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Region_encoded had the lowest. These 

features were identified as the top three 

influential ones. 

 

Discussion  

CBCT imaging facilitates detailed 

assessment and diagnosis of pathologies 

related to nutrient canals, such as 

infections or cysts. The CBCT-based 

identification of nutrient canal diameters 

in the mandible offers significant clinical 

benefits in dental practice. It allows for 

more precise implant surgical planning, 

reducing the risk of intraoperative 

complications and enhancing patient 

outcomes. Accurate prediction of nutrient 

canals also aids in effectively 

administering local anesthesia, improving 

patient comfort and reducing anxiety. The 

diameter of nutrient canals can provide 

valuable insights into the health and 

density of the surrounding bone tissue, 

which can be critical when assessing 

candidates for dental implants or other 

surgical interventions (12).  

Understanding nutrient canals' diameter 

and condition helps clinicians select 

implant types and techniques, plan bone 

augmentation procedures, and avoid 

canals during grafting to preserve 

vascular supply and enhance healing 

(8,13). Preoperative CBCT imaging 

allows for a more accurate surgical guide 

design tailored to the patient's unique 

anatomy, leading to improved clinical 

outcomes and a higher implant success 

rate. In cases where immediate implant 

placement is considered post-extraction, 

awareness of nutrient canals is essential 
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to avoid potential complications. CBCT 

helps in personalized treatment plans for 

implant patients, enhancing the surgical 

experience, maximizing implant success, 

and ensuring bone health and patient 

satisfaction. 

 One study analyzing mandibular CT 

images of 194 patients found that nutrient 

canals were present in 94.3% of the 

mandible, primarily in the anterior region. 

The study found that the most common 

nutrient canal length in Chennai patients 

was 6-10 mm (54.55%), with higher 

prevalence in males (58%), and the 

highest prevalence in the age group of 41-

60 years (51%). No significant 

associations were found between age and 

nutrient canal measurements.The canals 

were particularly visible between the 

central and lateral incisors (2). 

Understanding the position and anatomy 

of mandibular nutrient canals can help 

prevent complications, as 80% of cases 

have ovoid foramina between incisors (3).  

A previous study categorized 200 CBCT 

scans into training, validation, and test 

sets. Oral radiologists manually 

segmented the scans in multiplanar 

reconstructions. Intra- and interobserver 

analysis was performed on 20% of the 

data set. Segments were then imported 

into Mimics for standardization (14). The 

study concludes that an innovative AI 

tool for automated segmentation of 

mandibular incisive canal on CBCT scans 

is accurate, time-efficient, and highly 

consistent. Similar to this study, results 

with a self-supervised model have shown 

improved performance, reduced 

reconstruction and regression losses, and 



 

 

ACTA BIOCLINICA 

Artículo Original 

Rajabhau Pawar y  Col. 

 

Volumen 15, N° 30 Especial, 2025 

Depósito Legal: PPI201102ME3815 

ISSN: 2244-8136 

 

DOI: https://doi.org/10.53766/AcBio/2025.15.30.e.06 

 
 

    

 

79 
 

acceptable test losses. The model 

achieved a Test Reconstruction Loss of 

0.2291 and a Test Regression Loss of 

0.3135, with acceptable metrics. The 

reconstruction objective assessed the 

fidelity of the input reconstruction using 

Mean Squared Error (MSE) loss, 

achieving a final loss of 0.2543. The 

regression objective predicted the nutrient 

canal diameter using MSE loss, achieving 

a final loss of 0.3336. The SOTA model 

demonstrated effective learning with a 

final training loss of 0.2290, 

outperforming a self-supervised model 

with a regression loss of 0.3135. The self-

supervised model had moderate 

predictive ability, with R-squared at 

0.2138, MAE at 0.4454, and RMSE at 

0.5599 (Figures 2-5 and Table 1). 

Self-supervised learning (15–17) has 

shown promise in predicting canal 

diameters in mandibular CBCT scans, but 

there are limitations to its effectiveness. 

These include reliance on labeled data, 

limited generalization, complexity in 

model interpretability, variability of 

measurements, and overfitting risks. 

Advanced model architectures, data 

augmentation techniques, and multi-

modal data integration can improve 

predictive accuracy and generalization 

(10, 11, 18). Fine-tuning with supervised 

learning on a smaller labeled dataset can 

yield better performance and stronger 

predictive capabilities. Feature 

optimization through interpretability tools 

can refine feature selection and improve 

interpretability. Robust validation 

techniques like k-fold cross-validation or 
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bootstrapping can assess the model's 

robustness and ensure its reliability across 

different datasets.Real-time prediction 

systems can enhance practitioners' 

decision-making processes, translating 

into better patient care (9). However, self-

supervised learning faces limitations such 

as dependency on labeled data, limited 

generalization, feature misrepresentation, 

complexity in model interpretability, data 

quality concerns, variability of nutrient 

canal measurements across practitioners, 

and overfitting risks.  

 

Conclusion  

Self-supervised learning can revolutionize 

mandibular CBCT scan analysis, 

especially in predicting nutrient canal 

diameters. These models can uncover 

hidden patterns using unlabeled data and 

advanced neural network architectures. 

Hybrid learning, real-time prediction 

systems, and improved model 

interpretability are crucial for bridging the 

algorithm-clinical gap, but addressing 

limitations like generalization, 

interpretation complexity, and data 

quality is essential. 
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