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Introduction: The liver is vital for various physiological functions, including bile and 

protein synthesis necessary for digestion, nutrient metabolism, and cholesterol regulation. 

ABSTRACT 

Received: 03/19/2025 
Accepted: 03/27/2025 

 

mailto:martin.ardila@udea.edu.co
mailto:pradeepkumar.sdc@saveetha.com


 

 

ACTA BIOCLINICA 

Artículo Original 

   Pradeep Kumar Y. y Col. 

 

Volumen 15, N° 31. Julio-Diciembre 2025 

Depósito Legal: PPI201102ME3815 

ISSN: 2244-8136 

 

 

    

 

 
 

Periodontitis, an oral disease associated with systemic conditions like cardiovascular 

diseases and Alzheimer's disease, has recently been implicated in affecting liver health 

through systemic inflammation pathways. Objective: This study aims to investigate the use 

of machine-learning techniques, specifically light gradient-boosted trees, to diagnose liver 

disease in patients with periodontitis using biochemical and clinical parameters.  Methods: 

From prior records, a Dental and Medical College obtained 325 data for preprocessing and 

exploratory analysis. Our research uses data preprocessing, feature selection, and model 

construction to predict liver disease risk in periodontitis patients. Gradient boosting, 

random forests, and Keras residual network are evaluated using accuracy and confusion 

matrix. Results: The study conducted extensive exploratory data analysis to assess key 

biochemical and clinical parameters indicative of liver health. The study evaluated the 

accuracy of machine-learning models—LGBM (Light Gradient Boosted Trees), Keras 

Slim, and Random Forest—for diagnosing liver disease in patients with periodontitis. 

Results indicated high accuracies of approximately 98%, 84%, and 96%, respectively, 

underscoring their potential for precise and non-invasive diagnostic applications in clinical 

settings. Conclusions: The study highlights the significant role of biochemical and clinical 

parameters in assessing liver health within the context of periodontitis. Elevated levels of 

these enzymes indicate potential liver damage or diseases, underscoring their utility as 

diagnostic markers. 
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 CLASIFICADOR DE APRENDIZAJE AUTOMÁTICO PARA LA ENFERMEDAD 

HEPÁTICA Y LA PERIODONTITIS UTILIZANDO PARÁMETROS BIOQUÍMICOS 

Y CLÍNICOS 

 

 

Introducción: El hígado desempeña un papel crucial en la digestión, el metabolismo y la 

regulación del colesterol. La periodontitis, una enfermedad oral, se ha relacionado con 

afecciones sistémicas y podría influir en la salud hepática mediante la inflamación. 

Objetivo: Este estudio tiene como objetivo investigar el uso de técnicas de aprendizaje 

automático, específicamente árboles de gradiente ligero potenciados (light gradient-boosted 

trees), para diagnosticar la enfermedad hepática en pacientes con periodontitis utilizando 

parámetros bioquímicos y clínicos. Métodos: Se analizaron 325 registros de un Colegio 

Dental y Médico. Se aplicaron técnicas de preprocesamiento de datos, selección de 

características y construcción de modelos para predecir el riesgo de enfermedad hepática. 

Se evaluaron los modelos LGBM, Keras Slim y Bosque Aleatorio mediante precisión y 

matrices de confusión. Resultados: El estudio realizó un extenso análisis exploratorio de 

RESUMEN 
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datos para evaluar parámetros bioquímicos y clínicos clave indicativos de la salud hepática. 

El estudio evaluó la precisión de los modelos de aprendizaje automático—LGBM (Árboles 

de Gradiente Ligero Potenciados), Keras Slim y Bosque Aleatorio—para diagnosticar la 

enfermedad hepática en pacientes con periodontitis. Los resultados indicaron altas 

precisiones de aproximadamente 98%, 84% y 96%, respectivamente, subrayando su 

potencial para aplicaciones diagnósticas precisas y no invasivas en entornos clínicos. 

Conclusiones: El estudio destaca el papel significativo de los parámetros bioquímicos y 

clínicos en la evaluación de la salud hepática dentro del contexto de la periodontitis. Los 

niveles elevados de estas enzimas indican daño hepático potencial o enfermedades, 

subrayando su utilidad como marcadores diagnósticos. 

PALABRAS CLAVE: Enfermedades hepáticas; Periodontitis; Diagnóstico; Aprendizaje 

automático; Biomarcadores; Diagnóstico no invasivo. 

 

INTRODUCTION  

The liver plays crucial roles in 

maintaining overall health (1–3). Among 

these functions, it processes food into bile 

and proteins essential for digestion, while 

eliminating potentially harmful 

substances. Additionally, it utilizes stored 

vitamins, carbohydrates, and minerals to 

metabolize nutrients absorbed from the 

gastrointestinal tract and regulates 

cholesterol synthesis. Periodontitis, a type 

of oral disease, has been linked to 
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systemic conditions such as 

cardiovascular diseases, preterm birth, 

low birth weight, and Alzheimer's disease 

(4–8). Recent studies have indicated that 

periodontal inflammation can impact liver 

health through systemic circulation. 

 

Yoneda et al. demonstrated a significant 

association between Porphyromonas 

gingivalis infection and non-alcoholic 

fatty liver disease (NAFLD) in patients 

with periodontitis (9, 10). Even after 

adjusting for age, diabetes, and body 

mass index (BMI), regression analysis 

consistently showed a higher prevalence 

of P. gingivalis in NAFLD patients 

compared to healthy individuals. Patients 

with NAFLD and P. gingivalis infection 

exhibited lower blood albumin levels and 

elevated hyaluronic acid and type IV 

collagen levels, suggesting possible liver 

fibrosis (10, 11). These findings support 

the hypothesis that persistent P. gingivalis 

infection independently predicts NAFLD 

progression in untreated periodontitis, 

potentially accelerating liver fibrosis and 

impairing liver function (12). 

 

Moreover, in mice fed a high-fat diet and 

infected with P. gingivalis, there was 

observed proliferation of hepatic stellate 

cells and increased collagen production 

(12, 13). Hepatocytes exhibited high 

expression of Toll-like receptor 2 

(TLR2), and P. gingivalis-LPS stimulated 

mRNA production of proinflammatory 

cytokines. These results imply that 

untreated dental infections may expedite 

non-alcoholic steatohepatitis (NASH) 

progression to fibrosis via the P. 
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gingivalis-LPS-TLR2 pathway (14). 

Furthermore, presence of Aggregatibacter 

actinomycetemcomitans was associated 

with increased hepatic steatosis. Animals 

orally administered A. 

actinomycetemcomitans displayed altered 

cytokine profiles and liver lipid 

metabolism enzymes, suggesting that A. 

actinomycetemcomitans infection might 

pose a risk factor for NAFLD, possibly 

through modulation of intestinal flora 

rather than direct inflammatory processes 

(11). 

 

In patients with liver cirrhosis (15), 

dysbiosis of the intestinal microbiome is 

often linked to elevated levels of oral 

bacteria, particularly in those with oral 

infections such as periodontitis, compared 

to healthy individuals. Salivary dysbiosis 

in these patients may contribute to 

systemic inflammation, creating a 

proinflammatory environment in the oral 

cavity and potentially increasing the risk 

of future liver-related hospitalizations. 

Women patients face significant barriers 

to timely diagnosis and referral, despite 

the critical importance of early detection 

in managing liver disease. While 

histologic biopsy remains the gold 

standard for diagnosing liver disease, it is 

an advanced and invasive procedure. 

Imaging techniques such as ultrasound, 

CT, and MRI are commonly used for 

diagnosis, but their widespread 

application in population screening is 

limited by cost. Various predictive 

algorithms have been developed to aid in 

diagnosis. 
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Treatment of periodontal disease, 

typically non-invasive and cost-effective, 

has shown promise in improving both 

oral and overall health. Recent clinical 

studies have highlighted potential benefits 

in patients with severe liver diseases like 

cirrhosis (10-14). Effective management 

of periodontal disease can reduce blood 

toxins and inflammation, potentially 

improving cognitive function, particularly 

in patients with hepatic encephalopathy. 

Periodontal care promotes favorable 

changes in gut and oral flora within a 

month, along with improvements in 

systemic inflammation, prognostic 

markers for cirrhosis, and cognitive 

function (10-15). Additionally, 

improvements in liver function markers 

(1) have been documented in patients 

with non-alcoholic fatty liver disease 

following nonsurgical periodontal 

therapy. Early referral of patients with 

various systemic conditions for dental 

evaluation, diagnosis, and treatment relies 

on the collaborative efforts of medical 

and dental specialists.  

 

Despite advances in understanding these 

associations, gaps remain in 

comprehensively integrating dental care 

into the management of systemic 

diseases, particularly liver disorders. 

Integrating dental assessments and 

periodontal treatment early in the care 

continuum may mitigate disease 

progression and improve overall health 

outcomes.  

 

By elucidating the intricate connections 

between oral health and liver disease, this 
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research seeks to underscore the 

importance of holistic healthcare 

approaches that address both dental and 

systemic health. Such insights are crucial 

for developing targeted interventions that 

can improve patient outcomes and reduce 

healthcare burdens associated with 

chronic liver diseases. Therefore, this 

study aims to evaluate and predict liver 

disease in patients with periodontitis 

using light gradient-boosted trees based 

on biochemical and clinical parameters. 

 

Materials and Methods 

This study was approved by the Ethical 

Committee of Saveetha Medical College 

and Hospital (Reference number 

IHEC/SDC/Faculty/23/perio/348). The 

methodology involved several steps: data 

collection, preprocessing, model 

selection, model training, model 

evaluation, hyperparameter tuning, cross-

validation, and interpretability using the 

DataRobot tool 

(https://app.datarobot.com). A total of 

325 records were obtained from Saveetha 

Institute of Dental College and Medical 

College, where informed consent was 

deemed unnecessary as the data were 

from previous records and anonymized. 

The collected data underwent 

preprocessing and exploratory analyses. 

Light Gradient Boosted Tree Classifier 

The Light Gradient Boosted Trees 

(LightGBM) classifier (16) is a machine 

learning model specifically designed for 

classification tasks. LightGBM is known 

for its efficiency and speed, making it a 
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preferred choice for both small and large 

datasets. Unlike traditional gradient 

boosting frameworks, LightGBM 

constructs trees in a leaf-wise manner, 

optimizing performance by splitting 

nodes based on maximum delta loss 

without the need for one-hot encoding of 

categorical features. Regularization 

techniques such as L1 and L2 are 

employed to prevent overfitting, while 

gradient descent optimization is utilized 

to find optimal tree splits using 

histograms. 

Data were split into 80% for training and 

20% for testing purposes , enabling the 

model to generalize well to new data. 

DataRobot applied LightGBM and Keras 

Slim Network for evaluation in clinical 

data analysis. 

Keras Residual Neural Network 

Residual Networks (ResNets) (18) are a 

type of convolutional neural network 

(CNN) architecture that excels in training 

deep networks by using skip connections 

to address the vanishing gradient 

problem. These connections allow 

gradients to flow directly through the 

network, facilitating the learning of 

residual mappings between input and 

output layers. Keras, a high-level deep 

learning framework (18), provides an API 

for building and training neural networks, 

including ResNets. Keras Slim utilizes 

the ResNet architecture previously 

proposed (18). 

Data is split into categorical and numeric 

variables. Categorical variables are 

ordinally encoded, and missing values in 
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numeric variables are imputed. The 

processed data is then used to train a 

Light Gradient Boosted Trees Classifier 

(SchMix Loss, 16 leaves) to make 

predictions. 

 

Results 

Exploratory Data Analysis 

 

Figure 1 along with Table 1, present the 

mean and standard deviation of 

biochemical and clinical parameters. 

Specifically, SGPT (Serum Glutamic 

Pyruvic Transaminase), SGOT (Serum 

Glutamic Oxaloacetic Transaminase), 

ALP (Alkaline Phosphatase), probing 

depth (PPD), and total bilirubin were 

analyzed. SGPT (ALT) is an enzyme 

primarily found in the liver, and elevated 

levels can indicate liver damage or 

disease, such as hepatitis or cirrhosis. 

SGOT (AST) is another enzyme found in 

various tissues, including the liver, heart, 

muscles, and kidneys, and elevated levels 

may indicate liver damage, heart issues, 

or muscle injury. ALP is an enzyme 

found in various tissues throughout the 

body, including the liver, bones, kidneys, 

and intestines. Elevated ALP levels can 

indicate liver disease, bone disorders, or 

bile duct obstruction.  
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Figure 1. Data distribution across all classes. 

 

 

Table 1 presents the mean and standard 

deviation for the following clinical and 

biochemical parameters: alkaline 

phosphatase (ALP), serum glutamic-

pyruvic transaminase (SGPT), 

postprandial glucose (PPD), and serum 

glutamic-oxaloacetic transaminase 

(SGOT). 
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Table 1. Mean and standard deviation (SD) of all clinical and biochemical parameters. 

 

Column1 Column2 ALP SGPT  PPD SGOT  

Mean  1.963302752 213.164634 66.34756098 5.3109756 68.29268293 

SD 2.95478173 154.729923 83.65281349 0.713094 82.34476457 

Alkaline phosphatase (ALP), serum glutamic-pyruvic transaminase (SGPT), postprandial glucose 

(PPD), and serum glutamic-oxaloacetic transaminase (SGOT). 

 

Figure 1 illustrates the distribution of data 

across various classes, highlighting the 

frequency or proportion of instances 

within each class. The visual 

representation provides insights into the 

class balance or imbalance within the 

dataset. 

 

Figure 2a displays the lift diagram data 

generated by the Light Gradient Boosted 

Tree Classifier. The AdaBoost-based 

classifier demonstrates a robust model fit 

with both training and test data, 

exhibiting minimal overfitting. The lift 

diagram illustrates the effectiveness of the 

predictive model by comparing the 

proportion of positive responses 

identified by the model to a random 

selection. It highlights the model's ability 

to target the top segments of the dataset 

more effectively than random selection. 
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Figure 2. a. Lift diagram.  

 

Figure 2b presents the line diagram data 

obtained from the Keras Slim Residual 

Neural Network layer, illustrating the 

model fit with actual and predicted data. 

The line diagram depicts the data trends 

over time or across different categories, 

highlighting changes, patterns, and 

relationships within the dataset. It 

provides a clear visualization of how the 

data points are connected and vary. 
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Figure 2. b. Line diagram data. 

 

Figure 3a depicts the confusion matrix for 

all classes. The confusion matrix displays 

the performance of the classification 

model by showing the number of true 

positive, true negative, false positive, and 

false negative predictions for each class. 

This helps in evaluating the accuracy and 

errors of the model across different 

classes. 
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Figure 3. a. Confusion matrix for all classes 

 

Figure 3b displays the confusion matrix 

for actual and predicted classes generated 

by the Keras Slim layer. The confusion 

matrix presents the performance of the 

classification model, displaying the 

counts of true positives, true negatives, 

false positives, and false negatives. It 

provides a detailed insight into the 

model's accuracy and the types of errors it 

makes. 
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Figure 3. b. Confusion matrix for actual and predicted classes generated by the Keras Slim 

layer. 

 

Figure 3c presents the confusion matrix 

for actual and predicted classes generated 

by the Random Forest classifier. The 

confusion matrix illustrates the 

performance of the Random Forest 

classifier in predicting outcomes 

compared to actual results. It displays 

counts of true positive, true negative, 

false positive and false negative 

predictions, offering insights into the 

classifier's accuracy and error rates across 

different classes. 
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Figure 3.  c. Confusion matrix generated by the Random Forest classifier. 

 

Figure 4 illustrates the lift data from the 

Random Forest classifier, demonstrating a 

strong model fit. The lift chart shows the 

effectiveness of the Random Forest 

classifier by comparing the model's 

ability to identify positive responses 

against a baseline of random selection. It 

highlights the classifier's performance in 

ranking instances by their likelihood of 

being positive. 
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Table 2 presents the evaluation of the 

models along with their respective 

accuracies. This table compares the 

performance of different machine 

learning models based on their Area 

Under the Curve (AUC) scores. A higher 

AUC score indicates better discrimination 

ability of the model in distinguishing 

between positive and negative instances. 
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Table 2. Evaluation of the models. 

 

Model Area Under the 

Curve 

LGBM 98 

KERAS SLIM 84 

RANDOM FOREST 96 

 

 

The accuracy of the models varies 

depending on the characteristics utilized 

in the data. Specifically, LGBM, Keras 

Slim, and Random Forest achieved 

accuracies of approximately 98%, 84%, 

and 96%, respectively. 

 

Discussion 

The prevalence of liver disease is 

increasing due to conditions such as 

obesity, alcoholism, diabetes, and 

metabolic syndrome, which impose 

significant financial burdens. Traditional 

liver function tests (LFTs) primarily 

assess liver damage rather than overall 

function (19, 20). Machine learning 

techniques enhance diagnostic accuracy 

by categorizing patients into distinct 

disease groups. In this study, important 

biochemical markers including bilirubin, 

SGOT (AST), SGPT (ALT), and ALP, 

which are indicative of liver function, 

were utilized for machine learning (21, 

22). ML algorithms such as Random 
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Forest, SVM, and decision trees have 

demonstrated high accuracy rates in 

disease classification. Consistent with 

previous findings, clinical parameters 

related to periodontal health, such as 

probing depth, were found to correlate 

with parameters of liver disease (9, 10, 

12, 14). Specifically, Random Forest and 

CART effectively classified 94% and 

95% of patients with liver disease, 

respectively. Acute hepatitis was 

associated with higher levels of AST, 

ALT, and ALP compared to chronic 

hepatocellular carcinoma. 

 

Liver parenchymal cells can be infected 

by bacteria like P. gingivalis found in 

periodontal infections, releasing enzymes 

such as alanine aminotransferase (ALT) 

and toxic byproducts like 

lipopolysaccharides (LPS) (23–26). The 

presence of bacterial LPS can lead to 

increased production of inflammatory 

cytokines, particularly TNF-α, which can 

damage both liver and periodontal tissues. 

Therefore, the interaction between liver 

and periodontal diseases largely involves 

bacterial LPS and TNF-α. 

 

Studies in rats with experimentally 

induced periodontitis have shown 

significant ultrastructural changes in liver 

tissue and systemic effects (9,13). Liver 

histopathology revealed fatty 

accumulation indicative of steatosis and 

hepatocyte damage. Additionally, the 

periodontitis group exhibited higher 

serum levels of triglycerides, alkaline 

phosphatase, high-density lipoprotein, 

and total cholesterol compared to 
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controls. These findings underscore the 

potential for machine learning to predict 

and elucidate the connection between 

periodontitis and liver disease. 

This study employed LightGBM, Keras 

Slim residual neural networks (27), and 

Random Forest to assess model accuracy 

(Figures 2-4). Accurately predicting and 

diagnosing liver disease in patients with 

periodontitis is crucial for medical and 

dental practitioners, given the life-

threatening nature of liver disorders. Our 

LightGBM model demonstrated superior 

performance in classifying periodontal 

disease with liver disease compared to 

other models. Gradient boosting models 

(17) are favored for their ability to handle 

complex, nonlinear relationships in 

clinical data, leveraging ensemble 

learning to combine predictions from 

multiple weak models, typically decision 

trees, with softmax loss to enhance 

robustness and accuracy. In contrast, 

Keras Slim neural networks address the 

vanishing gradient problem effectively in 

clinical data. This study showed that 

LightGBM outperformed Keras Slim 

neural networks and Random Forest 

models (28–30). 

 

While this study provides valuable 

insights into the relationship between 

periodontal disease and liver disorders, 

some limitations should be 

acknowledged. The use of machine 

learning models, while powerful in 

classification tasks, requires careful 

validation and interpretation of results to 

mitigate potential model overfitting or 

bias. Additionally, the study's focus on 
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biochemical markers and clinical 

parameters may overlook other important 

factors influencing disease progression, 

such as genetic predispositions or 

environmental exposures. Future research 

should address these limitations by 

employing prospective longitudinal 

studies, integrating comprehensive 

datasets, and incorporating diverse 

methodological approaches to provide a 

more nuanced understanding of the 

complex interplay between periodontal 

health and liver disease. 

 

Moreover, it is recommended to further 

investigate the mechanistic pathways 

linking periodontal disease and liver 

disorders to elucidate the precise 

biological interactions involved. Future 

studies could explore longitudinal designs 

to establish causal relationships and 

assess how interventions targeting 

periodontal health impact liver disease 

progression. Additionally, integrating 

advanced omics technologies, such as 

genomics and metabolomics, could 

provide deeper insights into biomolecular 

signatures associated with disease 

comorbidities. Furthermore, considering 

the multifactorial nature of liver disease 

etiology, incorporating environmental and 

lifestyle factors into research 

methodologies may enhance our 

understanding of disease susceptibility 

and progression. Lastly, fostering 

interdisciplinary collaborations among 

clinicians, researchers, and data scientists 

will be crucial in translating research 

findings into clinical practice and 

developing personalized approaches for 
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managing patients with concurrent 

periodontal and liver diseases. 

 

Conclusions 

This research article utilized various 

machine-learning methods to diagnose 

liver disease in the presence of 

periodontitis, offering a non-invasive 

diagnostic approach. However, the 

challenge lies in the reliability of these 

methods, as not all liver diseases exhibit 

similar laboratory findings, posing 

difficulty for machines to accurately 

interpret. Enhancing classification 

strategies tailored to each specific liver 

disease could improve the machine's 

ability to discern nuanced diagnostic 

patterns. Future studies could focus on 

refining machine-learning algorithms to 

incorporate diverse clinical parameters 

and biomarkers, thereby advancing the 

accuracy and clinical applicability of non-

invasive diagnostic tools for liver diseases 

associated with periodontitis. 

Additionally, exploring the integration of 

artificial intelligence with emerging 

diagnostic technologies may further 

enhance early detection and personalized 

management strategies in clinical 

practice. 
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