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Tumor hypoxia plays a critical role in cancer progression and treatment resistance, and gene expression-based scoring 
systems such as Buffa, Ragnum, and Winter have been developed to quantify hypoxia levels. Under- standing the relationship 
between hypoxia, survival outcomes, and clinical stratifiers like molecular subtype and race is essential for advancing person- 
alized care in breast cancer. Hypoxia scores were analyzed across tumor stages using Buffa, Ragnum, and Winter models. 
Kaplan-Meier survival analysis evaluated the prognostic impact of high versus low Buffa scores on progression-free survival 
(PFS), disease-free survival (DFS), and disease-specific survival (DSS). Stratified analyses were conducted by molecular 
subtype, AJCC stage, and race. Pearson correlation measured concordance among hypoxia scores. Microsatellite instability 
(MSI) was assessed using MANTIS and MSI Sensor scores, and their association with genomic instability (Fraction Genome 
Altered) was explored. Buffa and Winter scores revealed higher hypoxia in inter- mediate stages (IIA, IIB), whereas Ragnum 
showed more uniform levels. Elevated Buffa scores were significantly associated with worse PFS, DFS, and DSS. Lumi- nal A 
subtype had better prognosis than Basal-like and Luminal B; advanced stages and Black or African American patients showed 
poorer outcomes. Strong correlations were found among hypoxia scores (r = 0.65–0.88). Most tumors were microsatellite 
stable, but a subset with high MSI Sensor scores also showed increased genomic alterations. Hypoxia levels vary by stage and 
scoring system and are strongly linked to survival outcomes. Molecular subtype, tumor stage, and race significantly affect 
prognosis, emphasizing the need for multidimensional stratification. Hypoxia scores are concordant and useful, and MSI may 
contribute to genomic instability in specific subgroups of breast cancer.  
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Resumen(español)  

La hipoxia tumoral desempeña un papel fundamental en la progresión del cáncer y la resistencia al tratamiento, y se han 
desarrollado sistemas de puntuación basados en la expresión génica como Buffa, Ragnum y Winter para cuantificar los niveles de 
hipoxia. Comprender la relación entre la hipoxia, los resultados de supervivencia y los estratificadores clínicos como el subtipo 
molecular y la raza es esencial para avanzar en la atención personalizada en el cáncer de mama. Las puntuaciones de hipoxia se 
analizaron en todos los estadios tumorales utilizando los modelos Buffa, Ragnum y Winter. El análisis de supervivencia de Kaplan-
Meier evaluó el impacto pronóstico de las puntuaciones Buffa altas frente a bajas en la supervivencia libre de progresión (SLP), la 
supervivencia libre de enfermedad (SSE) y la supervivencia específica de la enfermedad (SEE). Se realizaron análisis estratificados 
por subtipo molecular, estadio AJCC y raza. La correlación de Pearson midió la concordancia entre las puntuaciones de hipoxia. La 
inestabilidad de microsatélites (MSI) se evaluó utilizando las puntuaciones MANTIS y MSI Sensor, y se exploró su asociación con la 
inestabilidad genómica (fracción del genoma alterado). Las puntuaciones de Buffa y Winter revelaron mayor hipoxia en estadios 
intermedios (IIA, IIB), mientras que Ragnum mostró niveles más uniformes. Las puntuaciones elevadas de Buffa se asociaron 
significativamente con peores PFS, DFS y DSS. El subtipo luminal A tuvo mejor pronóstico que Basal-like y Luminal B; los pacientes 
en estadios avanzados y de raza negra o afroamericana mostraron peores resultados. Se encontraron fuertes correlaciones entre 
las puntuaciones de hipoxia (r = 0,65–0,88). La mayoría de los tumores eran microsatélites estables, pero un subconjunto con 
puntuaciones altas del sensor MSI también mostró mayores alteraciones genómicas. Los niveles de hipoxia varían según el estadio 
y el sistema de puntuación y están fuertemente vinculados a los resultados de supervivencia. El subtipo molecular, el estadio del 
tumor y la raza afectan significativamente el pronóstico, lo que enfatiza la necesidad de una estratificación multidimensional. Las 
puntuaciones de hipoxia son concordantes y útiles, y el MSI puede contribuir a la inestabilidad genómica en subgrupos específicos 
de cáncer de mama. 

Palabras clave(español) 

Hipoxia, cáncer de mama, índice de Buffa, análisis de supervivencia, subtipos moleculares, estadio tumoral, raza, MSI, inestabilidad 
genómica. 

 

 
 

Introduction  

 
Hypoxia is a hallmark of the tumor 

microenvironment [1] that arises due to an imbal- ance 
between oxygen supply and consumption [2]. In solid 
tumors, particularly breast cancer, hypoxia plays a 
pivotal role in driving tumor progression [3], 
angiogenesis [3, 4], immune evasion [5], and 

therapeutic resistance [6]. As a result, it has emerged as 
both a prognostic indicator and a potential therapeutic 
target. Quantifying hypoxia through gene expression-
based scoring systems has enabled researchers to 
evaluate tumor oxygenation indirectly, offering insights 
into the biological aggressiveness of individual tumors 
[7]. While multiple hypoxia gene expression signatures 
(Buffa, Rag- num, Winter) have been developed to 
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quantify this critical microenvironmental feature [8], 
their prognostic utility and consistency across tumor 
stages remain poorly charac- terized. These signatures 
leverage different sets of oxygen-responsive genes to 
classify tumors based on their transcriptional hypoxic 
[9–11] states. Despite their widespread use, the degree 
to which these scoring systems concur, especially across 
tumor stages and clinical subgroups, remains 
underexplored. Furthermore, the prognostic relevance 
of these hypoxia metrics in relation to survival 
outcomes and how they correlate with known clinical 
variables such as molecular subtype and race have yet 
to be fully delin- eated in large breast cancer cohorts. 
Hypoxia is not only relevant in cancer, where it may 
further affect TP53 a key gene involved in many cancers 
[12, 13] but it also plays an important role in 
testosterone and insulin regulation [14–16], which is 
itself critical in other serious diseases such as diabetes 
and cardiovascular complications under hormonal 
fluctuations [17–21]. This study addresses these 
questions by evalu- ating hypoxia dynamics [22, 23] 
across tumor stages, assessing the prognostic utility of 
the Buffa hypoxia score, and examining survival 
stratification by clinical features such as tumor stage, 
race, and molecular subtype. The dynamics of hypoxia 
can be significantly influenced by the use of medicinal 
herbs [24–27] as earlier reported but not tested. We 
also assess the concordance among hypoxia scoring 
systems and inves- tigate their relationship with 
genomic instability, particularly microsatellite 
instability (MSI). Through this integrative approach, we 
aim to deepen the understanding of how hypoxia 
influences tumor behavior and outcomes in breast 
cancer. 

 

Materials and methods  

 
Data Collection and Preprocessing. We 

utilized clinical and genomic data from The Cancer 
Genome Atlas (TCGA) Pan- Cancer Atlas project, 
specifically focusing on patients diagnosed with breast 
invasive carcinoma (BRCA). The dataset was 
downloaded from the cBioPortal platform and 
comprised clinical records for 500 patients. Key clinical 
variables included patient age, race, tumor subtype, 
AJCC pathological tumor stage, and follow-up data for 
survival endpoints such as progression-free survival 
(PFS), disease-free survival (DFS), and disease-specific 
survival (DSS). Molecular features such as the BUFFA 
hypoxia score, mutation count, and aneuploidy score 
were also included for integrative analysis. After 
preprocessing and removal of incomplete records, the 

final cohort size varied slightly across survival types 
depending on data availability. To ensure consistency in 
time-to-event analysis, all survival time variables were 
expressed in months, and status indicators were binary-
coded, with 1 representing an event (e.g., progression, 
recurrence, or disease-specific death) and 0 indicating 
censoring. 

Survival Analysis Using Kaplan–Meier 
Estimation. We conducted Kaplan–Meier survival 
analysis to visualize and compare survival out- comes 
across different clinical and molecular subgroups. The 
KaplanMeierFitter class from the lifelines Python library 
was used for this purpose. Tumor Subtype: Patients 
were grouped by molecular subtype (e.g., Luminal A, 
Luminal B, HER2-enriched, Basal-like), and survival 
functions for PFS, DFS, and DSS were compared among 
these subtypes. AJCC Pathological Tumor Stage: 
Stratification was based on tumor stage (e.g., Stage I, II, 
III, IV), evaluating stage-specific survival trends. Race: 
We explored racial disparities in survival by analyzing 
groups such as White, Black or African Amer- ican, 
Asian, and others. BUFFA Hypoxia Score: The hypoxia 
score was dichotomized using the cohort median into 
High and Low categories to assess its impact on prog- 
nosis. Age Group: Patients were classified into three age 
brackets: < 50, 50–65, and > 65 years. This stratification 
was used to examine age-related survival differences. 
For each group comparison, Kaplan–Meier curves were 
plotted with survival proba- bilities on the y-axis and 
time in months on the x-axis. Confidence intervals were 
not displayed to improve visual clarity. The plots 
included group-specific legends and were standardized 
in size and formatting using matplotlib. 

Cox Proportional Hazards Regression 
Analysis. To further investigate the effect of specific 
covariates on progression-free survival, we performed 
a Cox proportional hazards regression using the 
CoxPHFitter model from lifelines. The regression model 
included age, total mutation count, and aneu- ploidy 
score as explanatory variables. The analysis was 
performed on 224 patients with complete data, among 
whom 25 experienced a PFS event. None of the covari- 
ates demonstrated statistically significant associations 
with PFS (p-values > 0.05). The hazard ratios (HRs) for 
age and mutation count were near 1, suggesting negligi- 
ble influence on the hazard of progression. Aneuploidy 
score showed a weak negative association (coefficient = 
−0.01, HR = 0.99), but this effect was also not 
statistically significant (p = 0.85). Model performance 
was evaluated using standard metrics: the concordance 
index (C-index) was 0.47, indicating limited 
discriminative ability, while the partial AIC was 227.25. 
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The log-likelihood ratio test yielded a χ2 value of 0.85 
with 3 degrees of freedom (p = 0.55), suggesting that 
the model did not significantly improve fit compared to 
a null model. 

Statistical analysis. All analyses were 
conducted in Python 3.10, utilizing key libraries such as 
pandas for data manipulation, lifelines for survival 
modeling, and matplotlib for visualization. This 
computational environment ensured reproducibility 
and efficient handling of clinical and survival data from 
TCGA. 

 

Results  

 
The Fig. 1 presents a comparative analysis of 

hypoxia levels across tumor stages using three 
established hypoxia scoring systems [28–31]: Buffa, 
Ragnum, and Winter. Each boxplot illustrates the 

distribution of scores for tumor stages ranging from 
Stage I through Stage IV, including intermediate 
substages (e.g., IIA, IIIB) and a miscella- neous group 
labeled Stage X. This comparison provides insights into 
how hypoxia, a critical factor influencing tumor 
aggressiveness and treatment resistance, varies with 
tumor progression. The Buffa hypoxia score (Fig. 1A) 
shows considerable variabil- ity across tumor stages. 
Notably, intermediate stages such as IIA and IIB display 
elevated median scores with broader interquartile 
ranges, suggesting increased and heterogeneous 
hypoxia in these groups. In contrast, early stages like IA 
and IB tend to have more negative median values, 
indicating relatively lower hypoxia. Interestingly, Stage 
IIIC and Stage IV, despite being advanced, do not show 
a consistent increase in hypoxia scores, implying that 
hypoxia does not linearly correlate with tumor stage 
under the Buffa scoring system. The presence of 

 

 

 
Fig. 1 Hypoxia dynamics across tumor stages vary by scoring method. (A) Buffa score: Elevated hypoxia (↑ medians, 
broad IQRs) in intermediate stages (IIA-IIB) versus lower early stages (IA-IB); advanced stages (IIIC-IV) lack linear 
progression. Outliers reflect inter-patient heterogeneity- ity. (B) Ragnum score: Stable, moderate hypoxia (positive 
medians) across stages, with minimal variability in IB. (C) Winter score: Hypoxia ↑ in IIA-IIB and IV; early stages (I-IA) 
show lower scores with high variability. 
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outliers, particularly in early and intermediate stages, 
also reflects inter-patient heterogeneity in hypoxic 
response. The Ragnum hypoxia score (Fig. 1B) presents 
a more constrained distribution, with scores largely 
concentrated in the positive range across most stages. 
This indicates generally moderate levels of hypoxia 
throughout tumor progression. Stage IA and IIA stand 
out with slightly higher median scores, while Stage IB 
demonstrates minimal variability, potentially due to a 
smaller sample size or consistent tumor characteristics 
in that group. Unlike the Buffa score, the Ragnum score 
suggests a more stable hypoxic pro- file across stages, 
without marked elevation in advanced tumors. The 
Winter hypoxia score (Fig. 1C), which measures hypoxia 
on a wider scale, reveals significantly neg- ative scores 
in early stages such as I and IA, supporting the notion of 
lower oxygen deprivation in early tumor development. 
In contrast, intermediate stages IIA and IIB again exhibit 
a shift toward higher hypoxia, similar to the pattern 
observed in the Buffa score. Stage IV also shows 
increased median scores, suggesting heightened 
hypoxic stress in late-stage tumors. However, this 
pattern is accompanied by substantial variability and 
the presence of outliers, especially in early-stage 
tumors. Overall, the analysis indicates that tumor 
hypoxia tends to rise in intermediate to late stages of 
cancer progression, with notable variability depending 
on the scoring method. While Buffa and Winter scores 
highlight increased hypoxia in stages IIA and IIB, 
Ragnum scores suggest a more consistent, moderate 
hypoxic profile across all stages. These findings 
underscore the complexity of tumor hypoxia and the 
importance of considering multiple scoring approaches 
to capture its dynamic nature across tumor 
evolution[32? 

? ? ] 
Prognostic Value of BUFFA Hypoxia Score in 

PFS, DFS, and DSS Survival Outcomes. The prognostic 
impact of the BUFFA hypoxia score (categorized as High 
vs. Low) was assessed across three survival metrics: 
progression-free survival (PFS) (Fig. 2A), disease-free 
survival (DFS) (Fig. 2B), and disease-specific survival 
(DSS) (Fig. 2C). In all three Kaplan-Meier analyses, 
patients in the ”High” hypoxia group demonstrated 
reduced survival probability compared to those in the 
”Low” hypoxia group. For PFS, the high hypoxia group 
included 209 patients with 33 events, while the low 
group had 212 patients with 22 events. Both groups had 
an undefined median survival time, indicating a 
substantial proportion of censored data. In DFS, the 
high group had 31 events among 209 patients, while the 
low group had 17 events among 212 patients, again 

with no median survival reached. In the DSS 
comparison, the disparity was more pronounced with 
18 events in the high group and only 6 in the low group, 
sug- gesting better disease-specific outcomes in 
patients with lower hypoxia scores. Overall, elevated 
BUFFA hypoxia scores appear to be associated with 
poorer outcomes across all survival endpoints, 
reinforcing the clinical utility of tumor hypoxia as a 
prognostic marker. 

Prognostic Stratification of Breast Cancer 
Patients by Molecular Subtype, Tumor Stage, and Race 
Across Survival Outcomes. To explore factors 
influencing breast cancer survival, we conducted 
Kaplan-Meier anal- yses evaluating three clinical 
outcomes, Progression-Free Survival (PFS), Disease-
Free Survival (DFS), and Disease-Specific Survival (DSS), 
stratified by molecular sub- type, AJCC pathologic 
tumor stage, and race (Fig. 3A–3I). Subtype-specific 
survival analyses showed that the Luminal A (BRCA 
LumA) group had the largest patient population (n=180) 
with relatively few events (PFS: 24, DFS: 20, DSS: 6), 
followed by Luminal B (BRCA LumB, n = 80) and Basal-
like (BRCA Basal, n = 75). All sub- types exhibited 
undefined median survival times across all three 
outcomes, indicating long-term survival and censored 
data. However, the Basal and Luminal B subtypes had 
noticeably higher event counts compared to Luminal A. 
HER2-enriched and Normal- like subtypes showed 
smaller cohorts with few events. When stratified by 
AJCC tumor stage, patients with earlier stages such as 
IA and IIA demonstrated improved survival with fewer 
events and undefined median survival times. In 
contrast, advanced stages like IIIC, IIIB, and X showed 
reduced survival durations—most notably Stage IIIC 
with a median PFS of 35.05 months and a higher event 
count (PFS: 5/20). This trend held across DFS and DSS 
metrics, reinforcing the prognostic value of clinical stag- 
ing. Race-based survival analysis revealed racial 
disparities. White patients (n=281) consistently showed 
favorable survival outcomes with lower event counts 
across all end- points. In contrast, Black or African 
American patients (n=64) experienced worse PFS 
outcomes with a median survival of 168.23 months and 
14 events, suggesting potential disparities in disease 
progression. Asian and American Indian or Alaska 
Native groups had limited representation, with few 
events and undefined medians. These findings 
collectively emphasize the prognostic relevance of 
molecular subtype, tumor stage, and race in breast 
cancer, supporting their use in personalized risk 
stratification. 
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Concordance Between Hypoxia Signature 
Scores in Breast Cancer Cohort. To evaluate the 
consistency among widely used hypoxia gene 
expression signa- tures, we computed Pearson 
correlation coefficients across three hypoxia scor- ing 
methods, Buffa, Ragnum, and Winter applied to the 
breast cancer cohort (Fig. 4 4). The analysis revealed 
strong positive correlations among all three scores, 
indicating that they capture overlapping yet distinct 

dimensions of tumor hypoxia. The BUFFA HYPOXIA 
SCORE showed a high correlation with the WIN- TER 
HYPOXIA SCORE (r = 0.88), suggesting a strong 
agreement in hypoxia classification between these two 
methods. The correlation between BUFFA and RAG- 
NUM scores was moderately strong (r = 0.73), while the 
RAGNUM and WINTER scores exhibited a slightly lower 
correlation (r = 0.65), though still substantial. These 
results imply that while all three hypoxia signatures are 

 

 

 
Figure. 2 Kaplan-Meier survival curves comparing High vs. Low BUFFA hypoxia score groups across three 
outcomes: (A) Progression-Free Survival (PFS), (B) Disease-Free Survival (DFS), and (C) Disease-Specific Survival (DSS). In 
each panel, survival probability is plotted against time in months. The high hypoxia group is associated with worse survival 
in all metrics, despite no group reaching a defined median survival. 

 

 

 
Figure. 3 Kaplan-Meier survival curves illustrating breast cancer patient outcomes across clinical stratifications. 
(A–C): PFS, DFS, and DSS by molecular subtype (LumA, LumB, Basal, Her2-enriched, Normal-like). (D–F): PFS, DFS, and 
DSS by AJCC pathologic tumor stage. (G–I): PFS, DFS, and DSS by race (White, Black or African American, Asian, 
American Indian or Alaska Native). All plots display survival probabilities over time in months. Most groups did not 
reach a median survival time (”inf”), reflecting censored observations and a favorable prognosis. Differences in event rates 
suggest prognostic stratification potential based on subtype, stage, and race. 
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positively associated, the Buffa and Winter scores are 
more closely aligned in this dataset. This cross-signature 
concordance [36] supports the robustness of hypoxia 
profiling in breast cancer and suggests that integrating 
or selecting among these scoring systems may depend 
on the specific biological or clinical context being 
investigated. 

Microsatellite Instability (MSI) Scores and 
Genome Alteration Correlation. In Fig. 5, we evaluated 
microsatellite instability using two established scoring 
systems, MANTIS and MSI Sensor—and examined their 
relationship with genome alteration. Panel A shows the 
distribution of MSI MANTIS scores across the cohort. 
The majority of samples exhibit low MSI MANTIS scores, 
centered around 0.3, indicating a gener- ally 
microsatellite-stable (MSS) population. Panel B 
presents the distribution of MSI Sensor scores, which 
demonstrates a similar trend with most values 
concentrated near zero, although a few outliers show 
elevated scores, suggestive of microsatellite insta- bility 
(MSI-high) in select cases. Panel C explores the 
relationship between genomic instability and MSI, as 
measured by plotting the MSI Sensor Score against the 
Frac- tion Genome Altered. While most samples cluster 
at low MSI Sensor scores and low genome alteration 
fractions, a few samples exhibit both high MSI Sensor 

scores and increased genome alterations, indicating a 
potential link between MSI and broader genomic 
instability in those cases. 

Cox Proportional Hazards Model for 
Progression-Free Survival. We performed a Cox 
proportional hazards [37–39] regression analysis to 
evaluate the association between clinical and genomic 
features and progression-free survival (PFS) using the 
lifelines.CoxPHFitter model [40]. The analysis included 
224 observa- tions, of which 25 experienced a PFS 
event. The covariates analyzed were age, total mutation 
count, and aneuploidy score. None of the variables 
showed statistically sig- nificant associations with PFS (p 
− values > 0.05). Age and mutation count had near-zero 
coefficients with hazard ratios (exp(coef)) close to 1, 
suggesting negligible effects on risk. The aneuploidy 
score also demonstrated a weak negative association 
(coef = −0.01, HR = 0.99), though not statistically 
significant (p = 0.85). The over- all model fit, measured 
by partial AIC, was 227.25, and the concordance index 
was 0.47, indicating limited predictive power. The log-
likelihood ratio test was not signif- icant (χ2 = 0.85, df = 
3, p = 0.55), further supporting the lack of strong 
predictive variables in the model. 

 

Discussion  

 

 

 
Figure. 4 Heatmap showing Pearson correlation coefficients among three hypoxia signature  scores:  
BUFFA HYPOXIA SCORE,  RAGNUM HYPOXIA SCORE,  and  WIN- TER HYPOXIA SCORE. All pairwise comparisons 
demonstrated strong positive correlations (rang- ing from 0.65 to 0.88), indicating overall consistency in hypoxia 
assessment across the three scoring systems 



Multi-dimensional assessment of tumor hypoxia. Migabo EM. et al. 

 

Avan Biomed. 2025; 14(2): xx 

 
Our analysis offers a detailed portrayal of 

hypoxia variation [30, 41, 42] across tumor stages and 
underscores the differential performance of hypoxia 
scoring methods in cap- turing these dynamics. The 
Buffa hypoxia score demonstrated the greatest 
variability among stages, with a clear elevation in 
intermediate stages (IIA and IIB), highlighting a 
potential window during tumor evolution where 
hypoxic stress intensifies. Interest- ingly, advanced 
stages such as IIIC and IV did not uniformly exhibit 
higher hypoxia levels, challenging the assumption that 

hypoxia linearly escalates with tumor stage. These 
findings suggest a complex interplay between tumor 
growth, angiogenesis, and local oxygen demand that 
may vary depending on tumor biology and 
microenviron- mental context. The Ragnum score [43, 
44], in contrast, presented a more uniform hypoxia 
profile across all stages, with moderate and stable 
values. This scoring system may be less sensitive to 
subtle changes in hypoxia during progression or may 
reflect a gene set that is activated more broadly in solid 
tumors regardless of stage. Meanwhile, the Winter 
score partially mirrored Buffa’s pattern, with higher 

 

 

 
Figure. 5 Microsatellite Instability (MSI) Scores and Genome Alteration Correlation. (A) Histogram displaying the 
distribution of MSI MANTIS scores across samples. (B) Histogram showing the distribution of MSI Sensor scores, with a 
sharp peak at low values and a few high outliers. (C) Scatter plot depicting the relationship between genome instability 
(Fraction Genome Altered) and MSI Sensor score, highlighting a subset of samples with high instability and MSI. 
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scores in intermedi- ate and late stages, although again, 
variability and outlier presence especially in early 

stages point to significant inter-tumoral 
heterogeneity [45–47]. Collectively, these com- 
parisons emphasize the need for multi-metric 
evaluation when interpreting hypoxia in breast tumors. 
The prognostic significance of hypoxia was particularly 
evident in the Buffa score analysis. Across all three 
survival outcomes—progression-free survival (PFS), 
disease-free survival (DFS), and disease-specific survival 
(DSS) patients in the high hypoxia group consistently 
exhibited worse outcomes. Although median sur- vival 
was not reached in most groups, the higher event 
counts and visibly separated Kaplan-Meier curves 
reinforce the role of hypoxia as an adverse prognostic 
indicator. These results align with the broader literature 
[6, 48–52], which identifies hypoxia as a contributor to 
treatment resistance and tumor aggressiveness. When 
examining clinical stratifications, molecular subtype 
emerged as a strong determinant of out- come. As 
expected, Luminal A patients had the best prognosis, 
with relatively few events and long survival, while Basal-
like and Luminal B subtypes experienced poorer 
outcomes. These differences likely reflect intrinsic 
biological variations [53–55], such as proliferative 
capacity, immune response, and therapeutic 
responsiveness. Similarly, staging analysis reaffirmed 
the clinical utility of AJCC classifications, with advanced 
stages correlating with poorer survival. Notably, Stage 
IIIC consistently had shorter survival durations across all 
outcomes, underscoring the need for aggressive 
manage- ment in this group. Racial disparities also 
became evident, particularly for Black or African 
American patients who experienced worse PFS despite 
similar clinical stag- ing, suggesting potential systemic 
differences in tumor biology, healthcare access, or 
comorbidity burden. This finding highlights the 
importance of incorporating demo- graphic and social 
determinants into prognostic models. The observed 

strong positive correlations between hypoxia scores 
further validate their utility, with Buffa and Win- ter 
showing the highest concordance. This suggests that 
despite their unique gene compositions, these 
signatures largely capture similar hypoxia-related 
biological pro- cesses. However, the modest 
discrepancy between Ragnum and the other two scores 
suggests that certain gene sets may respond differently 
to hypoxic stress or reflect distinct temporal windows 
of oxygen deprivation. Lastly, our evaluation of MSI 
using MANTIS and MSI Sensor revealed a 
predominantly microsatellite-stable cohort, with a few 
outliers indicating possible MSI-high tumors. A subset of 
samples showed con- current high MSI Sensor scores 
and elevated genome alterations, suggesting that, in 
some cases, MSI may contribute to broader genomic 
instability [56–59]. However, the rarity of these cases in 
breast cancer supports existing knowledge that MSI is 
less prevalent [61? ] in this tumor type compared to 
colorectal or endometrial cancers. 

In conclusion, this integrative analysis 
highlights the heterogeneity and prognostic significance 
of tumor hypoxia in breast cancer. While intermediate 
stages exhibit heightened hypoxia in some scoring 
systems, overall survival outcomes are consistently 
worse in hypoxic tumors. These findings underscore the 
value of combining multiple hypoxia metrics with 
clinical and molecular stratifiers to refine prognostic 
assessments and inform targeted interventions. 
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