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Introduction: Prostate carcinoma remains one of the commonly diagnosed cancers and a 

leading cause of morbidity and mortality worldwide. The diagnostic challenge in 

distinguishing benign and malignant prostate lesions remains significant, especially in 
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small biopsies. Immunohistochemistry(IHC) serves as a valuable adjunct tool in the 

diagnosis and  management of prostate malignancies. This study aims to evaluate the utility 

of P40 expression in the diagnosis of prostate lesions and to compare with the 

immunohistochemical expression of 34betaE12 in benign, premalignant and malignant 

lesions of the prostate. Materials & methods: This investigation was done at the Sree 

Balaji Medical College and Hospital, Department of Pathology, Chennai, India. Total 41 

males with prostate specimens prostatic specimens (biopsies and resections) satisfying 

inclusion and exclusion criteria were included in this cross-sectional research study.Initial 

sections weres tained with Hematoxylin and eosin stain followed by IHC staining with two 

markers, P40 and 34BetaE12. Data were analysed using the mean and standard deviation 

for quantitative variables, as well as frequency and percentage for categorical variables, for 

descriptive purposes. Statistical analysis was made with IBM SPSS 16.0 software and P 

value of <0.05 was considered significant.  Results: Of the 41 cases examined, the most 

prevalent pathology was a benign lesion (51.2%), followed by 41.5% malignant and 7.3% 

had premalignant lesions. All patients with benign lesions and pre-malignant lesions were 

positive and all malignant lesions were negative for P40 staining. There was statistically 

significant increase in P40 and 35betaE12 staining among patients with benign and pre- 

malignant lesions. Conclusion: Our findings suggest that immunohistochemical markers 

34betaE12 and p40 have been found to be of value in differentiating benign and malignant 
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lesions of the prostate thereby playing an important role in management of patient and 

therapeutic outcome. 

KEYWORDS: Prostate carcinoma, Immunohistochemistry, P40, 34betaE12 & Basal cells. 

 

ANÁLISIS COMPARATIVO DE P40 Y 34BETAE12. INMUNOHISTOQUÍMICA 

EN EL DIAGNÓSTICO DE LESIONES PROSTÁTICAS: PERSPECTIVAS SOBRE 

SU UTILIDAD DIAGNÓSTICA 

 

 
 

Introducción: El carcinoma de próstata sigue siendo uno de los cánceres más 

frecuentemente diagnosticados y una de las principales causas de morbilidad y mortalidad a 

nivel mundial.  El desafío diagnóstico para distinguir entre lesiones prostáticas benignas y 

malignas sigue siendo significativo, especialmente en biopsias pequeñas. La 

inmunohistoquímica (IHQ) constituye una valiosa herramienta complementaria en el 

diagnóstico y tratamiento de las neoplasias malignas de próstata. Este estudio busca evaluar 

la utilidad de la expresión de P40 en el diagnóstico de lesiones prostáticas y compararla con 

la expresión inmunohistoquímica de 34ßE12 en lesiones prostáticas benignas, premalignas 

y malignas. Materiales y métodos: Esta investigación se realizó en el Departamento de 

Patología del Colegio Médico y Hospital Sree Balaji, Chennai, India. Se incluyeron en este 

estudio transversal 41 varones con muestras de próstata (biopsias y resecciones) que 

RESUMEN 
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cumplían los criterios de inclusión y exclusión. Las secciones iniciales se tiñeron con 

hematoxilina y eosina, seguida de tinción inmunohistoquímica (IHQ) con dos marcadores: 

P40 y 34BetaE12. Los datos se analizaron utilizando la media y la desviación estándar para 

las variables cuantitativas, así como la frecuencia y el porcentaje para las variables 

categóricas, con fines descriptivos. El análisis estadístico se realizó con el programa 

informático IBM SPSS 16.0 y se consideró significativo un valor de p < 0,05. 

RESULTADOS: De los 41 casos examinados, la patología más prevalente fue una lesión 

benigna (51,2%), seguida de una maligna (41,5%) y una premaligna (7,3%). Todos los 

pacientes con lesiones benignas y premalignas dieron positivo en la tinción de P40, y todas 

las lesiones malignas dieron negativo en la tinción de P40. Se observó un aumento 

estadísticamente significativo en la tinción de P40 y 35ßE12 entre los pacientes con 

lesiones benignas y premalignas. Conclusión: Nuestros hallazgos sugieren que los 

marcadores inmunohistoquímicos 34ßE12 y p40 han demostrado ser valiosos para 

diferenciar lesiones benignas y malignas de la próstata, desempeñando así un papel 

importante en el manejo del paciente y el resultado terapéutico. 

PALABRAS CLAVE: Carcinoma de próstata; inmunohistoquímica; P40; 34betaE12 y 

células basales. 
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INTRODUCTION  

Alzheimer's disease (AD) is a complex 

neurodegenerative disorder that 

diminishes identity and autonomy 

through its impact on behavior, memory, 

and cognitive abilities. Discovered over a 

century ago, AD is characterized by the 

presence of tau protein tangles and beta-

amyloid plaques, which disrupt brain 

function and lead to neuronal death (1). 

Despite its pervasive occurrence and 

devastating consequences, effective 

treatments remain elusive. As the global 

population ages, AD is poised to exert a 

significant socioeconomic burden on 

caregivers and healthcare systems. 

Advancements in genetics, neuroscience, 

and technology are driving ongoing 

progress in AD research, offering hope 

for mitigating its profound impact 

through improved early detection, 

enhanced diagnostic precision, and 

personalized interventions (1, 2). 

 

MicroRNAs (miRNAs), small RNA 

molecules, modulate gene expression by 

binding to target messenger RNA 

(mRNA) molecules, either facilitating or 

inhibiting their translation (3, 4). 

Dysregulation of miRNAs significantly 

influences the pathogenesis of 

Alzheimer's disease (AD). Research 

suggests that specific miRNAs may 

regulate genes and processes associated 

with AD pathophysiology, such as the 

formation and clearance of tau protein 

tangles, amyloid-beta (Aβ) plaque 

deposition, neuroinflammation, synaptic 

dysfunction, and neuronal apoptosis. 

Dysregulated miRNAs have been 
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identified in various tissues and biofluids 

of AD patients, indicating their potential 

utility as biomarkers for prognosis, 

diagnosis, and treatment response 

assessment. Understanding the causal 

relationships between miRNAs and AD 

pathophysiology holds promise for early 

disease detection, personalized 

therapeutic interventions, and cognitive 

decline prevention (5, 6). 

 

Graph neural networks (GNNs) represent 

a powerful machine-learning paradigm 

capable of capturing complex 

relationships inherent in graph-structured 

data (7, 8). By amalgamating principles 

from graph theory and neural networks, 

GNNs can directly process graph-

structured data, exploiting its inherent 

structure and connectivity. In Alzheimer's 

disease research, graphical neural 

networks (GNNs) are utilized to predict 

causal relationships involving 

microRNAs (miRNAs). This approach 

shows potential for unraveling the 

underlying pathophysiology of AD and 

identifying viable therapeutic targets (9, 

10). GNNs can integrate multi-omics data 

into a unified graph representation, 

facilitating the learning of intricate 

dependencies and patterns. This enables 

the prediction of associations between 

miRNAs and diseases, elucidating the 

causal mechanisms underlying AD 

pathophysiology. The GNN-based 

methodology encompasses data 

integration, graph construction, feature 

encoding, graph convolution, prediction, 

and interpretation, offering insights into 

the molecular mechanisms driving AD 
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and aiding in the development of targeted 

therapeutic interventions. Moreover, 

interpretable models can provide valuable 

insights into the biological mechanisms 

and regulatory networks underpinning 

AD pathophysiology, paving the way for 

personalized precision medicine 

approaches. 

 

Aberrant miRNA expression is implicated 

in various diseases, and deep learning 

methods like ADPMDA demonstrate 

efficient prediction of miRNA-disease 

associations, achieving a mean AUC 

value of 94.75% in experiments (10-12). 

GraphTar, a novel miRNA target 

prediction method, utilizes a graph-based 

representation and word2vec encoding for 

RNA sequences, surpassing existing 

approaches, albeit necessitating expanded 

datasets for further exploration (13). 

This study aims to elucidate the 

molecular mechanisms of Alzheimer's 

disease (AD) and identify novel 

therapeutic targets, with a specific focus 

on delineating causal associations 

between microRNAs (miRNAs) and AD, 

essential for early disease detection and 

monitoring. Identification of specific 

miRNAs holds promise for understanding 

disease pathogenesis and facilitating 

targeted interventions. Graph neural 

networks (GNNs) can predict causal 

associations between miRNAs and 

diseases, thereby enhancing the ability to 

identify miRNAs causally linked to AD. 

MiRNA-based therapeutics, an emerging 

field in AD research, have the potential to 

restore normal gene expression patterns 
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and attenuate or reverse disease 

progression.  

 

Our study aims to predict miRNA-disease 

causal associations using graph neural 

network-based approaches in Alzheimer's 

disease. 

 

Materials and Methods 

Dataset Preparation 

The study utilized HMDD V4.0 (14) to 

analyze the microRNA-disease 

association causality dataset, comprising 

microRNA, disease, and causality 

information. Nodes representing 

microRNAs, diseases, and causality were 

designated, and graph neural networks 

were employed to predict edge 

interactions as causality between 

microRNAs and diseases, specifically 

Alzheimer's disease. This methodology 

facilitated effective analysis and the 

discovery of potential causal connections 

within the biomedical context. 

 

A dataset sourced from HMDD V4.0 (14) 

was employed, incorporating microRNA 

expression profiles and associated clinical 

data from individuals with Alzheimer's 

disease and healthy controls. 

Preprocessing steps were implemented to 

clean and normalize the microRNA 

expression data while integrating it with 

clinical information. The Alzheimer's 

disease dataset, inclusive of microRNA, 

disease, causality (categorized as "no" 

and "yes"), and primary literature 

references (PMIDs), was extracted from 

the downloaded dataset. Nodes were 

allocated for microRNA, disease, and 
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causality, serving as edges, and node 

features were assigned and labeled. These 

data were then subjected to graph neural 

networks (GNNs) with the aim of 

predicting the edge interaction of 

causality. 

 

This study employs GNNs to investigate 

the intricate relationships between 

microRNAs and Alzheimer's disease, 

with the goal of predicting their causality 

using structured data. This 

comprehension is pivotal for 

understanding molecular mechanisms and 

identifying potential therapeutic targets. 

 

Graph Neural Network Architecture 

GNNs are deep learning models designed 

to utilize graph-structured data for tasks 

such as link prediction and node 

classification. They comprise multiple 

layers processing node and edge features, 

facilitating information propagation 

across the graph. Techniques like 

message passing enable nodes to capture 

higher-order dependencies and refine 

hidden states. GNNs commonly utilize 

the Adam optimizer for optimization. The 

architecture of a GNN encompasses 

multiple layers of graph convolutional 

operations, facilitating information 

propagation between nodes. The output of 

the final layer is inputted into a 

classification layer to predict the causality 

of microRNAs in Alzheimer's disease. 

In addition to the number of layers and 

units, other hyperparameters that can be 

tuned include the learning rate, dropout 

rate, and regularization strength. The 

learning rate dictates the step size at 
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which the model updates its parameters 

during training. A high learning rate may 

cause the model to overshoot optimal 

values, while a low learning rate may 

decelerate the learning process. The 

dropout rate serves as a regularization 

technique, randomly setting a fraction of 

input units to 0 during training to prevent 

overfitting. The regularization strength 

governs the balance between the model's 

capability to fit the training data and its 

generalization to unseen data. 

 

The hyperparameter selection process 

typically involves grid search and model 

evaluation. The model exhibiting the best 

performance on the validation set is 

chosen for further evaluation on the test 

set. By fine-tuning the hyperparameters, 

the performance of the GNN model can 

be optimized, leading to enhanced 

predictions of microRNA causality in 

Alzheimer's disease. 

 

Results 

The graph neural network model 

accurately predicted Alzheimer's disease, 

achieving a precision of 69.44%, recall of 

83.33%, and an F1 score of 75.75%. This 

methodology demonstrates promise in the 

identification of potential biomarkers or 

therapeutic targets for Alzheimer's 

disease utilizing microRNA data. 

 

The precision and recall metrics of the 

model are pivotal for discerning genuine 

associations. Precision, quantifying the 

ratio of true positive predictions to total 

positive predictions, attains an accuracy 

of 69.44%. Recall, or sensitivity, achieves 
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an accuracy of 83.33%, signifying 

successful identification of positive 

associations. The F1-score, serving as a 

harmonic mean of precision and recall, 

offers a balanced assessment of these 

metrics, indicating commendable 

performance. 

 

 

 

Figure 1 illustrates the ROC curve 

predicting the causal association between 

microRNAs and Alzheimer's disease. It 

charts the True Positive Rate (TPR) 

against the False Positive Rate (1-

specificity) across various threshold 
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settings. The AUC value of 0.56 indicates 

that the model performs slightly better 

than random guessing but lacks 

robustness in distinguishing between 

positive and negative cases. The 

proximity of the ROC curve to the top-

left corner signifies superior model 

performance. 

 

 

Figure 2 depicts the confusion matrix of 

the graph neural network model for 

predicting causal associations with 

Alzheimer's microRNA disease. It 

accurately recognized 190 instances of 

"no" cases but did not identify any "yes" 
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cases, resulting in 38 false negatives and 

zero true positives. The model effectively 

discerned 190 instances lacking a causal 

association between a microRNA and 

Alzheimer's disease but did not detect any 

instances exhibiting a causal association. 

While proficient in identifying cases 

without a causal association, the model 

struggled to accurately identify cases with 

a causal association, highlighting a 

significant limitation in its ability to 

predict microRNA-disease causal 

associations in the context of Alzheimer's 

disease. 
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Figure 3 illustrates the Epoch Loss Graph, 

demonstrating the performance of the 

neural network model in predicting causal 

associations between Alzheimer's 

microRNA disease and training epochs. 

The model's loss initiates at 0.4436 and 

steadily diminishes with increasing 

epochs, suggesting effective learning 

from the training data. By epoch 200, the 

loss decreases to 0.4431, signifying 

enhanced accuracy. 

 

Discussion 

Alzheimer's disease stands as a 

neurodegenerative condition 

characterized by cognitive decline and 

memory impairment (15,16), believed to 

be influenced by both genetic and 

environmental factors. Recent 

investigations have underscored the role 

of microRNAs (miRNAs) in the 

development and progression of 

Alzheimer's disease. Dysregulated 

miRNAs have been pinpointed in 

Alzheimer's disease, targeting genes 

crucial for neuronal survival, synaptic 

plasticity, and inflammation (17-19). A 

recent study employed protein-protein 

interaction networks and miRNA-gene 

interactions to link Alzheimer's disease 

with miRNAs, identifying 257 novel AD-

related miRNAs via a one-class SVM 

semi-clustering method, yielding higher 

AUC values and reliable outcomes (2,20). 

 

Previous research utilized a network of 

miRNA-target interactions (MTIs) 

relevant to Alzheimer's disease (AD), 
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sourced from data in miRTarBase. The 

network comprised seven MTI 

subnetworks and 12 MTI pairs, 

incorporating nodes such as APP, 

BACE1, NCSTN, SIRT, SP1, and 

specific miRNAs like miR-9, miR-16, 

and miR-181c. This study scrutinized the 

interactions of miRNA targets with 

proteins and their enrichment for AD-

associated miRNAs, elucidating their role 

in gene expression regulation (20,21). 

Nonetheless, consensus on validation 

strength remains elusive, and our study 

endeavors to explore microRNA disease 

causation prediction to uncover novel 

targets. 

 

MicroRNAs (miRNAs) play pivotal roles 

in post-transcriptional gene regulation, 

with implications in various diseases 

including cancer. Graph neural networks 

(GNNs) have been leveraged in drug 

screening for small molecules targeting 

miR-21, predicting potential drugs based 

on structural similarities and showcasing 

potential for discovering novel 

therapeutic agents. GATMDA, a 

computational framework (9,10), employs 

a graph attention network to identify 

miRNA-disease associations, achieving 

high performance with an average AUC 

of 0.9566 in five-fold cross-validation. 

Recent investigations highlight the 

potential of graph neural networks 

(GNNs) in predicting Alzheimer's disease 

risk. These robust machine learning 

models can capture intricate biomarker 

relationships, offering insights into 

disease progression and facilitating more 
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accurate prognosis and earlier 

interventions. Incorporating time-varying 

information into the GNN framework 

could further enhance prediction accuracy 

(22-24). The development of explainable 

GNN models can furnish personalized 

explanations for early Alzheimer's disease 

diagnosis, empowering clinicians to make 

informed decisions and tailor treatment 

strategies. The graph neural network 

model adeptly predicts Alzheimer's 

microRNA disease causal associations, 

achieving an accuracy of 83.33%, 

precision of 69.44%, recall of 83.33%, 

and an F1-score of 75.76%, rendering it a 

promising tool for unraveling complex 

relationships. 

 

The accuracy of a model is influenced by 

its proficiency in predicting cases with no 

causal association accurately. However, a 

more nuanced analysis is provided by the 

ROC curve and AUC value. The AUC 

value of 0.56 suggests the model 

performs slightly better than random 

guessing but struggles to discriminate 

between positive and negative cases. This 

disparity may arise from class imbalance, 

false positives, and negative costs. 

Therefore, the model's subpar 

performance in the ROC curve implies 

inadequate identification of cases with 

causal associations. The graph neural 

network model's accuracy in predicting 

Alzheimer's microRNA disease (25-27) 

causal associations holds promise, yet 

there exist limitations and potential 

avenues for enhancement (28,29). Dataset 
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imbalance, where one class outweighs the 

other in terms of samples, can bias the 

model towards predicting the majority 

class, resulting in higher accuracy but 

poorer performance in identifying cases 

with causal associations (30,31). The 

model may also prioritize minimizing 

false positives at the expense of higher 

false negatives, leading to a lower AUC 

value. Future endeavors encompass 

dataset balancing, classification threshold 

adjustments, and exploration of additional 

features or advanced GNN architectures. 

Extending the application to other 

diseases could yield valuable insights into 

molecular mechanisms, though 

limitations include data availability, 

heterogeneity, lack of experimental 

validation, and interpretability. 

 

Conclusion 

The graph neural network model for 

predicting causal associations between 

Alzheimer's disease and microRNAs 

exhibits promise; however, certain 

limitations need to be addressed. Future 

research endeavors should prioritize 

addressing dataset imbalance, fine-tuning 

classification thresholds, incorporating 

additional features, and exploring 

advanced model architectures. These 

efforts hold potential for enhancing the 

accuracy and robustness of the predictive 

model, thereby advancing our 

understanding of Alzheimer's disease 

pathophysiology and identifying novel 

therapeutic targets. 
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