

UNIVERSIDAD DE LOS ANDES Mérida - Venezuela ISSN: 1856-5301

Avances en Química

Mayo – Agosto 2021 Volumen 16 Número 2

REVENCY

Avances en Química

Contenido

Volumen 16, número 2, cuatrimestres mayo – agosto 2021	Página
Artículo científico	
Síntesis y caracterización de hidrazonas obtenidas a partir de 1,2 y 1,4-naftoquinona con 2,4-di- nitrofenilhidracina.	31
Jesús R. Barrios, Marietta Vizcaya*, Freddy A. Carrillo, Gerzon E. Delgado Venezuela	
Revisión bibliográfica	
Polihidruros de cobre: una poderosa herramienta en síntesis química. El reactivo de Stryker en perspectiva	39
Ricardo R. Contreras* Venezuela	

Avances en Química

Consejo Editorial

Comité Editorial

Dra. Marcela Pascu de Burguera, <u>pascu@ula.ve</u> Dr. Issa Katime, <u>issakatime@ehu.es</u> Dr. Wilmer Olivares, <u>wilmer@ula.ve</u> Dr. Jairo Márquez, <u>jamar@ula.ve</u> Dr. Enrique Millán Barrios, <u>ejmb@ula.ve</u>

Editor Jefe

Dr. Cristóbal Lárez Velásquez, clarez@ula.ve

Área	Principales Suplentes	Direcciones electrónicas	Área	Principales Suplentes	Direcciones electrónicas
Analítica	Froylan Contreras	fcontrer@ula.ve	Productos	Juan M. Amaro	jamaro@ula.ve
	Alexis Zambrano	alexisz@ula.ve	Naturales	Carmelo Rosquete	carmelor@ula.ve
Electroquímica	Enrique Millán B.	ejmb@ula.ve	Cinética y	Freddy Imbert	imbert@ula.ve
-	Yris Martínez	ymartin@ula.ve	Catálisis	Pedro Rodríguez	pedrojrs@ula.ve
Orgánica	Alí Bahsas	bahsas@ula.ve	Química	María P. Calcagno	mariapia@ula.ve
	Andrés Abad	abadjos@ula.ve	Ecológica	Alberto Oliveros	aloliver@ula.ve
Polímeros	Hugo Martínez P.	hmartin@ula.ve	Espectroscopia	Xiomara de Navarro	roxio@ula.ve
	Cristóbal Lárez V.	clarez@ula.ve	Analítica	María A. Sánchez	angelisa@ula.ve
Inorgánica y	Bernardo Fontal	fontal@ula.ve	Espectroscopia	Pablo Carrero	pcarrero@ula.ve
Organometálicos	Ricardo Contreras	ricardo@ula.ve	Molecular	Carlos Rondón	crondon@ula.ve
Química Teórica	Wilmer Olivares	wilmer@ula.ve	Cristalografía	Graciela Díaz	diaz@ula.ve
	Luis Rincón	lrincon@ula.ve		Gerzon Delgado	gerzon@ula.ve
Farmacia	Alfredo Usubillaga	usubilla@ula.ve			
	Sabino Menolasina	sabino@ula.ve			

Consejo de Editores por Área

Consejo editorial

Comité Editorial

Dra. Marcela Pascu de Burguera, <u>pascu@ula.ve</u> Dr. Issa Katime, <u>issakatime@ehu.es</u> Dr. Wilmer Olivares, <u>wilmer@ula.ve</u> Dr. Jairo Márquez, <u>jamar@ula.ve</u> Dr. Enrique Millán Barrios, <u>ejmb@ula.ve</u>

Editor Jefe

Dr. Cristóbal Lárez Velásquez, clarez@ula.ve

Consejo de Editores por Area					
Área	Principales Suplentes	Direcciones electrónicas	Área	Principales Suplentes	Direcciones electrónicas
Analítica	Froylan Contreras	fcontrer@ula.ve	Productos Naturales	Juan M. Amaro	jamaro@ula.ve
	Alexis Zambrano	alexisz@ula.ve	. vatur ares	Carmelo Rosquete	carmelor(a)ula.ve
Electroquímica	Enrique Millán B.	ejmb@ula.ve	Cinética y	Freddy Imbert	imbert@ula.ve
	Yris Martínez	ymartin@ula.ve	Catálisis	Pedro Rodríguez	pedrojrs@ula.ve
Orgánica	Alí Bahsas	bahsas@ula.ve	Química	María P. Calcagno	mariapia@ula.ve
	Andrés Abad	abadjos@ula.ve	Ecológica	Alberto Oliveros	aloliver@ula.ve
Polímeros	Hugo Martínez P.	hmartin@ula.ve	Espectroscopia	Xiomara de Navarro	roxio@ula.ve
	Cristóbal Lárez V.	clarez@ula.ve	Analítica	María A. Sánchez	angelisa@ula.ve
Inorgánica y	Bernardo Fontal	fontal@ula.ve	Espectroscopia	Pablo Carrero	pcarrero@ula.ve
Organometálicos	Ricardo Contreras	ricardo@ula.ve	Molecular	Carlos Rondón	crondon@ula.ve
Química Teórica	Wilmer Olivares	wilmer@ula.ve	Cristalografía	Graciela Díaz	diaz@ula.ve
	Luis Rincón	lrincon@ula.ve		Gerzon Delgado	gerzon@ula.ve
Farmacia	Alfredo Usubillaga	usubilla@ula.ve			
	Sahina Manalasina	and the of Charles are			

Artículo científico

Síntesis y caracterización de hidrazonas obtenidas a partir de 1,2 y 1,4-naftoquinona con 2,4-dinitrofenilhidracina.

Jesús R. Barrios¹, Marietta Vizcaya^{1*}, Freddy A. Carrillo², Gerzon E. Delgado³.

¹⁾ Grupo de Polímeros, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.

²⁾ Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.

³⁾ Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

(*) <u>vizcayasoto@gmail.com</u>

 Recibido: 30/04/2021
 Revisado: 08/07/2021
 Aceptado: 12/08/2021

Resumen

En este trabajo, se presentan los resultados de la síntesis en solución alcohólicay la caracterización de los derivados hidrazonas de1,2 y 1,4-naftoquinonacon 2,4-dinitrofenilhidracina. Los productos **[1]** y **[2]** se caracterizaron por espectroscopía FT-IR, UV-visible, ¹H-RMN y por difracción de rayos-X en muestras policristalinas. Los análisis espectroscópicos indican la formación de las hidrazonas esperadas. El estudio de difracción de rayos-X indica que ambas hidrazonas cristalizan en celdas monoclínicas con grupo espacial $P2_1/c$ y parámetros de celda unidad: a=16,3541(7) Å, b=12,8648(6) Å, c=6,9195(1) Å, β =100,140(2)°, V=1433,08(9) Å³y a =7,3274(2) Å, b =16,3523(7) Å, c =11,1187(5), β =99,266(4)°, V=1314,86(9) Å³, para los derivados**[1]** y **[2]**, respectivamente.

Palabras claves: hidrazona; síntesis química; 1,2-naftoquinona; 1,4- naftoquinona; 2,4-dinitrofenilhidracina.

Abstract

Synthesis and characterization of hydrazones from 1,2- and 1,4-naftoquinones with 2,4-dinitrophenylhydrazine. In this work, the results of the synthesis and characterization of 1,2- and 1,4-naphthoquinone derivatives with 2,4-dinitrophenylhidrazine in alcoholic solution are presented. The products [1] and [2] were characterized by FT-IR, UV-visible and H¹-NMR spectroscopy and X-ray diffraction. The spectroscopic analyzes indicate the formation of the expected hydrazones. X-ray powderdiffraction study indicated that both compounds crystallizes in monoclinic cells, space group $P2_1/c$ andunit cell parameters: a = 16.3541(7) Å, b = 12.8648(6) Å, c = 6.9195(1) Å, $\beta = 100.140(2)^\circ$, V = 1433.08(9) Å³, and a = 7.3274(2) Å, b = 16.3523(7) Å, c = 11.1187(5) Å, $\beta = 99.266(4)^\circ$, V = 1314.86(9) Å³, for [1] and [2] derivatives, respectively.

Keywords: hidrazone; chemical synthesis; 1,2-naphthoquinone; 1,4-naphthoquinone; 2,4-dinitrophenylhidrazine.

Introducción

Las hidrazonas son compuestos orgánicos que contienen una estructura particular >C=N-N<, en donde la presencia de dos átomos de nitrógeno diferentes, crean un ambiente de alta densidad electrónica¹. El método de obtención de estas sustancias involucra la condensación en medio ácido de aldehídos y cetonas con hidracinas mediante la eliminación de una molécula de agua para formar el enlace $C=N^2$.

Una de las hidracinas mas comúnmente conocidas para la síntesis de hidrazonas es el reactivo de Brady o 2,4-dinitro-fenilhidracina (DNPH)³ básicamente su versatilidad se debe a la fácil obtención y a su aspecto físico, ya que es un sólido de color naranja fácilmente manipulable que produce precipitados de tonalidad amarilla si el carbonilo no está conjugado, o de tonalidad roja si el carbonilo esta conjuga-

do y la misma no reacciona con ácidos ni amidas⁴. Esta hidracina es de gran importancia, no solo en las síntesis orgánica, sino en la industria para diversos fines, como reducir la corrosión, intermedios farmacéuticos, catalizadores, emulsionantes, antioxidantes, combustible de cohetes, insecticidas, herbicidas, pesticidas, colorantes y explosivos⁵.

Por otra parte, las quinonas de núcleo naftoquinonas, tanto sintéticas como de origen natural, han mostrado ser prominentes sustratos anticancerígenos⁶ en hígado, mama, sangre, vejiga y líneas celulares de cáncer oral⁷. Asimismo, estos núcleos poseen propiedades insecticidas contra la mosca doméstica⁸, además de las ya reconocidas propiedades tintóreas.

El gran interés de obtener hidrazonas a partir de distintos núcleos con hidracinas nitradas, ha crecido en los últimos años, así lo demuestran estudios recientes donde hidrazonas

sintetizadas poseen aplicabilidad en la industria farmacológica como antimicrobianos⁹, antifúngicos¹⁰, antioxidantes¹¹, anticonvulsivantes¹² y anti-inflamatorios¹³. Cabe resaltar que las hidrazonas son tan variables que también actúan como insecticidas^{14,15}, inhibidoras de la corrosión¹⁶ y se usan como plastificantes y estabilizadores para polímeros¹⁷ entre otras aplicaciones. En el presente estudio se logró síntetizar y caracterizar hidrazonas obtenidas a partir de1,2 y 1,4-naftoquinonas con 2,4-dinitrofenilhidracina.

Experimental

Materiales y reactivos

Los reactivos utilizados en este trabajo fueron: 1,2-naftoquinona (Eastman 97%), 1,4-naftoquinona(Eastman 97,0%), etanol (Fisher Chemical 96%), ácido sulfúrico (Fieser 96%), 2,4-dinitrofenilhidracina (Merck 80%), KBr (Redi-DriTM Sigma Aldrich, grado-FTIR \geq 99%) y CDCl₃ (MagnisolTM Merck 99%). El aislamiento del producto y purificación del mismo fue monitoreado por cromatografía de capa fina en placas de Sílica gel (Merck 60 F254).

Síntesis de las hidrazonas

Los derivados hidrazona se sintetizaron utilizando una modificación del procedimiento reportado en la literatura¹⁸ y esquematizado en la figura 1. Se disolvieron 2,4-dinitrofenilhidracina (1 mmol) y las naftoquinonas (1 mmol), en 10 ml de etanol por separado para luego mezclarse y acidificarse con ácido sulfúrico concentrado hasta alcanzar un pH entre 3 y 4.

Las reacciones se llevaron a cabo bajo agitación y reflujo en un rango de temperatura entre 70-75 °C, durante 2 horas. Los productos **[1]** y **[2]** se filtraron por gravedad, fueron lavados con etanol frío y secados a temperatura ambiente. Los sólidos obtenidos se purificaron por sublimación, utilizando la técnica de dedo frío y se almacenaron en envaces ámbar para su pos-

Fig. 1: Reacciones de los derivados obtenidos.

Fig. 2: Prueba de color reactivo de Brady para las naftoquinonas.

terior análisis. Ambos procedimientos se realizaron por triplicado. La figura 2 muestra la representación de color del reactivo de Brady para la detección de carbonilos de los reactivos.

Caracterización

Los puntos de fusión se midieron en un aparato Electrothermal modelo 9100. Los espectros de FT-IR fueron obtenidos en un equipo Perkin-Elmer Modelo Lamda-3, se prepararon pastillas sólidas usando KBr como solvente al 1%. Los espectros de absorción electrónicos se obtuvieron utilizando un espectrofotómetro UV-visible Thermo Scientific Evolution 300, se prepararon soluciones de los productos en dicloromemetano a una concentración de 1×10^{-6} M. Los espectros de

Los estudios de ¹H-RMN se realizaron en un espectrómetro Varian Inc., de 400/100 MHz usando CDCl₃ como solvente y estándar interno. Los datos de difracción de rayos-X en muestra policristalina se obtuvieron en un difractómetro Siemens D5005 utilizando radiación de CuK α ($\lambda = 1,5418$ Å). Una pequeña cantidad de cada compuesto se molió mecánicamente en un mortero de ágata y se montó en un porta-muestra plano cubierto con una fina capa de vaselina. Las muestras se escanearon de 5 a 55° en 2 θ , con un tamaño de paso de 0,02° y un tiempo de conteo de 10 s. La calibración del equipo se realizó con un estándar externo de cuarzo.

Resultados y discusión

En las síntesis de las hidrazonas **[1]** y **[2]** se obtuvieron rendimientos 81,5 y 83,9%, respectivamente (tabla 1), bajo el método descrito, cuando el pH de la reacción está comprendido en un rango entre 3 y 4, lo suficientemente ácido para facilitar la transferencia protónica, evitando la protonación de la hidracina. Las temperaturas de descomposición delos productos obtenidos, diferentes a las temperaturas de fusión de los reactivos de partida indican la presencia de sustancias distintas, asi mismo la solubilidad y los índices de retención en la cromatografía de capa fina evidencian que las reacciones químicas se llevaron a cabo. Los colores de las sustancias "vinotinto" obtenidos para los productos de reacción son los esperados para hidrazonas obtenidas a partir de 2,4-dinitrofenilhidracina cuando reaccionan con sustratos que poseen carbonilos conju**Tabla 1**. Rendimiento, color, solubilidad y temperatura de descomposición de los productos obtenidos.

	Productos obtenidos		
	[1]	[2]	
Rendimiento	81,5%	83,9%	
Color	Vinotinto	Vinotinto	
Solubilidad	Acetona, acetato de etilo diclorometano, cloroformo	Acetona, acetato de etilo diclorometano, cloroformo	
Temperatura de descomposición	(120-122) °C	(248-250) °C	

gados, indicando la formación del enlace C=N para ambos productos de condensación, tal como lo establece la prueba química para identificación de carbonilos con el reactivo de Brady².

Las figuras 3 y 4 muestran los espectros FT-IR de los reactantes 1,4-naftoquinoquinona; 1,2-naftoquinona y DNPH comparados con los espectros obtenidos para los productos de reacción **[1]** y **[2]**, respectivamente.

En los espectros FT-IR de los productos **[1]** y **[2]** se puede observar claramente los cambios en las señales de los grupos funcionales esperadas en los productos de reacción, como la desaparición de la banda de tensión N-H (1) a 3328 cm⁻¹ correspondiente a la amina primaria de la hidracina, ya que el enlace C=N (4) de la hidrazona se forma con ese átomo de nitrógeno. Por otra parte, la señal (2) correspondiente a la vibración de tensión de la amina secundaria se mantiene alredor de 3280 cm⁻¹ para ambos productos de reacción.

Los espectros de los productos muestran la señal de vibración C=O (3) menos intensa en comparación con la señal de los reactivos, esto se debe a la presencia de un solo carbonilo en los productos, confirmando lo esperado en la formación de hidrazonas a partir de quinonas, la cual solo ocurre por uno de sus carbonilos¹⁹.

Fig. 3: Espectros FT-IR de los reactantes 1,4-naftoquinona, DNPH y el producto de reacción **[1]**

Fig. 4: Espectros FT-IR de los reactantes 1,2-naftoquinona, DNPH y el producto de reacción **[2]**.

Por último, la señal (4) -en ambos espectros- corresponde a la vibración de tensión del enlace imino (C=N) de la hidrazona formada. Esta banda es significativa en el análisis estructural porque evidencia que ocurrió la transformación esperada del grupo C=O de la quinona al grupo C=N de la hidrazona, con un desplazamiento de 1645 cm⁻¹ a 1613 cm⁻¹ para el producto [1] y de 1654 cm⁻¹ a 1610 cm⁻¹ para el producto [2]; estas señales aparecen a frecuencias más bajas ya que este enlace es menos polar que el enlace carbonilo.

El resto de señales en los espectros FT-IR de los productos corresponden a las vibraciones aromáticas, olefinicas y de los sustituyentes nitro, las cuales se mantienen en número de onda en los dos productos obtenidos con respecto a los reactivos.

 Tabla 2. Valores de número de onda en FT- IR para los reactantes y productos de reacción.

		Señal (c	m ⁻¹)	
Sustancias	1 υ N-H _(1°)	2 υ N-H _(2°)	3 v C=O	4 υ C=N
1,4-naftoquinona	-	-	1662	-
1,2-naftoquinona	-	-	1663	-
DNPH	3328	3280	-	-
[1]	-	3278	1645	1613
[2]	-	3280	1654	1610

Con respecto a la geometría del doble enlace C=N, la literatura sugiere la formación del producto más estable, el isómero Z por presentar menor impediemento estérico. Para el producto [**2**] se reporta en estudios previos un enlace de hidrógeno intramolecular entre el nitrógeno de la amina secundaria y el grupo carbonilo adyacente del enlace C=N de la hidrazona, formando un anillo de seis miembros. Esto evidencia lo previamente señalado, que a pesar de la posibilidad de ataque nucleofílico de la 2,4-dinitrofenilhidracina en cualquiera de los carbonos carbonilos C1 o C2 de [**2**], solo ocurre la adición

Fig. 5: Espectros UV-visible de los reactantes 1,4-naftoquinona, DNPH y el producto de reacción **[1]**.

nucleofílica al grupo carbonilo más electrofílico (C1), formando el isómero Z^{20} . La tabla 2 resume las principales señales observadas en los espestros FT-IR.

En la figura 5 se muestran los espectros UV-visible de los reactantes 1,4-naftoquinona y DNPH comparados con el espectro obtenido para el producto de reacción [1]. En la representación gráfica de igual escala se puede observar un desplazamiento batocrómico para cada una de las bandas en el producto obtenido, como el desplazamiento de la transición $n \rightarrow \pi^*$, señal 1 para DNPH en 232,3 nm, a 233,2 nm en el producto, mientras que la señal 2 en DNPH corresponde a la transición $\pi \rightarrow \pi^*$ de los grupos nitro, la cual se desplazó de 262,5 nm a 268,8 nm en el producto.

La señal 3 en [1] corresponde a las bandas bencenoides de ambos sistemas aromáticos de los reactivos, las cuales son gruesas por estar sustiuidos y del cual se observa un desplazamiento tanto en la longitud de onda como en la absorción de la señal. Conjuntamente, las señales 4 y 5 en el producto [1] son las más significativas en el espectro, ya que corresponden a la transformación de las señales 1 y 2 de la 1,4-naftoquinona, debido a las transiciónes $n \rightarrow \pi^* y \pi \rightarrow \pi^*$ delos grupos carbonilos en 218,8 nm y 249,7 nm respectivamente; a lastransiciónes $n \rightarrow \pi^* y \pi \rightarrow \pi^*$ del nuevo grupo funcional C=N y del carbonilo que no reaccionó en el producto, las cuales requieren menor energía para dichas transiciones y por ende mayor longitud de onda de absorción en 412,5 nm y 458,2 nm, respectivamente.

En igual forma, en la figura 6 se muestran los espectros UVvisible de los reactantes 1,2-naftoquinona y DNPH comparados con el espectro obtenido para el producto de reacción [2]. De modo semejante al producto [1], se pueden apreciar los desplazamientos a mayor longitud de onda de las señales 1,2 y 3 en el producto [2] lo cual es propio de los productos de condensación, ya que la presencia de un cromóforo de mayor tamaño, extiende la conjugación, lo que genera incremento en la longitud de onda máxima de las señales en el producto con respecto a los reactivos, indicando que la reacción de formación de la hidrazona tuvo lugar.

Sin embargo, a pesar de que la señal 4 en el producto confirma el desplazamiento de la banda 2 en la 1,2-naftoquinona,

Fig. 6: Espectros UV-visible de los reactantes 1,2-naftoquinona, DNPH y el producto de reacción [2]

Tabla 3. Valores de longitud de onda para los reactantes y productos de reacción.

Cruston stor		Se	ñal λ(nm)		
Sustancias	1	2	3	4	5
1,4-naftoquinona	218,8	249,7	336,4	-	-
1,2-naftoquinona	235,3	250.0	340,5	-	-
DNPH	232,3	262,5	342,3	-	-
[1]	233,2	268,8	340,9	412,5	458,2
[2]	231,3	276,7	375,3	501,8	

correspondiente a las transiciones $\pi \rightarrow \pi^*$ de los grupos carbonilos en 250 nm a las transiciones $\pi \rightarrow \pi^*$ del nuevo grupo funcional C=N y el carbonilo que queda sin reaccionar a 501,8 nm, se puede notar que el producto [2] experimenta un desplazamiento hipocromico en dicha señal, probablemente esta disminución de la intensidad de absorción es debida a que los pares de electrones libres del átomo de oxígeno del carbonilo estén comprometido en el enlace de hidrógeno intramolecular entre el nitrógeno de la amina secundaria y el grupo carbonilo adyacente alenlace C=N de la hidrazona, en donde se forma un anillo estable de seis miembros y por ende estas transiciones se produzcan en menor número. En la tabla 3 se resumen los valores de longitud de onda para las señales mas intensas en los espectros de absorción UV-visible para reactivos y productos.

La figura 7 muestra los espectros 1H-RMN para el producto [1] [400/100 MHz, CDCl₃] 9,22(1H, *d*,H1); 8,50(1H, *dd*,H2); 8,42(1H, *d*, H3); 8,90(1H, *d*, H4); 8,20(1H, *dd*, H5); 7,73(1H, *ddd*, H6); 7,68(1H, *d*, H7); 7,62(1H, *ddd*, H8); 6,84(1H, *d*, H9) y el producto [2] [400/100 MHz, CDCl3] 9,22(1H, *d*, H1); 8,49 (1H, *d*, H2); 8,42 (1H, *d*, H3); 7,60(1H, *d*, H4); 7,50-7,48(3H, *m*, H5,6,7) 7,10 (1H, *d*, H8); 6,91 (1H, *d*, H9).

Fundamentalmente, las señales corresponden a los desplazamientos químicos esperados para los protones aromáticos y olefínicos de ambos productos. La formación del nuevo enlace C=N rompe la simetria de las quinonas (zona azul señalada en el espectro) y como consecuencia aparecen un número mayor de señales reflejadas en el espectro 1H-RMN de cada una de las hidrazonas sintetizadas. Asimismo, se puede seña-

Fig. 7: Espectros de RMN-H¹ para los productos [1] y [2].

lar la ausencia de la señal de los hidrógenos de la amina primaria del DNPH en los productos confirmando que ambos se eliminan como agua en la reacción llevada a cabo. En ambos casos se esperaba una señal cercana a \approx 11ppm correspondiente al protón de la amina secundaria H* que es un protón intercambiable con el solvente⁹ que no se visualizó, bajo la concentración de la muestra estudiada.

Fig. 8: Patrones de difracción de rayos-X en muestra policristalina de las hidrazonas **[1]** y **[2]** sintetizadas.

Fig. 9. Comparación entre los patrones de difracción de los reactantes 1,4-naftoquinona, DNPH y el producto [1].

Fig. 10: Comparación entre los patrones de difracción de los reactantes 1,2-naftoquinona, DNPH y el producto [2].

En la figura 8 se muestran los difractogramas de polvo experimentales para las hidrazonas [1] y [2] obtenidas en la síntesis. En las figuras 9 y 10 se muestra una comparación entre los patrones de difracción de los reactantes y los productos en cada reacción. En estas figuras se puede observar la formación de los nuevos compuestos, lo cual confirma los resultados espectroscópicos.

Para realizar esta comparación se utilizaron los patrones experimentales obtenidos para cada hidrazona sintetizada junto con los patrones calculados de ambos reactantes. Los patrones se cacularon utilizando la información estructral encontrada en la base de datos de Cambrigde (CSD, versión 5.42, febrero 2021)²¹ para la 1,2-naftoquinona (código ZZZJIE01), la 1,4naftoquinona (código NAPHQU01) y la 2,4-dinitrofenilhidracina (código QQQFNG02).

El indexado de los patrones de difracción se realizó utilizando el programa Dicvol 04^{22} . Ambos materiales cristalizan en celdas monoclínicas con los parámetros de celda unidad mostrados en la tabla 4. En esta tabla se indican también las figuras de mérito del indexado^{23,24}. El estudio de las ausencias sistemáticas indica como grupo espacial el $P2_1/c$ (No 14).

Tabla 4. Parámetros de celda unidad obtenidos para cada compuesto y figuras de mérito del indexado.

Parámetros	[1]	[2]	
a (Å)	16,3541(7)	7,3274(2)	
<i>b</i> (Å)	12,8648(6)	16,3523(7)	
<i>c</i> (Å)	6,9195(1)	11,1187(5)	
β (°)	100,140(2)	99,266(4)	
V (Å ³)	1433,08(9)	1314,86(9)	
Figuras de mérito			
M_{20}	38,2	37,7	
F ₂₀	69,1(0,0062, 47)	53,8(0,0100, 84)	

Con el propósito de verificar los parámetros de celda obtenidos, los patrones de difracción se refinaron sin modelo estructural por el método de Le Bail²⁵ utilizando el programa Fullprof²⁶. La figura 11 muestra el resultado de los refinamientos, observándose un buen ajuste entre los patrones observado y calculado para cada compuesto sintetizado.

Fig. 11: Refinamientosde Le Bail para los productos [1] y [2].

Conclusiones

La síntesis de las hidrazonas **[1]** y **[2]** utilizando el reactivo de Brady a partir de 1,4 y 1,2-naftoquinona mostró rendimientos superiores al 80%, bajo el método descrito. Los datos espectroscópicos de FT-IR en cada uno de los productos evidencian la formación del nuevo enlace C=N, formado en 1613 cm⁻¹ para **[1]** y 1610 cm⁻¹ para **[2].** El incremento de la longitud de onda máxima de los productos obtenidos por extensión de la conjugación con respecto a los reactivos en UV-visible, confirman que la reacción de condensación de formación de las hidrazonas tuvo lugar. Los espectros 1H-RMN, muestran el número de señales, multiplicidad y los desplazamientos químicos correspondientes a los esperados para las estructuras sintetizadas. La caraterización utilizando difracción de rayos-X en muestras policristalinas confirma la formación de los nuevos derivados hidrazona. Ambos compuestos cristalizan en celdas monoclínicas con grupo espacial $P2_1/c$.

Agradecimientos

Los autores agradecen a la MSc. Marlín Villarroel por las medidas de los espectros FT-IR, al Dr. Carlos Ayala por los espectros UV-visible medidos y al Dr. Alberto Oliveros y el Dr. Ceferino Carrera por los espectros de 1H-RMN realizados.

Referencias

- 1. BM Cabrera, L Meléndez, I Soto. Síntesis Verde de una hidrazona con estructura nueva. **CIBA**, **6**, 17-32 (2017).
- BMP Bruice. Química Orgánica (5ta ed.), Pearson Educación, México (2008).
- D Klein. Química Orgánica (8va ed.), Panamericana, España 2014.
- K Sachin, S Tambe, N Grampurohit, D. Review article on: Chemical importance of Brady's reagent. Int. J. Res. Phar. Chem., 2, 1078-1085 (2012).
- R Wahab, N Ahmad, M Alam, J Ahmed. Nanorods of ZnO: An effective hydrazine sensor and their chemical properties. Vacuum, 165, 290-296 (2019).
- M Manickam, PR Boggu, J Cho, YJ Nam, SJ Lee, SH Jung. Investigation of chemical reactivity of 2-alkoxy-1,4-naphthoquinones and their anticancer activity. Bioorg. Med. Chem. Lett., 28, 2023-2028 (2018).
- D Bhasin, SN Chettiar, JP Etter, M Mok, PK Li. Anticancer activity and SAR studies of Substituted 1, 4-Naphthoquinones. Bioorg. Med. Chem., 21, 4462-4669 (2013).
- R Pavela. Efficacy of naphthoquinones as insecticides against the house fly, *Musca domestica* L. Ind. Crops Prod., 43, 745-750 (2013).
- OO Ajani, CA Obafemi, OC Nwinyi, DA Akinpelu. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg. Med. Chem., 18, 214-221 (2010).
- S Parlar, G Sayar, AH Tarikogullaria, SS Karadaglib, V Alptuzuna, E Erciyasa, U Holzgrabec. Synthesis, bioactivity and molecular modeling studies on potential anti-Alzheimer piperidinehydrazide-hydrazones. Bioorg. Chem., 87, 888-900 (2010).
- 11. A Baldisserotto, M Demurtas, I Lampronti, D Moi, G Balboni, S Vertuani, S Manfredini, V Onnis. Benzofuran hydrazones as potential scaffold in the development of multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity. **Eur. J. Med. Chem.**, **156**, 118-125 (2018).

- VT Angelova, M Rangelov, N Todorova, M Dangalov, P Andreeva-Gateva, M Kondeva-Burdina, B Karabeliov, B Shivachev, J Tchekalarova. Discovery of novel indole-based aroylhydrazones as anticonvulsants: Pharmacophore-based design. Bioorganic Chemistry, 90, 1-10 (2019).
- S Ulloora, R Shabaraya, R Ranganathan, AV Adhikari. Synthesis, anticonvulsant and anti-inflammatory studies of new 1,4-dihydropyridin-4-yl-phenoxyacetohydrazones. Eur. J. Med. Chem., 70, 341-349 (2013).
- H Qu, X Yu, X Zhi, M Lv, H Xu. Natural-product-based insecticidal agents 14. Semisynthesis and insecticidal activity of new piperine-based hydrazone derivatives against *Mythimna separata* Walker *in vivo*. Bioorg. Med. Chem. Lett., 23, 5552-5557 (2013).
- 15. Y Wang, X Yu, X Zhi, X Xiao, C Yang, H Xu. Synthesis and insecticidal activity of novel hydrazone compounds derived from a naturally occurring lignan podophyllotoxin against *Mythimna separata* (Walker). Bioorg. Med. Chem. Lett., 24, 2621-2624 (2014).
- N Chafai, S Chafaa, K Benbouguerra, A Hellal, M Mehri. Synthesis, spectral analysis, anti-corrosive activity and theoretical study of an aromatic hydrazone derivative. J. Mol. Struct., 1181, 83-92 (2019).
- D Bunck, W Dichtel. Bulk Synthesis of Exfoliated Two-Dimensional Polymers Using Hydrazone-Linked Covalent Organic Frameworks. Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York, A-D. (2013).
- S Emami, Z Esmaili, G Dehghan, M Bahmani, S Hashemi, H Mirzaei, M Shokrzadeh, S Moradi. Acetophenone benzoylhydrazones as antioxidant agents: Synthesis, *in vitro* evaluation and structure-activity relationship studies. Food Chem., 268, 292-299 (2018).
- 19. V Campos, W Silva, A Jordao, V Ferreira, M Souza, A Cunha, A. Síntese de novas hidrazonas derivadas da 4-Amino-1,2naftoquinona. 33a Reunião Anual da Sociedade Brasileira de Químic. (SBQ) Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, 24020-141 Niterói, RJ, Brasil. (2003).
- 20. L Souza, M Almeida, T Lemos, P Ribeiro, E Brito, V Silva, A Silva, R Braz-Filho, J Costa, F Rodrigues, F Barreto, M de Moraes. Synthesis, antibacterial and cytotoxic activities of new biflorin-based hydrazones and oximes. Bioorg. Med. Chem. Lett., 26(2): 435-439 (2016)
- CR Groom, IJ Bruno, MP Lightfoot, SC Ward. The Cambridge Structural Database, Acta Cryst., B72, 171-179 (2016).
- A Boultif, D Louër. Powder pattern indexing with the dichotomy method. J. Appl. Cryst., 37, 724 (2004).
- 23. PM de Wolff. A simplified criterion for the reliability of a powder pattern indexing. J. Appl. Cryst., 1, 108-113 (1968).
- GS Smith, RL Snyder. F_N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J. Appl. Cryst., 12, 60-65 (1979).

- 25. A Le Bail. Whole powder pattern decomposition methods and applications: a retrospection. **Powder Diffr., 20**, 316-326 (2005).
- 26. J Rodriguéz-Carvajal, Fullprof, versión 7.4, LLB, CEA-CNRS, France (2021).

Avances en Química, 16(2), 39-48 (2021)

Artículo de revisión

Polihidruros de cobre: una poderosa herramienta en síntesis química. El reactivo de Stryker en perspectiva

Dedicado al Profesor Bernardo Fontal en ocasión de su octogésimo cumpleaños

Ricardo R. Contreras*

Laboratorio de Organometálicos, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Núcleo Pedro Rincón Gutiérrez, La Hechicera, Mérida -5101 – Venezuela.

(*) ricardo@ula.ve; ricardo.r.contreras@gmail.com

Recibido: 05/08/2020

Aceptado: 20/08/2021

Resumen

El reactivo de Stryker, octaedro-hexa- μ^3 -hidrohexaquis(trifenilfosfina- κP)hexacobre(I), [(Ph₃P)CuH)]₆, reportado por el Grupo de Osborn en 1971, y sistemáticamente estudiado en sus aplicaciones químicas desde 1988 por Jeffrey M. Stryker, constituye una poderosa herramienta en la síntesis química de sustancias que tienen alto valor para la química fina. Desde sustancias con propiedades farmacológicas hasta llegar a compuestos de interés en catálisis, agroquímica, ciencia de materiales o nanoquímica, el reactivo de Stryker, catalogado en 1991 como "reactivo del año", y todos sus polihidruros análogos, ofrecen grandes oportunidades para desarrollar protocolos de síntesis *one-pot* basados en una gran variedad de fosfinas quirales sintetizadas en las últimas décadas. A partir de los resultados obtenidos en la revisión que se ha realizado, se puede concluir que el reactivo de Stryker ha dado impulso a la investigación de cúmulos polihidruros de cobre(I) de alta nuclearidad, brindando nuevas oportunidades de investigación en síntesis orgánica y asimétrica o en el campo de la química inorgánica y organometálica.

Palabras Claves: Reactivo de Stryker, cobre, hidruros, síntesis orgánica, síntesis asimétrica.

Abstract

Copper polyhydride: A powerful tool in chemical synthesis. Stryker's reagent in perspective. Stryker's reagent, hexa- μ^3 -hydrohexakis(triphenylphosphine- κP)hexacopper(I), [(Ph₃P)CuH)]₆, reported by the Osborn Group in 1971, and systematically studied in its chemical applications since 1988 by Jeffrey M. Stryker, constitutes a powerful tool in chemical synthesis of substances that have high value for fine chemistry. From substances with pharmacological properties to compounds of interest in catalysis, agrochemistry, materials science or nanochemistry, Stryker's reagent, cataloged 1991 as "reagent of the year", and all its analogous polyhydrides, offer great opportunities to develop synthesis protocols one-pot based on a great variety of chiral phosphines synthetized in the last decades. Since the results obtained in the present review, it can be concluded that Stryker's reagent has promoted the investigation of copper hydride clusters of high-nuclearity and provide opportunities for research in organic and asymmetric synthesis or in the field of inorganic and organometallic chemistry.

Keywords: Stryker's reagent, copper hydride, inorganic chemistry, organometallics, organic synthesis.

Introducción

Los compuestos organometálicos¹ ofrecen a los químicos que practican la síntesis química² una gran variedad de oportunidades en lo que se refiere al conjunto de aplicaciones que se pueden adelantar en el ámbito de la investigación y el desarrollo (I+D). Históricamente, el área de mayor de crecimiento es la catálisis homogénea³, donde los organometálicos ofrecen ventajas comparativas frente a los compuestos clásicos de coordinación, tomando en cuenta que la presencia del enlace metal–carbono genera especies con notable actividad catalítica. En tal sentido, las reacciones de hidrogenación⁴ o hidroformilación⁵ y, en general, las reacciones de carbonilación⁶, la metátesis de olefinas⁷ o las reacciones de polimerización⁸, se llevan a cabo exitosamente utilizando una serie de catalizadores basados en metales de transición entre las cuales podemos citar el catalizador de Wilkinson⁹, el catalizador de Crabtree¹⁰, el catalizador de Grubbs¹¹ o el complejo de Vaska¹².

Por otro lado, el campo de la síntesis orgánica también se ha visto beneficiado con una gran cantidad de organometálicos que, si bien es cierto no actúan estrictamente como catalizadores, son "reactivos" capaces de dirigir una reacción hacia un producto que de otra forma no se puede obtener, como es el caso del reactivo de Schwartz¹³, responsable de la hidrocirconación, una reacción que juntoa un proceso de transmetalación y un acoplamiento de Negishi, constituye una poderosa herramienta para la síntesis de compuestos orgánicos de interés para la química fina¹⁴. En este orden de ideas, se ha estudiado un conjunto de organometálicos con excelentes resultados en síntesis orgánica, y dentro de ellos merece la pena mencionar el "reactivo de Stryker".

Estrictamente hablando, se podría decir que el reactivo de Stryker no es organometálico, pues no contiene un enlace carbono–cobre, como en el caso de los reconocidos alquilcupratos¹⁵, sin embargo, los hidruros metálicos¹⁶como el reactivo de Stryker, con nombre sistemático según IUPAC: octaedro-hexa-µ³hidrohexaquis(trifenilfosfina- κP)hexacobre(I), (figura 1), y fórmula general [H₆Cu₆(PPh₃)₆] o también [(Ph₃P)CuH)]₆, donde Ph = fenilo= -C₆H₅, se encuentra en la frontera de los organometálicos, y en la categoría de los compuestos de coordinación¹⁷.

Fig. 1: Representación de la estructura del reactivo de Stryker: hexa- μ^3 -hidruro-hexaquis(trifenilfosfina- κP) hexacobre(I), [H₆Cu₆(PPh₃)₆] (Ph = -C₆H₅). Los átomos de Cu(I) (color azul) forman un cúmulo con arreglo octaédrico y cada trifenilfosfina (color magenta) ocupa una posición axial. Los ligandos hidruro (color negro) forman un triple puente (μ^3 -H) con los átomos de Cu(I) y ocupan seis de las ocho caras del octaedro.

El [(Ph₃P)CuH)]₆ lleva como epónimo el nombre del químico estadounidense Jeffrey M. Stryker, quien desde la Universidad de Indiana Bloomington, EE.UU, popularizó en la década de 1980 el uso de este compuesto en las reacciones de reducción selectiva de carbonilos α , β -insaturados¹⁸. La notoriedad de este compuesto como reactivo en síntesis orgánica fue tan significativa que en 1991 recibió la categoría de "reactivo del año"¹⁹.

El complejo $[(Ph_3P)CuH)]_6$ fue reportado y caracterizado mediante difracción de rayos X en 1971 por John A. Osborn^{20,21} y su grupo, razón por la cual a veces se le denomina también "complejo de Osborn"; sin embargo, con este nombre es mejor conocido el complejo de rodio(I) $[Rh(nbd)(PPh_3)_2]PF_6^{22}$, con nbd = norborbadieno, muy utilizado en reacciones de hidrogenación de olefinas²³. A treinta años de que el complejo de Stryker recibiera la categoría de "reactivo del año", y a cincuenta años de la publicación de su síntesis y completa caracterización, el presente artículo persigue colocar en perspectiva la importancia de los complejos polihidruro de cobre(I), los organocobres y, en general, los hidruros de metales de transición, por constituir éstos un aporte significativo de la química inorgánica y organometálica al área de la química orgánica, reconociendo así la importancia de este tipo de reactivos como herramienta en la síntesis de compuestos de interés para la química fina y campos relacionados con la industria farmacéutica, la agroquímica y la ciencia de nuevos materiales.

Metodología

Este artículo se ha desarrollado con base en una metodología cualitativa-documental, teniendo como objetivo los complejos polihidruro de cobre, el "reactivo de Stryker", y algunas de sus aplicaciones en el área de la síntesis química. Se utilizaron bases de datos reconocidas en el área, tales como: ScienceDirect, ACS Publications, Chemical Abstracts (SciFinder), SCO-PUS, Web of Science (ISI web), Taylor & Francis Group, Thieme Publishing Group, y los catálogos digitales de Strem Chemicals y Sigma-Aldrich (Merck KGaA), usando como entrada las siguientes palabras clave: "Stryker's reagent", "[(Ph₃P)CuH)]₆", "Stryker's compound" "copper complexes", "copper hydride", "coordination chemistry", "chemical synthesis". Se empleó como rango el período 1971-2020, tomando como referencia inicial el trabajo publicado en 1971 en la revista de la Sociedad Americana de Química, que es citado como punto de partida para la síntesis y caracterización por difracción de rayos X del reactivo de Stryker.

Síntesis del reactivo de Stryker

El reactivo de Stryker se puede ser sintetizado a través de la reacción entre un complejo cloro(trifenil-fosfina)cobre(I), en la presencia de trietoxiborohidruro de litio, mediante la reacción 1^{24} , o por hidrogenólisis de la especie [Cu–O^tBu] generada *in situ* a partir de la reacción entre CuCl y *tert*-butoxido de sodio (^tBuONa) disuelto en tolueno, en presencia del ligando trifenil-fosfina y 1 atm de presión de hidrógeno, una metodología "*one-pot*" según la reacción 2^{25} .

$$(^{1}/_{4})[(Ph_{3}P)CuCl]_{4} + Li(Et)_{3}BH \rightarrow$$

 $(^{1}/_{6})[(Ph_{3}P)CuH]_{6} + LiCl + B(Et)_{3}$ (1)
 $(^{1}/_{4})[CuO^{t}Bu]_{4} + PPh_{3} + H_{2} \rightarrow (^{1}/_{6})[(Ph_{3}P)CuH]_{6} + ^{t}BuOH$ (2)

El producto obtenido a partir de las reacciones 1 y 2 es un sólido de color rojo oscuro¹⁸, que se descompone por encima de los 111 °C, soluble en benceno y tolueno, parcialmente soluble en THF (0,1 g/mL). El exceso del ligando trifenilfosfina se elimina por recristalización utilizando como solvente benceno o realizando lavados sucesivos del producto macerado utilizando hexano o acetonitrilo. También es posible purificarlo mediante cromatografía preparativa con una mezcla hexano/acetonitrilo, en atmósfera inerte.

Fig. 2: Diagrama de ORTEP correspondiente a la estructura de rayos X del reactivo de Stryker, $[(Ph_3P)CuH]_6$. Para simplificar la figura solo se han representado los átomos cobre y de fósforo. Tomado de Bezman *et al.*²⁰, con permiso de la *American Chemical Society*.

Durante el procedimiento original que desarrolló el Grupo de Osborn en 1971, se obtuvo un material con excelente cristalinidad que permitió la determinación de su estructura por difracción de rayos X, según se puede apreciar en la representación de ORTEP de la figura 2.

La primera propiedad reportada para el $[(Ph_3P)CuH]_6$ fue la capacidad de inducir la reducción regioselectiva de aldehídos α,β -insaturados y su participación en la reacción de sililación reductiva de este tipo de compuestos insaturados conjugados²⁶, tal y como se puede apreciar en los ejemplos típicos representados en las reacciones 3 y 4.

Cúmulos de polihidruro de cobre (Cu-H)

Los hidruros metálicos y en especial los cúmulos de polihidruro de cobre²⁷ constituyen una importante área de desarrollo en química de coordinación y ofrecen una poderosa herramienta en síntesis química, especialmente en la reducción de sustancias insaturadas. Por otro lado, el anión hidruro H⁻, esférico y con capa cerrada $1s^2$, es el ligando más pequeño y versátil de la química inorgánica. De hecho, el primer hidruro metálico fue precisamente de cobre(I), el CuH, reportado por el químico francés Adolphe Würtz en 1844 como resultado de la reducción de sulfato de cobre(II) acuoso en ácido hipofosforoso (HPA)²⁸, según la reacción 5²⁹, convirtiéndose en uno de los agentes

reductores más eficientes y clásicos de la química orgánica e inorgánica.

$$6H_{3}PO_{2} + 4CuSO_{4} + 6H_{2}O \rightarrow 4CuH + 6H_{3}PO_{3} + 4H_{2}SO_{4}$$
(5)

En 1926 se reportó que el CuH adquiere una estructura cristalina tipo *wurtzita*³⁰ que se confirmó en 1955 mediante estudios por difracción de rayos X^{31} .

A partir de la década de 1960, con el auge de la catálisis homogénea y el desarrollo de protocolos de síntesis total de compuestos de interés para la industria química, se comenzaron a adelantar una serie de estudios sistemáticos en hidruros metálicos. El desarrollo de cúmulos polihidruro y la posibilidad de determinar sus estructuras por técnicas de rayos X, ha venido a dar un giro significativo al área. En tal sentido, la síntesis y determinación de la estructura del reactivo de Stryker podría considerarse como el trampolín para la aparición de toda una extensa variedadde cúmulos de polihidrurosde cobre, que tienen como ligando a un conjunto de fosfinas, piridinas, carbenos y ligandos mixtos nitrógeno-sulfurados o fósforo-sulfurados al estilo de los "ligandos tipo salen"³², cuyas aplicaciones abren un abanico de posibilidades. Ahora es posible obtener polihidruros con una amplia gama de nuclearidades³³ que van desde Cu₆, Cu₇, Cu₈, o Cu₉, pasando por Cu₁₁, Cu₁₄, Cu₁₆, Cu₁₈, llegando hasta Cu₂₀, Cu₂₂, Cu₂₄, Cu₂₅ y finalmente alcanzando los Cu₂₈, Cu₃₀ e incluso Cu₃₂, cuya estructura se puede resolver mediante difracción de neutrones. En estos compuestos se observa que el ligando hidruro se encuentra asociado a los átomos de cobre en diversos modos de coordinación (figura 3), y es posible encontrar hidruros en puente simple μ^2 -H, pero también sistemas triple puente μ^3 -H, piramidal, como en el reactivo de Stryker, y sistemas más complejos que entran en la categoría de "hidruros intersticiales" tipo μ^4 -H, plano cuadrado distorsionado (pc), μ^4 -H, tetraédrico (td), μ^5 -H, pirámide de base cuadrada (pbc), μ^5 -H, bipirámide trigonal (bpt) y μ^6 -H, prisma trigonal, que en un mismo cúmulo pueden aparecer alternados según la estructura y la nuclearidad del compuesto.

Fig. 3: Algunos modos de coordinación del ligando hidruro en los cúmulos polihidruro de cobre(I).

Estas novedosas estructuras, de las cuales se puede citar como ejemplo representativo los cúmulos $Cu_{14}H_{12}^{34}$ y $Cu_{28}H_{15}^{35}$ (figura 4), ofrecen la posibilidad de desarrollar transformaciones químicas muy específicas que solo pueden ocurrir cuando el hidruro presenta una alta nuclearidad.

Fig. 4: Representación del cúmulo $Cu_{28}H_{15}$, el primer rombobicubootaédrico polihidruro de cobre(I) $[Cu_{28}(H)_{15}(S_2CNR)_{12}]PF_6$. Los átomos de cobre se representan en color azul turquesa (cian) y los hidruros en color rojo. En el ligando S_2CNR se omite para facilitar la representación. Tomado de Dhayal *et al.*²⁷, con permiso de la *American Chemical Society*.

Reacciones estequiométricas o catalíticas de reducción con el reactivo de Stryker

Utilizando el reactivo de Stryker es posible desarrollar reacciones estequiométricas de reducción de compuestos insaturados, especialmente si el doble enlace se encuentra conjugado. En tal sentido, el [(Ph₃P)CuH]₆ se utilizó exitosamente en la reducción quimioselectiva de aldehídos y cetonas α,β -insaturadas y ésteres^{36,37}, formamidas³⁸ ycompuestos sulfurados insaturados como los sulfonatos y sulfonas, así como otros compuestos oxigenados y nitrogenados³⁹.

Por otra parte, los sistemas catalíticos homogéneos basados en el reactivo de Stryker convergen hacia la hidrogenación quimioselectiva del sustrato insaturado. La reducción catalítica de aldehídos y cetonas α,β -insaturadas con el reactivo de Stryker, en presencia de hidrógeno molecular, ocurre a temperatura ambiente con alta regioselectividad, obteniendo los productos de reducción -1,2 y -1,4, y llegando a producir el alcohol saturado respectivo según las condiciones de reacción⁴⁰. En la presencia de un exceso del ligando fosfinado (4-6 equiv/Cu), el proceso es homogéneo y quimioselectivo y los dobles enlaces independientes no se hidrogenan, incluso aumentando la presión de hidrógeno (>70 atm) o el tiempo de reacción (>48 h). Se ha propuesto que la reacción catalítica se basa en la formación de un enolato de cobre (I) (figura 5) formado durante la reducción conjugada, seguida de la activación heterolítica del H₂, que favorece la eliminación reductiva de los productos, regenerando el CuH.

Una reacción de reducción catalítica típica se prepara en atmósfera inerte, añadiendo dimetilfenilfosfina, Me₂PPh (6-10 equiv/Cu) al [(Ph₃P)CuH]₆ seguido de ^tBuOH (10-20 equiv/Cu) y el sustrato reducible (10-100 equiv) disuelto en

Fig. 5: Propuesta para el mecanismo de reducción catalítica de aldehídos y cetonas α,β -insaturadas con el reactivo de Stryker⁴⁰.

benceno seco y desgasificado $(0,4-0,8 \text{ M en sustrato})^{41}$. La mezcla de reactantes se presuriza con la presión adecuada de H₂ (14-70 atm). Un ejemplo de este sistema catalítico lo encontramos en la reacción 6, donde se puede apreciar que la reducción catalítica es quimioselectiva al carbonilo del sustrato⁴².

Como se puede apreciar, la regioselectividad y la estereoselectividad de la hidrogenación catalítica de aldehídos y cetonas α,β -insaturadas utilizando el catalizador de Stryker depende en buena medida del tipo de fosfina. Inicialmente se utilizó con gran éxito la Me₂PPh; sin embargo, se han empleado otros ligandos tipo arildialquilfosfina como PhP(Me)Et, PhP(CH₂)₄, PhP(Me)Cy (Cy = ciclohexano), según la reacción 7, produciendo mayor rendimiento y selectividad *trans/cis* para la reducción-1,2 de carbonilos insaturados acíclicos, por encima del obtenido utilizando el catalizador [(Ph₃P)CuH]₆ estabilizado con dimetil-fenilfosfina⁴³, un resultado de mucho interés para la síntesis de esteroides.

R₂PPh = PhPMe₂, PhP(Me)Et, PhP(CH₂)₄, PhP(Me)Cy

La necesidad de prestar asistencia a la reacción con un ligando tipo arildialquilfosfina durante la reducción catalítica con el reactivo de Stryker, apunta a la formación de un nuevo hidruro de cobre que entra en el ciclo catalítico induciendo un "reconocimiento molecular" del sitio de hidrogenación en la estructura del sustrato.

La reducción de aldehídos y cetonas no conjugadas se resuelve muy bien utilizando el reactivo de Stryker (5 mol%) en presencia de silanos, p. ej. PhMe₂SiH, MePh₂SiH o ^tBuPh₂SiH, de acuerdo a la reacción 8. La reacción, genera como resultado éteres de sililo que finalmente, en medio básico, se transforman en el alcohol, alcanzando un alto rendimiento del orden de 89% a 98%⁴⁴.

Estas reacciones de reducción catalítica se pueden realizar utilizando la metodología "*one-pot*" basada en el reactivo de Stryker, partiendo de un sistema similar al descrito en la reacción 1, es decir, una mezcla de CuCl (0,5 mol%), PPh₃ (0,1 mol%), o cualquier otra fosfina apropiada y ^tBuONa (0,3 mol%)⁴⁵.

Tanto en condiciones estequiométricas como catalíticas, es posible adelantar una reacción de ciclación reductiva aldólica de naturaleza intramolecular sobre alquinonas utilizando el reactivo de Stryker acompañado de polimetilhidrosiloxano (PMHS, [–(CH₃(H) Si–O)–]_n), según la reacción 9. El producto de esta reacción es una β -hidroxienona que se obtiene con excelente diasteroselectividad y con un 65% de rendimiento⁴⁶.

Siguiendo la línea de los alquinos, el reactivo de Stryker ofrece la posibilidad de reducir selectivamente el enlace acetileno con prevalencia del producto *cis*-alqueno en altos rendimientos (58-95%)⁴⁷, de acuerdo con la reacción 10. Adicionalmente, se ha reportado que los alquinos terminales se reducen a temperatura ambiente, mientras que los alquinos internos reaccionan solo a temperaturas elevadas.

R¹,R² = H, alquil, aril, hidroxialquil

Con el catalizador de Stryker es posible llevar a cabo una reacción de Henry⁴⁸ pero de tipo intramolecular, es decir, una ciclación reductiva aldólica del nitroalqueno, que da como resultado la producción de β -nitroalcoholes⁴⁹, como se describe en la reacción 11, y que se obtienen con rendimientos aceptables⁵⁰, especialmente si tomamos en cuenta que la reacción ocurre en un solo paso.

El reactivo de Stryker en la síntesis total de compuestos de interés para la química fina

Como se ha podidoapreciar, el reactivo de Stryker es eficiente para promover un proceso de ciclación reductiva de naturaleza aldólica que produce sistemas de anillos bicíclicos polifuncionalizados⁵¹. Por ejemplo, en la síntesis total de Lucinona⁵² (sesquiterpeno antiespasmódio) a partir de (+)-Dihidro-carvona⁵³, la etapa de ciclicación reductiva con el reactivo de Stryker es un paso determinante, como se aprecia en la reacción 12.

La síntesis de la lucinona no es el único ejemplo de la participación del reactivo de Stryker en procesos de síntesis total. De hecho, utilizando todas las potencialidades previamente descritas en la reducción quimio- y estereoselectiva de sustratos insaturados, ya sea en condiciones estequiométrica o catalíticas, el [(Ph₃P)CuH]₆se utiliza en una o varias etapas cruciales para la síntesis total de: 1) (R)-(–)-Baclofeno⁵⁴ (Lioresal®, un relajante muscular); 2) Análogos sintéticos del DamascenolideTM, sustancia aromatizante aislada de la Rosa damascena (aroma cítrico), y se probó en la síntesis de otras fragancias donde se requiere una reducción selectiva de un doble enlace α,β insaturado⁵⁵; 3) El triterpenoideDioxepandehidrotirsiferol⁵⁶ normalmente aislado del alga roja Laurencia viridis⁵⁷; 4) Gelsemoxonina⁵⁸, un componente de las plantas de la especie Gelsemium; 5) Varios tipos de esteroides⁵⁹; 6) Ikarugamicina⁶⁰, del grupo de antibióticos obtenidos del Streptomyces phaeochromogenes; 7) Éteres policíclicos⁶¹ del grupo de la Brevetoxina, Gambierol y la Gymnocina, entre otros muchos compuestos.

Se pudo verificar, a partir de la revisión realizada en las bases de datos especializadas, que el valor del reactivo de Stryker en síntesis orgánica está suficientemente comprobado y sigue siendo una poderosa herramienta a considerar en el momento de plantear una estrategia de síntesis química.

Reacciones de reducción catalítica con sistemas análogos al reactivo de Stryker

La generación del Cu–H siguiendo un esquema *one-pot* por reacción sobre el [Cu–O^tBu] y con asistencia de un ligando fosfinado para generar un [LCu–H]_x, constituye dentro de la metodología Stryker un avance significativo hacia una estrategia sintética basada en polihidruros de cobre(I) que brinda una serie de oportunidades de investigación. La estrategia *one-pot*⁶²ofrece ventajas en este caso pues se trata de la reacción en secuencia o en cascada (tándem) y en un solo recipiente o reactor, lo cual facilita el manejo de los reactantes, disminuye el tiempo total utilizado en la reacción y tiene una incidencia positiva en el rendimiento, pudiendo enmarcarse, en consecuencia, dentro de los métodos de la química verde.

Siguiendo la metodología *one-pot* en la generación de polihidruros de la familia del reactivo de Stryker destacan los trabajos realizados por el Grupo de Lipshutz⁶³ en la Universidad de California (Santa Barbara, CA, EE.UU). Los resultados obtenidos por Bruce H. Lipshutz y sus colaboradores han sido muy satisfactorios, por ejemplo en la síntesis asimétrica por hidroxilación-1,4 de ésteres utilizando PMHS y asistidos por ligandos del grupo de fosfinas especiales como la serie de los ligandos BIPHEP⁶⁴, el (*R*,*S*)-JOSIPHOS⁶⁵ (disponible comercialmente por *Solvias Group*, referencia: *CAS:* 155806-35-2, *Solvias:* SL-J001-1) y la familia de ligandos SEGPHOS⁶⁶, cuyas estructuras se aprecian en la figura 6.

En las condiciones reportadas por el Grupo de Lipshutz⁶⁷ se consigue la reducción selectiva de aldehídos, cetonas, y ésteres α,β -insaturados, así como la hidroxilación eficiente y altamente enantioselectiva de enoles y lactonas β,β -disustituidos, en las cuales la relación sustrato/ligando es muy alta, tanto como 7700/1 en el caso de la reacción 13⁶⁸.

Fig. 6: Estructuras de las fosfinas utilizadas por el Grupo deLipshutz en reacciones de reducción enantioselectivas generando *one-pot* el $[LCu-H]_x$. Se pueden apreciar el (R,S)-JOSIPHOS,el (S)-3,5-Xyl-MeO-BIPEH y el (R)-SEGPHOS.

Como se puede apreciar, el papel que juega el ligando en este tipo de reacciones es crucial y permite alcanzar el "reconocimiento molecular" necesario a la hora de que un reactivo pueda reaccionar con estereoselectividad. En tal sentido, se han realizado estudios exhaustivos dirigidos a comprender el efecto del ligando y los resultados indican que en la formación de un cúmulo de Cu–H, el ligando gobierna la nuclearidad^{69,70} casi por un "efecto plantilla", y le confiere suficiente estabilidad⁷¹ para entrar en un proceso de reducción catalítica donde los efectos estéricos y electrónicos del ligando permiten controlar la dirección de la reacción y la generación de productos colaterales⁷².

El reactivo de Stryker y sus perspectivas en síntesis asimétrica

La síntesis de sustancias con exceso enantiomérico, lo que puede ser denominado como "síntesis asimétrica"73, es un área de particular interés para la química fina, especialmente porque las sustancias con actividad farmacológica deben ser puras respecto del enantiómero activo. Esto último se debe tomar muy en cuenta pues, en muchas ocasiones, un enantiómero es beneficioso para la salud, mientras que el otro podría ser perjudicial⁷⁴. En tal sentido, un reactivo que no solo sea estereoselectivo hacia la reducción, como en el caso reactivo de Stryker, sino que además ofrezca la oportunidad de realizar esa misma reacción con alta enantioselectividad, constituye una herramienta de síntesis química muy valiosa. Este es el caso de muchos hidruros de cobre que se generan one-pot con asistencia de un ligando que actúa sobre el intermediario [Cu-O^tBu] para formar la especie activa [LCu-H]_x, tal y como se describió anteriormente. En este caso, el ligando puede ser una fosfina asimétrica, que ofrece la posibilidad de dirigir la reacción de reducción por un camino que conduzca al exceso enantiomérico. Como ejemplo de esta estrategia podemos citar trabajos en la reducción atropoenantioselectiva de lactonas⁷⁵, hidroxilación asimétrica de vinilarenos y vinilheterociclos⁷⁶, hidroaminación diastero- y enantioselectiva de alquenos trisustituidos⁷⁷, hidroximetilación regio- y enantioselectiva de estirenos y 1,3dienos con CO₂⁷⁸, preparación diastereo- y enantioselectiva de indolinas 2,3-disustituidas⁷⁹, reducción enantioselectiva de ésteres α,β-insaturados deβ-aril-β-boronilo⁸⁰, y sililación deshidrogenativa de alcoholes⁸¹. Las posibilidades de utilizar el $[(Ph_3P)CuH]_6$ y sus análogos en protocolos de síntesis y catálisis asimétrica es bastante amplia y como se puede intuir será el objetivo de las investigaciones en el corto, mediano y largo plazo.

Conclusiones

La publicación hace cincuenta años de la síntesis y caracterización del octaedro-hexa- μ^3 -hidrohexaquis-(trifenilfosfina- κP) hexacobre(I) o "reactivo de Stryker", y los excelentes resultados en la reducción tanto estequiométrica como catalítica de sustratos α,β -insaturados, con alta quimio- y estereoselectividad, constituyen un importante avance en el campo de la síntesis orgánica, tanto que en 1991 el reactivo de Stryker fue catalogado como "reactivo de año". En el propio campo de la química inorgánica y organometálica, el [(Ph₃P)CuH]₆ ha servido como punto de partida para el estudio de los cúmulos de cobre(I), permitiendoque a partir de los cúmulos originales Cu_chaya sido posible sintetizar una extensa serie de nuevos polihidruros con una nuclearidad que es cinco veces la observada originalmente por Osborn y Stryker. Se puede afirmar que la química de los polihidruros de cobre experimentó un crecimiento exponencial en la misma medida que se convertían en una herramienta valiosa para la síntesis asimétrica, siguiendo un esquema one-pot y asistida por el desarrollo de nuevos ligandos fosfinados de naturaleza quiral, cuyos ejemplos emblemáticos son la serie de los ligandos BIPHEP, JOSIPHOSy la familia de ligandos SEGPHOS. La relevancia del reactivo de Styker se ha mantenido en el tiempo, y en los últimos lustros se han reportado nuevas aplicaciones en la síntesis total de sustancias de interés para la química fina, razón por la cual es de esperar que este compuesto continuará siendo una importante herramienta en síntesis química. En consecuencia, se puede afirmar que el reactivo de Stryker y sus análogos ofrecen nuevas oportunidades de investigación en síntesis asimétrica y en el campo de la química organometálica de los polihidruros de cobre.

Homenaje

Ofrecemos el presente artículo como homenaje al Dr. Bernardo Fontal Rivera, en ocasión de su octogésimo cumpleaños. El Prof. Fontal es pionero de la química inorgánica y organometálica en Venezuela, fundador del Laboratorio de Organometálicos en el Departamento de Química, Facultad de Ciencias de la Universidad de Los Andes, y principal colaborador en la fundación de la Sociedad Venezolana de Catálisis. Junto a su esposa Olga de Fontal, el Prof. Bernardo Fontal constituye un ejemplo de dedicación a la familia y al trabajo con honestidad personal e intelectual.

Referencias

- 1. RH Crabtree. The organometallic chemistry of the transition metals. (7th edition) Wiley, Hoboken, New Jersey (2019).
- M Schlosser (Ed.). Organometallics in synthesis: third manual. John Wiley & Sons, Hoboken, New Jersey (2013).

- 3. M Bochmann. Organometallics and catalysis: an introduction. Oxford University Press, Oxford (2015).
- 4. D Astruc. Organometallic chemistry and catalysis. Springer, Berlin (2007).
- 5. R Franke, D Selent, A Börner. Applied Hydroformylation. Chem. Rev., 112(11), 5675–5732 (2012).
- RR Contreras. Catálisis homogénea con metales de Transición. Transformado el mundo de la química. Parte 1. CDCHTA-ULA, Mérida (2021).
- P Liu, C Ai. Olefin Metathesis Reaction in Rubber Chemistry and Industry and Beyond. Ind. Eng. Chem. Res., 57(11), 3807–3820 (2018).
- A Debuigne, C Jérôme, C Detrembleur. Organometallicmediated radical polymerization of "less activated monomers": Fundamentals, challenges and opportunities. **Polymer, 115**, 285–307 (2017).
- RR Contreras, E Cardozo, LOJ García-Molina. Transformando la catálisis homogénea: cincuenta años del catalizador de Wilkinson. Av. Quím.,12(2-3), 61-67 (2017).
- RR Contreras, JA Urbina-Gutiérrez, PJ Rodríguez-Sulbarán. El catalizador de Crabtree. Una breve revisión. Ciencia e Ingeniería, 41(1), 3-14 (2020).
- RR Contreras, E Cardozo-Villalba, E Lacruz-Vielma, G Paparoni-Bruzual. El catalizador de Grubbs. Una breve revision. Ciencia e Ingeniería, 41(3), 323-336 (2020).
- RR Contreras, E Cardozo-Villalba, B Fontal. El complejo de Vaska y la química organometálica. Novasinergia, 3(1), 96-110 (2020).
- RR Contreras, F Bellandi Rullo, O Sánchez-Velasco. Química organometálica aplicada. El reactivo de Schwartz. Ciencia e Ingeniería, 42(2), 205-214 (2021).
- 14. M Beller, HU Blaser. Organometallics as catalysts in the fine chemical industry. Springer, Heidelberg (2012).
- 15. N Krause (Ed.). Modern organocopper chemistry. John Wiley & Sons, Weinheim (2002)
- AJ, Jordan, G Lalic, JP Sadighi. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. Chem. Rev., 116(15), 8318–8372 (2016).
- GA Lawrance. Introduction to coordination chemistry. John Wiley & Sons, Chichester, UK (2013).
- DM Brestensky, DE Huseland, C McGettigan, JM Stryker. Simplified, "one-pot" procedure for the synthesis of [(Ph₃P)CuH]₆, a stable copper hydride for conjugate reductions. **Tetrahedron Lett.**, 29(31), 3749-3752 (1988).
- 19. C Deutsch, N Krause, BH Lipshutz. CuH-Catalyzed Reactions. Chem. Rev., 108(8), 2916–2927 (2008).
- SA Bezman, MR Churchill, JA Osborn, J Wormald. Preparation and crystallographic characterization of a hexameric triphenylphosphinecopper hydride cluster. J. Am. Chem. Soc., 93(8), 2063–2065 (1971).
- 21. MR Churchill, SA Bezman, JA, Osborn, J Wormald. Synthesis and molecular geometry of hexameric triphenyl-

phosphinocopper(I) hydride and the crystal structure of $H_6Cu_6(PPh_3)_6$. HCONMe₂ [hexameric triphenylphosphino copper(I) hydride dimethylformamide]. **Inorg. Chem., 11(8)**, 1818–1825 (1972).

- 22. RR Schrock, JA Osborn. Catalytic hydrogenation using cationic rhodium complexes. I. Evolution of the catalytic system and the hydrogenation of olefins. J. Am. Chem. Soc.,98(8), 2134-2143 (1976).
- RR Schrock, JA Osborn. Catalytic hydrogenation using cationic rhodium complexes. 3. The selective hydrogenation of dienes to monoenes. J. Am. Chem. Soc.,98(15), 4450–4455 (1976).
- 24. GV Goeden, KG Caulton. Soluble copper hydrides: solution behavior and reactions related to carbon monoxide hydrogenation. J. Am. Chem. Soc.,103(24), 7354–7355 (1981).
- TH Lemmen, K Folting, JC Huffman, KG Caulton. Copper polyhydrides. J. Am. Chem. Soc.,107(25), 7774–7775 (1985).
- 26. DM Brestensky, JM Stryker. Regioselective conjugate reduction and reductive silylation of α , β -unsaturated. **Tetrahedron** Lett., **30(42)**, 5677–5680 (1989).
- 27. RS Dhayal, WE van Zyl, CW Liu. Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion. Acc. Chem. Res.,49(1), 86-95 (2015).
- BH Lipshutz. Copper(I) mediated 1,2- and 1,4-Reductions. En: *Modern Organocopper Chemistry*. N Krause (Ed.), Wiley-VCH, Weinheim, Germany, p. 167-187 (2002).
- H Auer, H Kohlmann. Reinvestigation of Crystal Structure and Non-Stoichiometry in Copper Hydride, CuH1x(0≤x≤0.26). Z. Anorg. Allg. Chem., 640(15), 3159–3165 (2014).
- YN Xu, WY Ching. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B Condens. Matter, 48(7), 4335–4351 (1993).
- 31. JA Goedkoop, AF Andresen. The crystal structure of copper hydride. Acta Crystallogr., 8(2), 118–119 (1955).
- RR Contreras, Y Rojas-Pérez. Ligandos tipo salen en química de coordinación. Una breve revision. Ciencia e Ingeniería, 39(3), 307-314 (2018).
- C Sun, BK Teo, C Deng, J Lin, GG Luo, C-H Tung, D. Sun. Hydrido-coinage-metal clusters: Rational design, synthetic protocols and structural characteristics. Coord. Chem. Rev., 427, 213576 (2021)
- 34. TAD Nguyen, BR Goldsmith, HT Zaman, G Wu, B Peters, TW Hayton. Synthesis and Characterization of a Cu14 Hydride Cluster Supported by Neutral Donor Ligands. Chem. Eur. J., 21(14), 5341–5344 (2015).
- AJ Edwards, RS Dhayal, PK Liao, JH Liao, MH Chiang, RO Piltz, S Kahlal, JY Saillard, CW Liu. Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball. Angew. Chem., 126(28), 7342–7346 (2014).

- 36. WS Mahoney, DM Brestensky, JM Stryker. Selective hydride-mediated conjugate reduction of alpha,beta-unsaturated carbonyl compounds using [(Ph₃P)CuH]₆. J. Am. Chem. Soc.,110(1), 291–293 (1988).
- 37. TM Koenig, JF Daeuble, DM Brestensky, JM Stryker. Conjugate reduction of polyfunctional α,β-unsaturated carbonyl compounds using $[(Ph_3P)CuH]_6$. Compatibility with halogen, sulfonate, and γ-oxygen and sulfur substituents. **Tetrahedron** Lett., **31(23)**, 3237–3240 (1990).
- 38. AI Meyers, TR Elworthy. Chiral formamidines. The total asymmetric synthesis of (-)-8-azaestrone and related (-)-8-aza-12-oxo-17-desoxoestrone. J. Org. Chem., 57(17), 4732–4740 (1992).
- 39. DM Brestensky. I. Reductions of organic carbonyl compounds using soluble copper(I) hydride complexes. Doctoral dissertation, Indiana University, Bloomington (1992).
- WS Mahoney, JM Stryker. Hydride-mediated homogeneous catalysis. Catalytic reduction of alpha,beta-unsaturated ketones using [(Ph3P)CuH]6 and H2. J. Am. Chem. Soc.,111(24), 8818–8823 (1989).
- JF Daeuble, JM Stryker. Hexa μ– hydrohexakis(triphenylphosphine)hexacopper. Encycl. Reagents Org. Synth., 2001, 1–3 (2001).
- 42. JF Daeuble. I. Stoichiometric and hydride-mediated catalytic reductions of organic functionality using soluble copper(I) hydrides. Doctoral dissertation, Indiana University, Bloomington (1993).
- 43. JX Chen, JF, Daeuble, JM Stryker. Phosphine Effects in the Copper(I) Hydride-Catalyzed Hydrogenation of Ketones and Regioselective 1,2-Reduction of α , β -Unsaturated Ketones and Aldehydes. Hydrogenation of Decalin and Steroidal Ketones and Enones. **Tetrahedron, 56(18)**, 2789–2798 (2000).
- 44. BH Lipshutz, W Chrisman, K Noson. Hydrosilylation of aldehydes and ketones catalyzed by [Ph3P(CuH)]6. J. Organomet. Chem., 624(1-2), 367–371 (2001).
- S Díez-González, SP Nolan. Copper, Silver, and Gold Complexes in Hydrosilylation Reactions. Acc. Chem. Res, 41(2), 349–358 (2008).
- 46. P Chiu, SK Leung. Stoichiometric and catalytic reductive aldol cyclizations of alkynediones induced by Stryker's reagent. Chem. Commun., 2004(20), 2308–2309 (2004).
- 47. JF Daeuble, C McGettigan, JM Stryker. Selective reduction of alkynes to cis-alkenes by hydrometallation using [(Ph₃P)CuH]₆. **Tetrahedron Lett.,31(17)**, 2397–2400 (1990).
- 48. FA Luzzio. The Henry reaction: recent examples. Tetrahedron, 57(6), 915–945. (2001).
- Â De Fátima. Synthetic Applications of Stryker's Reagent. Synlett,2005(11), 1805–1806 (2005).
- 50. P Chiu, W Chung. Reductive Intramolecular Henry Reactions Induced by Stryker's Reagent. **Synlett, 2004(01)**, 55–58 (2004).
- 51. M Miesch, C Heinrich, C Peter, L Miesch, P Geoffroy. Diastereo- and Enantioselective Synthesis of Polyfunctionalized

Diquinanes, Hydrindanes, and Decalins Bearing a Hydroxyl Group at the Ring Junction. **Synthesis**, **48(11)**, 1607–1615 (2016).

- 52. L Villaescusa Castillo, AMD Lanza, R Faure, L Debrauwer, R Elias, G Balansard. Two sesquiterpenoids, lucinone and glutinone, from Jasonia glutinosa. **Phytochemistry**, **40**(4), 1193–1195 (1995).
- P Chiu, CP Szeto, Z Geng, KF Cheng. Application of the tandem Stryker reduction–aldol cyclization strategy to the asymmetric synthesis of lucinone. Tetrahedron Lett., 42(24), 4091–4093 (2001).
- P Ramesh, D Suman, K Reddy. Asymmetric Synthetic Strategies of (R)-(-)-Baclofen: An Antispastic Drug. Synthesis, 50(2), 211–226 (2017).
- P Kraft, J Ahlin, M Büchel, P Sutter. On the Crossroad of Dienone Musks and Cassyrane: Synthesis and Olfactory Properties of New High-Impact Orris Odorants. Synthesis, 44(19), 2985–2998 (2012).
- J Tanuwidjaja, S-S Ng, TF Jamison. Total Synthesis ofent-Dioxepandehydrothyrsiferol via a Bromonium-Initiated Epoxide-Opening Cascade. J. Am. Chem. Soc., 131(34), 12084–12085 (2009).
- CP Manríquez, ML Souto, JA Gavín, M Norte, JJ Fernández. Several new squalene-derived triterpenes from Laurencia. Tetrahedron, 57(15), 3117–3123. (2001).
- S Diethelm, EM Carreira. Total Synthesis of Gelsemoxonine through a Spirocyclopropane Isoxazolidine Ring Contraction. J. Am. Chem. Soc., 137(18), 6084–6096 (2015).
- R Skoda-Földes, L Kollár. Transition-Metal-Catalyzed Reactions in Steroid Synthesis. Chem. Rev., 103(10), 4095–4130 (2003).
- WR Roush, CK Wada. Application of eta.4-Diene Iron Tricarbonyl Complexes in Acyclic Stereocontrol: Asymmetric Synthesis of the as-Indacene Unit of Ikarugamycin (A Formal Total Synthesis). J. Am. Chem. Soc., 116(5), 2151–2152 (1994).
- 61. T Nakata. Total Synthesis of Marine Polycyclic Ethers. Chem. Rev., 105(12), 4314–4347 (2005).
- Y Hayashi. Pot economy and one-pot synthesis. Chem. Sci., 7(2), 866–880 (2016).
- 63. B Lipshutz. Rediscovering Organocopper Chemistry Through Copper Hydride. It's All About the Ligand. **Synlett, 2009(4)**, 509–524 (2009).
- 64. R Schmid, J Foricher, M Cereghetti, P Schönholzer. Axially Dissymmetric Diphosphines in the Biphenyl Series: Synthesis of (6,6'-Dimethoxybiphenyl-2,2'-diyl) bis(diphenylphosphine)("MeO-BIPHEP") and Analogues via an ortho-Lithiation/Iodination Ullmann-Reaction Approach. Helv. Chim. Acta, 74(2), 370–389 (1991).
- 65. HU Blaser, W Brieden, B Pugin, F Spindler, M Studer, A Togni. Solvias Josiphos ligands: from discovery to technical applications. **Top. Catal.**, **19(1)**, 3–16 (2002).

- 66. T Saito, T Yokozawa, T Ishizaki, T Moroi, N Sayo, T Miura, H Kumobayashi. New chiral diphosphine ligands designed to have a narrow dihedral angle in the biaryl backbone. Adv. Synth. Catal., 343(3), 264-267 (2001).
- (a) BH Lipshutz, K Noson, W Chrisman, A Lower. Asymmetric Hydrosilylation of Aryl Ketones Catalyzed by Copper Hydride Complexed by Nonracemic Biphenyl Bis-phosphine Ligands. J. Am Chem. Soc., 125(29), 8779–8789 (2003).

(b) BH Lipshutz, N Tanaka, BR Taft, C-T Lee. Chiral Silanes via Asymmetric Hydrosilylation with Catalytic CuH. **Org.** Lett., 8(10), 1963–1966 (2006).

(c) BH Lipshutz, C-T Lee, JM Servesko. Asymmetric CuH-Catalyzed Hydrosilylations en Route to the C-9 Epimer of Amphidinoketide I. **Org. Lett., 9(23)**, 4713–4716 (2007).

(d) BA Baker, ŽV Bošković, BH Lipshutz. (BDP) CuH: A "Hot" Stryker's Reagent for Use in Achiral Conjugate Reductions. **Org. Lett.**, **10(2)**, 289–292 (2008).

(e) RTH Linstadt, CA Peterson, CI, Jette, ZV Boskovic, BH Lipshutz. Control of Chemo-, Regio-, and Enantioselectivity in Copper Hydride Reductions of Morita-Baylis-Hillman Adducts. **Org. Lett.**, **19**(2), 328–331 (2017).

(f) BH Lipshutz, BA Frieman, CuH in a Bottle: A Convenient Reagent for Asymmetric Hydrosilylations. **Angew. Chem**, **117(39)**, 6503–6506 (2005).

(g) BH Lipshutz, J Keith, P Papa, R Vivian. A convenient, efficient method for conjugate reductions using catalytic quantities of Cu(I). **Tetrahedron Lett.**, **39**(26), 4627–4630 (1998).

- BH Lipshutz, JM Servesko, BR Taft. Asymmetric 1,4-Hydrosilylations of α,β-Unsaturated Esters. J. Am. Chem. Soc., 126(27), 8352–8353 (2004).
- 69. DA Ekanayake, A Chakraborty, JA Krause, H Guan. Steric Effects of HN(CH2CH2PR2)2 on the Nuclearity of Copper Hydrides. **Inorg. Chem.**, **59**(**17**), 12817–12828 (2020).
- 70. TAD Nguyen, ZR Jones, DF Leto, G Wu, SL Scott, TW Hayton. Ligand-exchange-induced growth of an atomically precise Cu29 nanocluster from a smaller cluster. Chem. Mater., 28(22), 8385–8390 (2016).
- J Wu, ASC Chan. P-Phos: A Family of Versatile and Effective Atropisomeric Dipyridylphosphine Ligands in Asymmetric Catalysis. Acc. Chem. Res., 39(10), 711–720 (2006).
- DW Li, HX Tan, DL Zhu, HY Li, DJ Young, JL Yao, JP Lang. Ligand-Controlled Copper(I)-Catalyzed Cross-Coupling of Secondary and Primary Alcohols to α-Alkylated Ketones, Pyridines, and Quinolines. Org Lett., 20(3), 608– 611. (2018).
- 73. GQ Lin, YM Li, AS Chan. Principles and applications of asymmetric synthesis. John Wiley & Sons, New York (2001).
- M Gross. Significance of Drug Stereochemistry in Modern Pharmaceutical Research and Development. Annu. Rep. Med. Chem., 1990, 323–331 (1990).
- 75. L Hu, Y Zhang, GQ Chen, BJ Lin, QW Zhang, Q Yin, X Zhang. CuH-Catalyzed Atropoenantioselective Reduction of

Bringmann's Lactones via Dynamic Kinetic Resolution. Organic Letters. **Org. Lett.**, **21**(14), 5575-5580 (2019).

- MW Gribble, MT Pirnot, JS Bandar, RY Liu, SL Buchwald. Asymmetric Copper Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles. J. Am. Chem. Soc., 139(6), 2192–2195 (2017).
- 77. S Feng, H Hao, P Liu, SL Buchwald. Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes. **ACS Catal.**, **10**(1), 282-291 (2019).
- YY Gui, N Hu, XW Chen, L Liao, T Ju, JH Ye, Z Zhang, J Li, DG Yu. Highly Regio- and Enantioselective Copper-Catalyzed Reductive Hydroxymethylation of Styrenes and 1,3-Dienes with CO2. J. Am. Chem. Soc., 139(47), 17011– 17014 (2017).
- E Ascic, SL Buchwald, Highly Diastereo- and Enantioselective CuH-Catalyzed Synthesis of 2,3-Disubstituted Indolines.
 J. Am. Che. Soc., 137(14), 4666–4669 (2015).
- J Ding, JCH Lee, DG Hall. Stereoselective Preparation of β-Aryl-β-Boronyl Enoates and Their Copper-Catalyzed Enantioselective Conjugate Reduction. Org. Lett., 14(17), 4462– 4465 (2012).
- 81. H Ito, A Watanabe, M Sawamura. Versatile Dehydrogenative Alcohol Silylation Catalyzed by Cu (I)–Phosphine Complex. **Org. Lett., 7(9)**, 1869–1871 (2005).