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Abstract 

The system consists of a Brownian particle immersed in a heat bath trapped in optical tweezers with a time-dependent 

strength acting as an external protocol. In 2007 (reference 3), the optimal mean work in the overdamped regime was 

thoroughly calculated by assuming the work must be averaged over the distribution of the initial position of the particle. 

The present research assumes instead the solution of the Langevin equation for any given initial position and its average 

done over the noise distribution. Therefore, this proposal extends in a more general sense the results already published, 

including the appearance of Maxwell’s demon for particular initial conditions which is analyzed in terms of entropy 

production rate and the mutual information obtained by measuring the particle position. The proposed research has the 

advantage of being able to be compared with data from numerical simulations. PACS numbers: 05.30.?d; 05.40.Jc9 

Keywords: Brownian motion; Stochastic processes; Langevin equation 

Resumen 

Trabajo óptimo del movimiento browniano en un potencial de rigidez armónico dependiente del tiempo. Efecto de 

la posición inicialEl sistema consiste en una partícula browniana inmersa en un baño térmico y atrapada en una pinza 

óptica con una intensidad dependiente del tiempo actuando como un protocolo externo. En 2007 (referencia 3), se calculó 

minuciosamente el trabajo óptimo promedio en el régimen sobre amortiguado, asumiendo que el promedio debe ser eje-

cutado sobre la distribución de la posición inicial de la partícula. En su lugar, esta investigación asume que el promedio 

debe ser realizado sobre la distribución del ruido. Por lo tanto, este trabajo extiende de una manera más general los 

resultados ya publicados, incluyendo la aparición de un demonio de Maxwell para una condición inicial particular, el cual 

es analizado en términos de la rata de producción de entropía y la información mutua obtenida al medir la posición de la 

partícula. El método propuesto posee la ventaja de ser comparado con datos de simulaciones numéricas. Números PACS: 

05.30.?d; 05.40.Jc9 

Palabras claves: movimiento browniano; procesos estocásticos; ecuación de Langevin 

 

Introduction 

A Brownian particle immersed in a heat bath at a given 

temperature and interacting with a time-dependent har-

monic potential is an iconic small system analyzed under 

the framework of stochastic energetics1,2. In particular, 

when the bath is at the temperature T and the external field 

is a time-dependent harmonic potential V(q,τ) = q2λ(τ)/2 

where q is the fixed position of the particle and the strength 

(τ) is an external protocol, the mechanical work is a func-

tional of the driving given by2,3, 

      (1) 

assuming the system is at equilibrium when the protocol 

λ(t) is turned on at t = 0. The dot on a variable denotes its 

time derivative. 

The particle position is a functional of the protocol, so to 

find the optimal mean work it must be optimized in terms 

of λ(τ). The latter is a smooth function of time that must be 

determined by variational methods such that in a finite time 

the work induced by the external field be minimal. This was 

thoroughly investigated by Schmiedl and Seifert3 for the 

overdamped Langevin equation assuming the average in Eq. 

(1) over the noise distribution is also applicable for a general 

initial position drawn from its initial equilibrium distribu-

tion. Other lines of research aim toward a different objective, 

such as for instance, the determination of the work probabil-

ity density function considering its results due to bath noise. 

This was addressed by Chvosta et al.4 for piecewise constant 

protocols. Both investigations were based upon dynamics 

where the inertial effects of the particle are negligible.  

Our central objective is to determine for an overdamped par-

ticle positioned in any initial position, the optimal protocol, 

and the mean work such that the average should be perfor-  
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med only over all possible outcomes of the thermal noise. 

For this, we will make use of a variational procedure to de-

termine the optimal protocol originally designed3. We will 

show that the results obtained with the latter is a particular 

solution of our broader scheme that involves more general 

initial conditions. Furthermore, the results obtained could 

possibly be verified with simulation data.  

The manuscript is organized as follows. First, we derive the 

expression for the optimal work in terms of the solution of 

the overdamped Langevin equation to get the required de-

pendence on the initial position. There follows then an anal-

ysis of the consequences that an experimental position meas-

urement has on the real position distribution. This is done 

with the purpose to determine the effect of the initial position 

on the amount of information obtained in the measurement. 

The results of the preceding sections are discussed next em-

phasizing the reproduction of previous findings and the ex-

planation of the unexpected appearance of Maxwell’s demon 

in terms of entropy production rate and mutual information. 

The article ends with a summary including the equivalence 

of the variational method with the so-called “shortcut of iso-

thermality” of Li et al5. 

General equations 

We suppose the dynamics follow the overdamped Lange-

vin equation 

  

where γ is the friction coefficient of the thermal bath and 

kB is the Boltzmann constant. The noise ξ(τ) is a zero-mean 

and delta correlated white noise ⟨ξ(τ)ξ(s)⟩ = δ(τ −s). It will 

be assumed for simplicity that {γ,kB,T} are set to one. The 

solution of the Langevin equation functionally depends on 

λ(τ). It reads as: 

 

where q is the initial position and the new noise φ(τ) is a 

colored Gaussian zero-mean with a correlation function 

also depending on the driving and given by6 

     (7) 

Let u(τ) = q2(τ) where the average is over the noise density. 

Then, 

 

To complete the description, the probability density p(q,τ|q0) 

associated with Eq. (2) satisfies a Fokker-Planck equation 

which according to Ito’s formula is6, 

  

The solution of this equation is a Gaussian corresponding to 

that of an Ornstein-Uhlenbeck process with mean (τ) and 

standard deviation 2(τ) = u(τ) – 2(τ)6,7. The stationary solu-

tion (ss) is respectively, . 

Likewise, the mean work in the whole-time interval is ob-

tained from the integration of Eq. (1)3 

  (10)  

Because it depends non-locally on λ(τ) through u(τ), its op-

timization leads to tangled equations whose solution re-

quires demanding procedures, which are mostly numerical. 

Instead, we apply the method based on casting the func-

tional as a simple equation depending locally on u(τ)3 and 

of its first time-derivatives, i.e., 

   (11) 

leading to the Euler-Lagrange equation 2(τ) – 2ü(τ)u(τ) = 

0 whose solution renders8 

    (12) 

The final result depends upon the identification of the con-

stants. In a particular initial position, drawn at random 

from the equilibrium steady state of the system, was con-

sidered3. The steady value is u(0) = C4 = 1/λi with λi being 

the pre-set initial protocol value. Rather, we want to ana-

lyze the explicit dependence of the dynamics in terms of 

arbitrary initial positions, which in turn, are relevant in a 

comparison with molecular dynamics simulation data. This 

approach then requires an initial u(0) = qo
2 as can be seen 

from Eq. (8). Thus, our results extend the aforementioned 

findings to any values of q generating new predictions on 

the outcomes of the functions to be determined, in particu-

lar, the show-up of Maxwell’s demons. The replication of 

the results shown in reference 3 are included as it should be. 

Accordingly, then C4 = q0
2 and C3 is determined by mini-

mizing Eq. (10) with respect to this constant. It reads 

 (13) 

where λf is the pre-fixed value of the driving at the end of 

its application. 

The optimal protocol is found from Eq. (11). It reads, 

   (14) 

valid for 0+ < τ < t−. As will be seen below, the protocol 

also implies jumps at the beginning and also at the end. The 
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mean work in the whole-time interval is obtained from Eq. 

(10) giving 

  15) 

In an experiment where the optical trap is turned on and off 

almost instantaneously, there is neither exchange of heat with 

the reservoir nor changes in the position and velocity of the 

particle. The instantaneous adiabatic work is that which is in-

volved. It is obtained from the work equation3 by making the 

integral term zero and subsequently evaluating the expression 

at t = 0. The result is 

     (16) 

which will be used below. 

Equations (14) and (15) will be evaluated in the third section. 

Mutual information 

The theory should be confronted with experimental data in or-

der to quantify the accuracy of its theoretical prediction. There 

has already been developed a procedure to determine the dis-

tribution of the position conditioned to its experimental meas-

urement of an over-damped Brownian particle in a moving 

harmonic potential interacting with a heat bath9. We used this 

to determine if our equations depend rather on the initial posi-

tion of the particle than on its average, corresponding to the 

center of the potential as in reference 9. 

The distribution of the particle position is 

 (17) 

With ∆(τ) = exp[−h(τ)]. Likewise, the initial distribution is a 

delta function centered at a given q = α, that is, p(q0) = δ(q0−α). 

The experimental setup is supposed should be designed such 

that the trajectory of the particle is measured. Moreover, we 

consider that each measurement qm of the real position q with 

precision ϵ is instantaneous. The distribution of qm about 

around q is as in reference 3 

  (18) 

where q is the position q(τ) at the time of the measurement. 

The marginal distribution p(q,τ) is obtained from Eqs. (17) and 

p(qo) as  

 (19) 

Likewise, p(qm, τ) is given by: 

 (20) 

According to Bayes’s theorem 

  (21) 

Therefore 

 (22) 

where the subindex q0 was added to take into account the im-

plicit dependence on the particle’s initial position since σ2(τ) is 

a functional of the optimal protocol which in turn depends on 

q0. Furthermore, κ1(τ) = σ2(τ)/(ϵ2+σ2(τ)), κ2(τ) = αϵ2∆(τ)/(ϵ2 + 

σ2(τ)) and σ2(τ) = ϵ2κ1(τ), respectively.  

An important aspect of this result is the quantification of the 

distinguishability of the q and qm distributions each time meas-

urement of the particle position is done. It is given by the Kull-

back-Leibler distance10  

 (23) 

equivalent to the information gained from the measurement. Its 

integration over p(qm,τ) is the so-called mutual information or 

relative entropy, i.e, 

  (24) 

measuring how distinct the two distributions are and being 

a useful relation between dissipation and irreversibility, as 

well2. 

Surprisingly, this result has the same functional form as the 

one obtained in reference 9 for the moving harmonic potential, 

even though the derivations started from different probability 

densities. This allows us to conclude that no matter how the 

harmonic potential depends on time, the mutual information 

retains its functional form. It makes sense since the measure-

ment is instantaneous in the two processes, the external agent 

will always perform it on a particular parabolic-kind potential 

acting in the background. The differences are reflected in the 

standard deviation of the distribution of the actual position of 

the particle. 
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Using Eq. (17), the total entropy 

 (25)  

which differs from I(τ) by a constant related to the precision 

of the measurement. 

Discussion of Results 

We proceed to make the calculations considering that they de-

pend on the initial position q0. It will be assumed λf > λi to add 

the requirement that the potential is wider compared to the in-

itial one. The calculation of the mean work is modulated by λi. 

This is not the case with the protocol because it is independent 

of it, so any value of it could be chosen. However, it is not 

admissible as its value is restricted by the aforementioned con-

dition.  

 

Fig. 1: Effect of q0 and λf on the optimal protocol λ(τ) for q0 = 0.3 

(black), q0 = 0.5 (red) and q0 = 1 (blue). Solid curves are for λf = 2 

and dashed ones for λf = 3. The bottom graphics expand the area 

right at the beginning and final protocol application time τ; λi = 1. 

The blue and red dots are the solutions of reference 3. The boxes at 

the left show the range of the allowed λi. 

The optimal protocol is shown in Fig. 1. The curves were de-

termined for q0 of 0.3 (black), 0.5 (red), 1 (blue), and λi = 1. 

Jumps at the beginning and at the end with different magni-

tudes are clearly observed. The jumps at the start are the same 

regardless of the chosen λ and are shown in the bottom for the 

area at the beginning and end of the protocol. The λi allowed 

by the condition λf > λi are represented by the two boxes at the 

left of the figure. The solid curves are for λf = 2 and the dashed 

ones for λf = 3. The red and blue dot curves are the results ob-

tained in reference 3 for λi = q0 = 1 and λf of 2 and 3, respec-

tively. The concordance observed between our results and 

those of reference 3 is due to the fact that the former u(0) = 1.  

 
Fig. 2: Effect of q0 and λf on the mean work W(t) for the same {q0, 

λf} conditions of Fig. 1. The left top panel is for λ = 0.5 and the right 

one for 1.5 while the bottom is or λi = 1.0. The red and blue dots are 

the solutions from reference 3. 

It should be noted that this is one among many without inval-

idating the existence of the latter. As long as q0 = 1/λ our results 

will agree with those of reference 3. In other words, their find-

ings are particular results of this proposal. In this sense, the 

scheme presented here is valid for any q0.  

The initial λi has a bearing on the mean work. This is shown 

in the two panels of Fig. 2 for values of 0.5 (left top), 1.5 (right 

top), and 1.0 (bottom) and for the protocols depicted in Fig. 1. 

We observe in the three chosen conditions the particle doing 

average work against the external field with different intensi-

ties for sufficiently low values of q such as is the case for 0.3 
(black curves). Later, the emergence of this attribute will be 

explained by other points of view. As expected, the bottom 

panel shows the agreement mentioned before. 

To obtain the version equivalent to figure 1a of reference 3 it 

is necessary to write first Eq. (15) in the same reduced variable 

system. Defining x = τ/t, y = λf/λi, z = λit and the extra param-

eter w = q0
2λ we get a closed expression of λ(x,z)/λi para-

metrized by y and w, that is,  

 (26)  

 (27)  

   (28)  

The figure analogous to 1b of reference 3 requires the deri-

vation of the mean work, Eq. 15, in terms of z and to be  

parameterized by y and w, i.e., 
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 (29) 

    (30) 

   (31) 

    (32) 

 
Fig. 3: Optimal protocol λ(x)/λi as a function of the scaled time x for 

the set of {y,z} of reference 3 and the extra parameter w of 0.3 (top 

left ) and 0.1 (top right). The bottom plot shows the corresponding 

for w = 1 as in reference 3. See text for more details. 

This figure (analogous to figure 1b of reference 3) is pre-

sented as Fig. 4. The z values are those of the inset of refer-

ence figure 1b of reference 3, identified as 0 (brown), 0.02 

(blue), 0.2 (green), 1 (red), 10 (black) and ∞ (cyan), respec-

tively. The curves were calculated for w = 0.3 (top left) and 

w = 0.1 at the right. For w = 1, the resulting plot is shown 

at the bottom and is just figure 1b of reference 3 but ex-

tended for y < 1. The appearance of negative work in this 

figure along the ones of Fig. 2, not shown in reference 3, 

forces us to carry out a more detailed search for other param-

eters of the system. It is noticed an increasing negative work 

for a decreasing w agrees with the results shown in Fig. 2. 

The initial (z → 0) and quasi-static (z → ∞) mean works are 

given by: 

    (33) 

   (34) 

where they match those of reference 3 replacing w = 1. W(0) 

is also the adiabatic Wins given by Eq. (16) in reduce variables. 

W(z) is plotted versus z in Fig. 5 to check any occurrence of 

W(z) < 0. The black and red dotted curves are the solutions  

 
Fig. 4: Optimal mean work as function of y for the same set of z 

parameters of figure 1b of reference 3. The left graphic at the top is 

for w of 0.3 and the right for w = 0.1. The lower plot is for w = 1 as 

in reference 3 but extended for y < 1. See text for the identification 

of the dashed and dotted curves. 

obtained from reference 3 for w = 1. They superimpose the 

cyan curves of this article. Solid curves are for w = 0.3 and 0.1 

for the dashed ones. Parameter y = 2 is represented by black 

curves while y = 5 by red. Here, W(z) < 0 is obtained for low 

values of w and y. The ratio W(z)/W(0) is shown at the bottom. 

As before, negative work is observed for a low y value. In par-

ticular, the occurrence of negative work is mainly maintained 

throughout z being positive for a short z interval around zero.  

It is a physical fact that the larger q0, the wider the potential. 

Thus, when q0 is such that the particles do work, they are more 

tightly packed compared to when the work is done by the 

field. The action of the field tends to heat them and since the 

process is isothermal, they do work against the field as well as 

transfer heat to the bath to lower the temperature. For larger 

values of the initial position, the packing decreases, the field 

does the work, and excess heat is transferred to the reservoir. 

This phenomenon also has its strictly mathematical ex-plana-

tion through Landauer’s erasure principle11 applied to a par-

ticular Maxwell’s demon (see below) that collects specific in-

formation about the state of the system which is later trans-

formed into work. For a further revision of the erasure proce-

dure and the role of information in quantum-information the-

ory see the review by Maruyama et al.12 and references 

therein. Recently, Parrondo et al.13 discussed the thermody-

namics of memory, feed- back processes and information 

flows from the perspective of stochastic processes for a system 

in contact with a single thermal bath. 

The generalization of the last two figures can be obtained by 

finding the set {w,y,z} which makes W < 0. This is shown in 

Fig. 6. The case w = 1 (not shown) gives W < 0 for y ∈ {0,1}, 

which was not considered in reference 3, and is clearly seen in 

Fig. 4. 
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Fig. 5: Optimal mean work as function of z for w = 0.3 (top left) 

and w = 0.1 (top right). The values of y are 2 (black) and 5 (red). 

The bottom shows the combination of the top plots. 

 

Fig. 6: Set of w, y, and z which makes W  0. 

It can be inferred then that this new set of results could in prin-

ciple be tested in molecular dynamics simulations where re-

sults depend upon the particle’s initial position.  

In a system in equilibrium, the correlation of the fluctuations 

for small external disturbances is given in terms of the re-

sponse function. This is not the case in stationary systems out 

of equilibrium because the detailed balance relation is broken 

and therefore there is a continuous degradation of energy to 

the thermal reservoir14–16. Since we are interested in the pro-

duction of work, the associated entropy production rate (EPR) 

can be determined from the time derivative of Gibbs entropy. 

Defining the probability flux of the FPE, Eq. (9), by J(q,t) = 

−qp(q,t) − ∂p(q,t)/∂q with p(q,t|qo) given by the Gaussian Eq. 

(17), the corresponding total EPRs, namely, the total Σ(τ), the 

internal due to the constituting non-equilibrium process along 

the dynamics Σi(τ) and the flow into the reservoir Σe(τ) are15: 

  (35) 

 (36) 

 (37) 

where J(q,τ) = −q λ(t). Choosing the black and blue curves of 

Fig. 2 as prototypes of negative and positive works with pa-

rameters {qoλi, λf} of {0.3,1,2} and {1,3,3}, respectively, the 

total EPR and its components are shown in Fig. 7. Notice the 

Second Law is preserved since Σi(τ) > 0. Regardless of the 

work sign, there is always a degradation of field energy to-

ward the reservoir. However, to preserve the total balance,  

 

Fig. 7: EPR total Σ(τ), internal Σi(τ) and flow to the reservoir Σe(τ) 

for the black and blue solid curves of Fig. 2. 

the transformation of the information into work acquired by 

the “Maxwell creature” does not produce any EPR at all, leav-

ing as a contribution to the balance that part due to the heat 

transferred to the thermal bath. In the other case, the largest 
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contribution to the total EPR comes from the heat dissipated to 

the bath which in turn is greater than the contribution of Σi(τ). 

As expected, the entropy production Σi(τ) is higher when the 

work is done by the field. The standard deviations used in the 

calculation are shown in Fig. 8 as the long-dashed curves. 

Finally, the mutual information and statistical entropy are 

shown in Fig. 8. The first is modulated by ϵ2 with the two 

functions exhibiting the same topology of the associated 

standard deviation shown as a long-dashed curve. The 

steady-state behavior of the mean work at large times is cap-

tured by both properties regardless of the initial position. As 

expected, the inequality I(τ) ⩽ S(τ) holds17. From the figure, 

it is found that whenever the work is done by the particle, 

the experimental measurement of the actual position leads 

to a decrease in both the total and relative entropy, compared 

to when the work is done by the external field. 

 
Fig. 8: Mutual information and total entropy of the system corre-

sponding to Fig. 7 with their associated standard deviations shown 

as long-dashed curves. 

In the narrative of Maxwell’s demons, the “creature” would 

be categorized as of the “smart” kind whose first function 

would be to measure the mean initial position of the entire 

system and select the associated position distribution that 

leads to work extraction. Once this is achieved, then oper-

ates like an ordinary demon by selecting the fast particles 

from the slow ones and placing them separately on each side 

of the virtual gate. Finally, it transfers heat from the “fast” 

side to the “slow” to generate work against the external 

agent. Regarding the previous thermodynamic analysis, the 

information collected in the process is the internal contribu-

tion to the total Shannon’s entropy which after its erasure 

gives the expected negative work. 

Final remarks 

It has been shown that new and important information about 

the thermodynamics of the system can be obtained by choos-

ing the appropriate initial conditions of the dynamics. In par-

ticular, the occurrence of negative mean works depends upon 

these conditions. This leads us to consider that the obtained 

results could potentially be used in comparison with molecu-

lar simulation data. 

The experiments by Kahn and Sood18 on colloidal particles in 

equilibrium trapped in a high-intensity optical tweezers could 

be the starting point for designing a convenient experimental 

set-up that allows the irreversible work to be measured 

through the Jarzynski relation19. 

There is a close connection between the variational procedure3 

used in this proposal to determine the optimal protocol and the 

so-called “shortcut to isothermality” approach of Li et al.5 

where the potential is modified in such a way that the dynamic 

remains isothermal, and equilibrium is preserved in the initial 

and final states. According to reference 5, the external potential 

must be modified to V(q,τ) + λeff(τ)q2/2 with λeff(τ) =  (τ)/λ(τ) 

with the additional constraint that λ(τ) and its derivative must 

vanish at the beginning and end of the protocol, respectively. 

The role of the additional term in the new potential is to allow 

a quick evolution into target states of otherwise slow isother-

mal dynamics preserving the volume of the phase space. The 

strategy is based on borrowing a similar idea originally devel-

oped for quantum and classical adiabatic systems and thor-

oughly analyzed by several authors as seen in the review by 

Guéry-Odelin et al.20 In fact, if the optimal protocol derived 

above is used in λeff, the resulting effective driving overlaps 

the curves presented in Fig. 1. This demonstrates without any 

margin of doubt that the initial and final jumps implicit in the 

expression of λ(τ) are a guarantee that the system will remain 

in the same equilibrium state at the beginning and end of the 

driving. In addition, the temperature will be constant through-

out the dynamics. 

The solution for systems out of the overdamped deserves to be 

investigated. It will allow the analysis of the behavior of the 

mean work for low friction coefficient values of the heat res-

ervoir. 
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