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ABSTRACT

Introduction: Cone-beam computed tomography (CBCT) has revolutionized dentistry by
providing high-resolution 3D views for evaluating mandibular nutrient canal systems.
However, manual measurements are time-consuming. This study employs self-supervised
learning to predict nutrient canal measurements from mandibular CBCT scans. Objective:
To enhance accuracy and treatment planning using explainable artificial intelligence (Al),
optimizing strategies for implant surgeries and personalized care. Methods: A total of 398
CBCT images were collected from the DIAS system at Saveetha Dental College. A
periodontist annotated data, including nutrient canal diameter, lingual artery visibility, and
distances. Data were split into training and testing sets. The self-supervised model utilized
autoencoders with encoder, decoder, and regression heads, compressing data into a 16-
dimensional latent space to predict canal diameter. Results: The model reduced
reconstruction and regression losses, achieving final losses of 0.2543 for reconstruction and
0.3336 for regression. Conclusion: Self-supervised learning can enhance CBCT scan
analysis by predicting canal diameters. However, success depends on high-quality data,

robust validation, and multimodal integration.

KEYWORDS: Cone Beam Computed Tomography; dentistry; high-resolution; three-

dimensional views; dental anatomy; nutrient canal systems; machine learning.
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APRENDIZAJE AUTO-SUPERVISADO EXPLICABLE PARA PREDECIR Y
GENERAR LOS DIAMETROS DE CANALES NUTRICIOS EN TOMOGRAFIA

COMPUTARIZADA DE HAZ CONICO

Introduccion: La tomografia computarizada de haz conico (CBCT) ha transformado la
odontologia al proporcionar vistas tridimensionales de alta resolucion para evaluar los
sistemas de canales nutricios mandibulares. Sin embargo, las mediciones manuales son
laboriosas. Este estudio utiliza aprendizaje auto-supervisado para predecir mediciones de
los canales nutricios a partir de escaneos CBCT mandibulares. Objetivo: Mejorar la
precision y la planificacion del tratamiento mediante inteligencia artificial explicable (1A),
optimizando estrategias para cirugias de implantes y atencién personalizada. Métodos: Se
recopilaron 398 imagenes CBCT del sistema DIAS del Saveetha Dental College. Un
periodoncista calificd los datos, incluyendo mediciones del diametro del canal nutricio,
visibilidad de la arteria lingual y distancia. Los datos se dividieron en conjuntos de
entrenamiento y prueba. EI modelo auto-supervisado empled autoencoders con codificador,
decodificador y cabeza de regresion, comprimiendo los datos en un espacio latente de 16
dimensiones para predecir el didmetro del canal. Resultados: EI modelo redujo pérdidas de
reconstruccion y regresion, logrando una pérdida final de 0.2543 para reconstruccion y

0.3336 para regresion. Conclusion: El aprendizaje auto-supervisado puede mejorar el
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analisis de escaneos CBCT al predecir didmetros de los canales, aunque su éxito depende

de datos de alta calidad, validacién robusta e integracién multimodal.

PALABRAS CLAVE: Tomografia computarizada de haz conico; odontologia; alta

resolucion; vistas tridimensionales; anatomia dental; sistemas de canales nutricios;

aprendizaje automatico.

INTRODUCTION

Cone Beam Computed Tomography
(CBCT) has emerged as a revolutionary
imaging modality in dentistry, offering
high-resolution three-dimensional views
of dental anatomy (1). This advanced
imaging technique allows for a more
detailed evaluation of the nutrient canal
system than traditional two-dimensional
radiographs, providing critical insights
into nutrient canal dimensions. CBCT
offers advantages, but manual canal

diameter measurement is labor-intensive.

Advances in dental imaging are
enhancing accuracy using machine
learning algorithms, leading to improved

implant  planning and personalized

interventions (2).

A previous study of 194 patients found
nutrient canals in 94.3% of cases, mainly
in the front area, with an average of 2.7
canals and 1.0 mm  diameter.
Understanding these canals can prevent
dental procedures (3). A study on 50
CBCT scans of the mandible found 243

accessory canals and 245 accessory
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foramina, with males having a higher
prevalence (53%). Most were located in
the anterior region, with females having
more accessory canals and foramina (4).
These studies have shown the presence
and diameter of nutrient canals, but their
prediction of the diameter of nutrient

canals has not been analyzed much.

CBCT is crucial for predicting nutrient
canals, which carry blood vessels and
nerves, enabling better treatment planning
and influencing surgical outcomes,
especially in complex cases like implants
and extractions (5). Predictive models for
nutrient canals enable practitioners to
tailor  their  surgical  approaches,
improving overall treatment outcomes.
Recent work on 104 patients found
mandibular  canal

discrepancies in

localization accuracy between three

Volumen 15, N° 30 Especial, 2025
Deposito Legal: PP1201102ME3815
ISSN: 2244-8136

DOI: https://doi.org/10.53766/AcBi0/2025.15.30.€.06

experienced clinicians and five tracings.
The posterior and anterior loops had
higher mean RMS error experienced
clinicians who take longer to trace canal
localizations than Al-driven
segmentation, indicating that clinician
influences

experience  significantly

accuracy (6).

Al-driven segmentation is time-efficient
but requires verification to avoid errors
similar to this study's accuracy. These
studies have identified the mandibular
canal's location but have not determined
the nutrient canal's diameter (7). So, we
used the supervised learning method to
predict and generate the nutrient canal
dimensions in mandibular CBCT. Recent
advancements in self-supervised learning
and deep learning methodologies present

exciting opportunities to improve the
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modeling of complex patterns in dental
images. These innovative technigues can
leverage vast amounts of unlabeled data
from CBCT scans (8) to develop robust
predictive models that learn to identify
significant features associated with canal
dimensions. This study chose self-
supervised learning for nutrient canal
prediction and generation due to its
ability to utilize unlabeled data
effectively, enhancing the model's ability
to discern complex patterns, especially in
the intricate nature of nutrient canal
generation (9). By accurately predicting

canal diameters using Al, practitioners
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can better understand the nutrient canal
system, optimize treatment strategies, and
ultimately enhance patient care. This
study explores the effectiveness of self-
supervised learning methods in predicting
dental canal diameters from CBCT
images, aiming to improve accuracy and

decision-making with explainable Al.

Materials and Methods

Figure 1 shows the workflow of the

nutrient canal diameter.
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Figure 1. Workflow of the nutrient canal diameter.

Data Preparation

The dataset for this study was obtained
from Saveetha Dental College utilizing
the DIAS information system. A total of
398 images with their data were collected
from cone beam computed tomography

(CBCT) images, which included essential

demographic details such as age and
gender and information regarding the
presence and characteristics of nutrient
canals.  Specifically, the  dataset
encompassed measurements including the
diameter of the canals, visibility of the

lingual artery, and the distances from the
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lingual artery to the inferior border (in
millimeters). A qualified periodontist
meticulously obtained these
measurements, and a data frame was

subsequently prepared based on this

comprehensive dataset (Figure 1).

Data preprocessing

The study normalizes nine input features
using an 80-20 train-test split and a 32-
batch batch size. Preprocessing of the
data includes removing duplicates and

missing values.

Self-supervised learning architecture

The self-supervised approach combines
unsupervised feature learning  with
supervised regression (10, 11), allowing
the model to learn

meaningful

representations while maintaining
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predictive accuracy for nutrient canal
diameter estimation. The architecture
details include a sequenced encoder, a
linear decoder, and a linear regression.
The training configuration includes an
optimizer, a learning rate of 0.001, 100
epochs, 32 batch sizes, and weight
initialization by Xavier/Glorot. The
model is designed to reconstruct input
data and predict a specific target variable,
such as nutrient canal dieter. The model's
architecture includes a  custom
"Autoencoder” class, compressing the
input data into a lower-dimensional
representation using ReLU activation
functions. The decoder reconstructs the
original  input from the latent
representation using RelLU activations.

The regressor is a regression head that

predicts the target variable using two
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linear layers. A forward pass method
passes a tensor "X as input, obtains the
encoded representation, and generates the
reconstructed output. An Adam optimizer
is initialized to optimize model

parameters with a learning rate of 0.001.

The self-supervised model is an
autoencoder-based architecture with three

main components:

Encoder: Compresses the input data into a
16-dimensional latent space using fully
connected layers (64 — 32 — 16

neurons) with ReLU activations.

Decoder: Reconstructs the input data
from the latent space using a mirrored
structure (16 — 32 — 64 — 9
neurons).Regression Head: A single

linear layer (16 — 1) predicts the nutrient

canal diameter from the latent

representation.

The architecture ensures that the encoder
learns meaningful representations while
simultaneously predicting the target

variable.

Training Objectives

The model was trained with two
objectives: reconstruction loss (measured
using Mean Squared Error) and
regression loss (measured using MSE),
with the total loss being a weighted sum

of these components.

Input Data Format

The input data consisted of 9 features,
including demographic, anatomical, and
clinical variables. These features were

normalized to ensure consistent scaling.
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The target variable was the nutrient canal

diameter, a continuous variable.

The proposed model uses a structured
architecture with an encoder, decoder
network, and a regression head to predict
nutrient canal diameter from a latent
representation. The encoder network
compresses input data into a 16-
dimensional latent space, while the
decoder network mirrors the encoder
structure, extending the latent
representation to the original nine
features. ReLU activations are applied
between the decoder layers to maintain
nonlinear transformations. The model is
trained for 100 epochs, with a summary
output printed every 10. The training
process follows a systematic approach,
beginning with data preparation that

includes normalization of the nine input
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features. The dataset is split into training
and test sets, with an 80-20 ratio (320
training samples and 80 testing samples),
and a batch size of 32 is employed during
training. For optimization, the Adam
optimizer is selected with a learning rate
of 0.001, and the model is trained over
100 epochs. Weight initialization is
carried out using the Xavier/Glorot
method, ensuring appropriate weight
distribution at the start of training. The
forward pass involves data processing
through an encoder, decoder, and
regressor, combining reconstruction and

regression losses to derive a total loss.

In contrast, the backward pass computes
gradients for model parameter updates.
The self-supervised approach combines
unsupervised feature learning  with

supervised regression to estimate nutrient
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canal diameter accurately. The model
summary provides a comprehensive
overview of layers, training
configurations, optimizer, learning rate,

epochs, batch size, and weight

initialization method.

Comparison with SOTA- deep neural

networks.

The SOTA (State-Of-The-Art) model is a
deep neural network comprising three
hidden layers with sizes 64, 32, and 16. It
uses ReLU activation functions and
concludes with a regression layer. The
model was trained over 100 epochs using

the Adam optimizer.

Results
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The self-supervised model has improved
performance, reduced reconstruction and
regression losses, and resulted in
acceptable test losses. The test losses are
recorded as a Test Reconstruction Loss of
0.2291 and a Test Regression Loss of
0.3135. The evaluation metrics included
an R-squared of 0.2138, a mean absolute
error of 0.4454, and a root mean squared
error of 0.5599. The reconstruction
objective aims to assess the fidelity of the
input  reconstruction through  Mean
Squared Error (MSE) loss, achieving a
final reconstruction loss of 0.2543. This
objective ensures meaningful feature
extraction, allowing the model to learn
compact and relevant representations of

the input data.

Meanwhile, the regression objective is

centered on predicting the nutrient canal
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diameter, also utilizing MSE loss, with a
final regression loss calculated at 0.3336.
After evaluating and comparing this
model with a self-supervised model, the
results indicate that the SOTA deep
neural network model showed
comparable results with a test loss of
0.2409 compared to 0.3135. Both models
show a good correlation between

predicted and actual values, as the scatter

plots illustrate.

Figure 2 shows epoch loss curves for

three metrics over 100 training epochs.
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The self-supervised reconstruction loss,
self-supervised regression loss, and
SOTA model loss all decrease over
epochs, indicating successful learning and
adaptation of the model. The convergence
of the curves around low loss values (0.5)
suggests effective performance across
self-supervised tasks and the SOTA
model. Overall, the training process has
been successful, with a notable reduction

in loss values.
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Epoch Loss Curves

3.0 1

—— Self-Supervised Reconstruction Loss
Self-Supervised Regression Loss
—— SOTA Model Loss

0 20 40

60 80 100

Figure 2. Epoch loss curves for three metrics over 100 training epochs.

Figure 3 shows a scatter plot showing a
2D visualization of encoded features,
likely derived from Principal Component
Analysis  (PCA). It includes axes
representing Principal Components 1 and
2 and data points representing
observations. The data is analyzed using

Principal Components 1 (PC1) and 2

(PC2), linear combinations of original

features. The points represent data
samples in a 2D space, with color
gradients corresponding to diameters. The
data is not separable, but subtle patterns
or trends may exist. PC1 and PC2 explain
the most variance in the data, while the
color gradient suggests a relationship with

the diameter.
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2D Visualization of Encoded Features
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Figure 3. Scatter plot showing a 2D visualization of encoded features.

Figure 4 shows a self-supervised model's

loss curve over 100 epochs, showing
Reconstruction and Regression losses.

The graph shows a successful training

process with a high initial spike, a rapid
drop in losses after 20 epochs, and

minimal improvements by the end.
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Epoch Loss Curve for Self-Supervised Model

—— Reconstruction Loss
237 Regression Loss
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g
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Figure 4. Self-supervised model's loss curve over 100 epochs.
Figure 5 shows scatter plots comparing values. Both models show some
actual and predicted diameters for self- alignment with actual measurements, but
supervised and state-of-the-art (SOTA) the SOTA model demonstrates
models. The self-supervised model shows comparable predictive accuracy. The self-
variability and under-prediction, while the supervised model's spread of points
SOTA model aligns better with actual indicates variability and potential
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underestimation and Mean Squared Error
(MSE) loss function, resulting in a final
training loss of 0.2290, reflecting

effective learning. Additional evaluation

were provided: R-squared at 0.2138,

Mean Absolute Error (MAE) at 0.4454,

and Root Mean Squared Error (RMSE) at

0.5599, indicating moderate predictive

metrics for the self-supervised model ability.
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Figure 5. Scatter plots comparing actual and predicted diameters for self-supervised and
state-of-the-art (SOTA) models.

Explainable AI-SHAP ANALYSIS

The feature importance analysis revealed

three  key  attributes

significantly
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influencing the models’ predictions. The
feature 'Gender_encoded’ scored highest
at '0.253', indicating its significant role in
determining the target variable. The
predictive model identifies the number of
nutrient canals as a key factor with an
importance score of 0.238, indicating its
relevance in solving the problem. The
feature 'Presence_encoded' was given a
score of '0.221', indicating its significant
role in the model's decision-making
process. The study found a weak but
positive correlation between visibility and
location features and the target variable,
with  visibility _encoded showing the

highest correlation at 0.076.

Table 1 shows the dataset's shap plot-
correlation analysis revealed a linear
relationship between various features and

the target variable. Visibility encoded
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showed the highest positive correlation
with the target variable at 0.0756,
suggesting a slight positive relationship.
The number of nutrient canals and
distance from the lingual artery to the
inferior border had moderate positive
correlations. Gender_encoded had a
minimal positive correlation, while age
and distance from the lingual artery
showed

negligible or negative

correlations.  The  location_encoded
feature had a slight negative correlation,
suggesting it may contribute less to
predicting the target variable. The model's
encoder weights were used to assess the
importance of three key features:
Gender_encoded, Number of Nutrient
Canals, and Presence_encoded.

Visibility_encoded had the highest

correlation with the target variable, while
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Region_encoded had the lowest. These
features were identified as the top three

influential ones.

Discussion

CBCT imaging facilitates detailed
assessment and diagnosis of pathologies
related to nutrient canals, such as
infections or cysts. The CBCT-based
identification of nutrient canal diameters
in the mandible offers significant clinical
benefits in dental practice. It allows for
more precise implant surgical planning,
reducing the risk of intraoperative
complications and enhancing patient
outcomes. Accurate prediction of nutrient
canals also aids in effectively

administering local anesthesia, improving

patient comfort and reducing anxiety. The
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diameter of nutrient canals can provide
valuable insights into the health and
density of the surrounding bone tissue,
which can be critical when assessing
candidates for dental implants or other

surgical interventions (12).

Understanding nutrient canals' diameter
and condition helps clinicians select
implant types and techniques, plan bone
augmentation procedures, and avoid
canals during grafting to preserve
vascular supply and enhance healing
(8,13). Preoperative CBCT imaging
allows for a more accurate surgical guide
design tailored to the patient's unique
anatomy, leading to improved clinical
outcomes and a higher implant success
rate. In cases where immediate implant
placement is considered post-extraction,

awareness of nutrient canals is essential
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to avoid potential complications. CBCT
helps in personalized treatment plans for
implant patients, enhancing the surgical
experience, maximizing implant success,
and ensuring bone health and patient

satisfaction.

One study analyzing mandibular CT
images of 194 patients found that nutrient
canals were present in 94.3% of the
mandible, primarily in the anterior region.
The study found that the most common
nutrient canal length in Chennai patients
was 6-10 mm (54.55%), with higher
prevalence in males (58%), and the
highest prevalence in the age group of 41-
60 years (51%). No significant
associations were found between age and
nutrient canal measurements.The canals
were particularly visible between the

central and lateral incisors (2).
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Understanding the position and anatomy
of mandibular nutrient canals can help
prevent complications, as 80% of cases

have ovoid foramina between incisors (3).

A previous study categorized 200 CBCT
scans into training, validation, and test
sets.  Oral radiologists  manually
segmented the scans in multiplanar
reconstructions. Intra- and interobserver
analysis was performed on 20% of the
data set. Segments were then imported
into Mimics for standardization (14). The
study concludes that an innovative Al
tool for automated segmentation of
mandibular incisive canal on CBCT scans
is accurate, time-efficient, and highly
consistent. Similar to this study, results
with a self-supervised model have shown
reduced

improved performance,

reconstruction and regression losses, and
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acceptable test losses. The model
achieved a Test Reconstruction Loss of
0.2291 and a Test Regression Loss of
0.3135, with acceptable metrics. The
reconstruction objective assessed the
fidelity of the input reconstruction using
Mean Squared Error (MSE) loss,
achieving a final loss of 0.2543. The
regression objective predicted the nutrient
canal diameter using MSE loss, achieving
a final loss of 0.3336. The SOTA model
demonstrated effective learning with a
final  training loss of  0.2290,
outperforming a self-supervised model
with a regression loss of 0.3135. The self-
supervised model had  moderate
predictive ability, with R-squared at

0.2138, MAE at 0.4454, and RMSE at

0.5599 (Figures 2-5 and Table 1).
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Self-supervised learning (15-17) has
shown promise in predicting canal
diameters in mandibular CBCT scans, but
there are limitations to its effectiveness.
These include reliance on labeled data,
limited generalization, complexity in
model interpretability, variability of
measurements, and overfitting  risks.
Advanced model architectures, data
augmentation techniques, and multi-
modal data integration can improve
predictive accuracy and generalization
(10, 11, 18). Fine-tuning with supervised
learning on a smaller labeled dataset can
yield better performance and stronger
predictive capabilities. Feature
optimization through interpretability tools
can refine feature selection and improve
validation

interpretability. Robust

techniques like k-fold cross-validation or
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bootstrapping can assess the model's
robustness and ensure its reliability across
different datasets.Real-time prediction
systems can enhance practitioners'
decision-making processes, translating
into better patient care (9). However, self-
supervised learning faces limitations such
as dependency on labeled data, limited
generalization, feature misrepresentation,
complexity in model interpretability, data
quality concerns, variability of nutrient
canal measurements across practitioners,

and overfitting risks.

Conclusion

Self-supervised learning can revolutionize
mandibular CBCT scan  analysis,
especially in predicting nutrient canal

diameters. These models can uncover

hidden patterns using unlabeled data and
advanced neural network architectures.
Hybrid learning, real-time prediction
systems, and improved model
interpretability are crucial for bridging the
algorithm-clinical gap, but addressing
limitations like generalization,

interpretation complexity, and data

quality is essential.
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