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Abstract 

 

In this work, a generalized global qualitative analysis procedure for planar systems is proposed using the nonlinear dynam-

ic system called Predator-Prey. To obtain information on the global behavior, the behavior of the trajectories around the 

finite equilibrium points is analyzed by through of Linearization and parametric analysis, then the equilibrium points are 

located at infinity using Poincaré Compactification thechnique to study the behavior of the trajectories around them, and 

finally, using the development of the Continuous Dependence of the solutions with respect to the Initial Conditions and Pa-

rameters, a brief introduction is made about the flow of the trajectories of the system. With these three methodologies, the 

Poincaré Disks are obtained for each operating range of the system, where the set of disks allows us to demonstrate the 

overall qualitative behavior of the system. The proposed procedureis based on Qualitative theory, which allows obtaining 

characteristic information of non-linear systems. 

 

Keywords: Nonlinear Systems · Equilibrium Points · Dynamic Systems · Poincaré Compactification ·Predator-Prey 

 

Resumen 

 

En este trabajo se plantea un procedimiento generalizado de analisis cualitativo global para sistemas planares cuyo caso 

de estudio es un sistema dinámico no lineal denominado Presa-Depredador. Para obtener la información del comporta-

miento global, se analiza el comportamiento de las trayectorias alrededor de los puntos de equilibrio finitos por medio de 

la Linealización y del análisis paramétrico, luego se localizan los puntos de equilibrio en el infinito por medio de la Com-

pactificación de Poincaré para luego estudiar el comportamiento de las trayectorias alrededor de los mismos, y para fina-

lizar, usando el desarrollo de la Dependencia Continua de las soluciones respecto de las Condiciones Iniciales y Paráme-

tros se hace una breve introducción acerca del flujo de las trayectorias del sistema. Con estas tres metodologías se 

obtienen los Discos de Poincaré para cada rango de operación del sistema, donde el conjunto de los discos permite demos-

trar cual es el comportamiento cualitativo global del mismo. El procedimiento planteado se basa en la teoría Cualitativa, la 

cual permite obtener información característica importante de los sistemas no lineales siendo este el aporte de este trabajo. 

Palabras clave: Sistemas no lineales · Puntos de Equilibrios · Sistemas Dinamicos · Compactificación de Poincaré · Preda-

dor-Presa. 
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1 Introduction 

In the absence of an explicit analytical solution 

( )x t  of a nonlinear system ( ),x f t x=& , one option is the 

use of the qualitative theory of differential equations. 

This uses different techniques such as Linearization and 

the study in the environment of equilibria, normaliza-

tion through linear transformations, parametric analysis 

of the systems, Poincaré Compactification, Theorem 

and Lemmas of hyperbolic, elliptic and parabolic equi-

libria, among others to achieve classification. Different 

behaviors of the nonlinear system that are represented 

through phase portraits, with which it is possible to ob-

tain a representative atlas that classifies the behaviors. 

 

As a case study of a nonlinear system ( ),x f t x=& , 

the Predator-Prey model was chosen due to its abudance 

in the literature and since it is basic in the study of the 

operations research area. 

 

It begins with a review of the literature. We con-

tinue with the presentation of a technique for global 

analysis of the behavior of a planar system, in this case 

the techniques of Linearization and Poincaré Compacti-

fication for the study of finite and infinite equilibrium 

points. The Predator-Prey model is presented, a linear 

transformation is applied to normalize it, a parametric 

analysis is carried out with which different behavior of 

the balances are classified through of thorems, corollar-

ies and remark. An analysis of the trajectories is carried 

out, culminating in some conjectures for the flow of the 

nonlinear system and the phase portraits are presented 

through of the Poincaré disks that make up the atlas. 

 

The main idea is to present an article that serves as 

an introductory tool for the use of the qualitative theory 

of dynamic systems. 

 

2 Literature Review 

 

In the 19th century, works were published referring 

to the formalization of general methods for the theory 

of nonlinear differential equations, where the work of 

Poincaré (1881) Les Méthods nouvelles de la mécanique 

céleste and Lyapunov (1892) General problem of stabil-

ity of motion (in Russian), which gave rise to the devel-

opment of the foundations of what is now called quali-

tative theory of non-linear differential equations.  

 

The development of the qualitative theory of non-

linear systems has been fueled in part by the problems 

proposed by Hilbert (1902), specifically, the search for 

how many limit cycles has a system of quadratic differ-

ential equations and has served as a guideline in the de-

velopment of the analysis of said quadratic systems, 

although it is still an open problem. Along these same 

lines, Coppel (1966) develops a study providing the 

phase portraits of some planar quadratic systems and 

characterizes them in terms of algebraic inequalities be-

tween their coefficients, and Dickson and Perko (1970) 

study planar quadratic systems with bounded trajecto-

ries called Bounded Quadratic Systems (BQS). 

 

Likewise, Napoles (2004) in his analysis explains 

that the qualitative theory is based on the fact that it is 

possible to visualize the displacement of a point, where 

from an initial position, and for each value of t and x , 

the slope of its tangent line at the point ( ),t x  is given 

by the derivative expression ( ),x f t x=& . These trajecto-

ries are called flow lines and the shape that these curves 

take around the equilibrium points gives important in-

formation about the behavior of the systems modeled by 

these equations. The set of these trajectories is called 

Phase Portraits or Phase Diagrams. 

 

On the other hand, the study of population dynam-

ics is a classic area of applied mathematics that dates 

back to the beginning of the 20th century, and which 

has given raise to such significant advances as the theo-

ry of bifurcations and chaos. The Predator-Prey model 

has been and is the object of study in population dy-

namics theory. Cano and Pestana (2011) study models of 

a single species, linear and nonlinear models of two 

species, models for n  species and non-autonomous sys-

tems, that is, explicitly dependent on time; on some of 

them they apply Lyapunov stability analysis and study 

their bifurcations. 

 

In this sense, there are six publications that are of 

special interest in this research: Poincaré (1881), An-

dronov (1973), Dickson and Perko (1970), Dumortier et al. 

(2006), Bolaños and Llibre (2014) and Diz-Pita et al. 

(2022), where all include the Poincaré Compactification 

technique which is a tool that allows studying the be-

havior of trajectories in the vicinity of infinity. Through 

it, it is possible to obtain, in some cases, global behav-

iors of non-linear differential equations through the 

Poincaré Disks. 

 

There is detailed information on the development of 

this work that was published by Mendez-Díaz (2017) 

where the procedures condensed in this article are ex-

plicitly shown. 

3 Global Behavior of a Planar System 

The analysis of the finite equilibrium points through 
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Linearization, and the simulations of trajectories through 

numerical methods are the most used tools to analyze the 

qualitative behavior of a dynamic system of the form 

( ),x f t x=&                                 (1) 

Both techniques have the disadvantage of being local, 

the first because the behavior analysis is carried out in a vi-

cinity of the finite equilibrium point and the second because 

it is a single simulation in a space of infinite trajectories. In 

view of these disadvantages the question arises, how does 

space behave that does not correspond to either finite equi-

librium points or simulations? 

 

In the attempt to answer the previous question, the so-

called Poincaré Compactification is included as a tool, 

which allows locating the equilibrium points at infinity and 

analyzing the behavior in their vicinity. 

 

Adding to the above, another question arises, how do 

trajectories behave when they come or go from infinity, 

from or towards the finite equilibrium points? The Theo-

rems referring to the Continuous Dependence of the solu-

tions with respect to the Initial Conditions and Parameters 

defined and published by Hartman (1973) provide this in-

formation and complement a set of mathematical tools that 

make it possible to perform a global qualitative analysis of 

the behavior of the system (1). 

 

It is noted that the procedure proposed in this work is 

not general for all nonlinear systems; however, it allows ad-

dressing some problems, especially if (1) is a planar system, 

that is, a system of differential equations of second order 

made up of polynomial functions. 

 

In this research work, use is made of the Linearization 

method described in Dumortier et al. (2006), section 1.5, pp 

14. Also, some theorems will be used as tools that explain 

the behavior of the equilibrium points of a system through 

the eigenvalues, which are: the Hyperbolic Singular Point 

Theorem (Theorem 11) and the Semi-Hyperbolic Singular 

Point Theorem (Theorem 12), this are developed in Du-

mortier et al (2006) pp 71 and 74 respectively, which ex-

plain the behavior of isolated singular points. 

 

In the case that the singular points are not isolated, that 

is, they form an infinite line of equilibrium points, the The-

orem (13) will be used: Normally Hyperbolic Invariant 

Manifold Theorem, developed by Llibre et al. (2013) (Theo-

rem 3 pp 234). 

 

1.1 Finite Equilibrium Points 

 

To locate and analyze the behavior of the finite equi-

librium points, it is proposed to follow the following steps: 

 

1. To find the equilibrium points of the (1) system, its 

dynamic part is set to zero, this implies that 0,x =&  as a 

consequence the expression becomes ( ) 0,f x =  solv-

ing the resulting system of equations gives the set 

called finite equilibrium points, denoted as x . 

 

2. If the equilibrium points obtained are isolated, the fol-

lowing is done: 

a. Since ( ) 0,f x = we proceed to perform the 

Linearization of the system, finding the matrix 

A  since by 
( )

( ) .
f x

A x
x


=


 

b. Then A  is evaluated at the set of equilibrium 

points x , and thus a linear system is obtained 

in a circumviron of each equilibrium point, 

that is, ( ) ( ) .
x

A x A x=  

c. With ( )
x

A x  the eigenvalues of the equiva-

lent linear system are obtained for each equi-

librium point, called 
1( , , )i n    for 

1, ,i n=    where 
1, , n   are the parame-

ters of the (1) system. 

d. The Theorem 11 and the Theorem 12 are used, 

together with the
1( , , )i n   , to obtain the 

behaviors of said finite equilibrium points of 

the linearized system. 

 

3. If the equilibrium points are not isolated, that is, there 

is a line of infinite points of equilibrium points; the 

Theorem 13 is used. 

 

 

1.2 Infinite Equilibrium Points 

 

1.2.1 Poincaré Compactification 
 

If the functions that define the vector field X  are pol-

ynomial, then it is possible to apply Poincaré Compactifica-

tion which shows the trajectories that tend to, or come from, 

infinity. Let ( , )P Q  be a polynomial vector field where the 

functions P  and Q  are polynomials of arbitrary degree d  

in the variables 1x  and 2x  of the system, 

( ) ( )1 1 2 2 1 2, , , ,x P x x x Q x x= =& &               (2) 

where d  is the maximum of the degrees of P  and Q . To 

construct the compactification the field X  is projects over 

a unitary radio sphere in both hemispheres or over the equa-

torial unitary disk. The infinity region projection of field 

X correspond to radio unitary circumference. This proce-

dure is called Poincaré Compactification. 

To study the Poincaré Compactification of ( , )P Q  on 
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the sphere 
2 3 2 2 2

1 2 3{ : 1}y y y y=  + + =¡S   six local 

charts are represented like: 
2{ : 0}k kU y y=  S , 

2{ : 0}k kV y y=  S  for 1, 2,3k = . The local chart 

1 2 3 1 2 3, , , , ,U U U V V V  are the projection sphere over six 

planes perpendicular to the sphere (see Fig. 1). 

 

 
Fig. 1. Local Charts in Poincaré Compactification. 

 

On the local chart 
1U  with coordinates ( , )u v  for 

1 1x v= ,
2x u v=  the expression of the Poincaré Compact-

ification of ( , )P Q is 

1

1 1
, , ,  

1
, .

d

d

u u
u v uP Q

v v v v

u
v v P

v v

+

    
= − +    

    

 
= −  

 

&

&

     (3) 

 

On the local chart 
2U  with coordinates ( , )u v  for 

1x u v= ,
2 1x v=  the expression of the Poincaré Com-

pactification of ( , )P Q is 

1

1 1
, , ,

1
, ,

d

d

u u
u v P uQ

v v v v

u
v v Q

v v

+

    
= −    

    

 
= −  

 

&

&

     (4) 

and in the local letter 
3U  the expression of the Poincaré 

Compactification of ( , )P Q is 

( , ), ( , ).u P u v v Q u v= =& &       (5) 

The expression for charts 
kV  is the same as for 

kU  

multiplied by 1( 1)d−− for 1,2,3.k =  

 

1.2.2 Equilibrium Points at Infinity 
 

According to Dumortier et al. (2006), the singular 

points at infinity of ( )X  are the singular points of ( )X  

that are located in 1S . If 
1yS  is an infinite singular point, 

then y−  is also a singular point. Since the local behavior 

near y−  is the local behavior near y  multiplied by 

1( 1)d−− , it follows that the orientation of the orbits changes 

when the degree of the vector field is even. For example, if 

d  is even and 
1yS   is a stable node of ( )X , then 

y− is an unstable node. Because the equilibrium points at 

infinity appear in pairs of diametrically opposite points (an-

tipodal points), it is sufficient to study half of them, and 

with the degree of the vector field the behavior of the other 

half can be determined. 

 

To study the phase portrait at the equilibrium points of 

infinity, a point at infinity ( ),0u  is chosen and the linear 

part of the field ( )X  is used. P  and Q  are denoted by 

the homogeneous polynomials of degree i  for 

0,1, ,i d=   such that 
0 1 dP P P P= + ++   and 

0 1 dQ Q Q Q= + ++ . Then 
1

1 1( ,0) ( )u U V  S   is 

an equilibrium point at infinity of ( )X  if and only if 

( ) (1, ) (1, ) 0.d dF u Q u uP u − =  

 

Likewise 
1

2 2( ,0) ( )u U V  S   is an infinity equi-

librium point of ( )X  if and only if 

( ) ( ,1) ( ,1) 0.d dG u P u uQ u − =   The Jacobian matrix of 

the vector field ( )X  is also used at the point ( ),0u  is 

1 1( ) (1, ) (1, )

0 (1, )

d d

d

F u Q u uP u

P u

− −
 − 

 
− 

 

or 

 
1 1( ) ( ,1) ( ,1)

,
0 ( ,1)

d d

d

G u P u uQ u

Q u

− −
 − 

 
− 

 

 

if ( ),0u  belongs to 
1 1U V or 

2 2U V , respectively. The 

equator of 
2S  can consist entirely of equilibrium points, but 

in most cases the equilibrium points are isolated. In this 

case, the study is limited to isolated equilibrium points. 

 

1.2.3 Procedure to Use Poincaré Compactification 
 

To locate and analyze the equilibrium points at infini-

ty, the following steps must be followed: 

− The expression for the local letter 
1U  is obtained by 
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substituting 
1 1/x v=  and 

2 /x u v=   in the system (2), 

from which it is obtained 

1 1
, , , ,
u u

P Q
v v v v

   
   
   

 

this are then substituted into (3) which generates the 

local card expression 
1U . Once the expression for the 

local letter 
1U  is obtained, the Linearization procedure 

is repeated to find a linear equivalent, this procedure is 

shown in Section 3.1. 

− The expression for the local card 
2U  is obtained by 

substituting 
1 /x u v=  and 

2 1/x v=  into the system 

(2), from which it is obtain  

1 1
, , , ,

u u
P Q

v v v v

   
   
   

 

 this are then substituted into (4), yielding the local 

chart expression 
2U .   Once the expression in the local 

chart 
2U  is obtained, the Linearization procedure is re-

peated to find a linear equivalent. 

− Finally the expression on the local cards 
kV  are equal 

to the expression of 
kU  multiplied by 1( 1)d−−  for 

1,2,3.k =  

4 Case study: Model Predator-Prey 
2¡   

The case of two species, called predator and prey, that 

coexist in a common ecosystem is considered. The number 

(or density) of the prey and predator species, respectively, is 

represented by 1x  and 2x . The model initially proposed by 

Volterra (2011) is expressed as follows: 

1 1 2

2 2 1

( ),

( ),

x x a bx

x x dx c

= −

= −

&

&
         (6) 

where , ,a b c  and d  are constants. It will be assumed that 

the initially defined constants will also take both positive 

and negative values, since the purpose is to study the model 

globally. In order to reduce some parameters of the system 

(6), a matrix Linear Transformation x z=   is performed, 

defined by 

1 11 12 1

2 21 22 2

.
x z

x z

 

 

     
=     

     
              (7) 

Substituting (6) and the matrix 
01

0 1 d

b

 
 =  

 
 in 

the derivative of (7), the system of differential equations in 

terms of the variable z  takes the form 

1 1 2 1

2 2 1 2

,

.

z z z cz

z z z az

= −

= − +

&

&
                              (8) 

 

2.1 Finite Equilibrium Points 

 

The equilibrium points of the system (8) are represent-

ed by 1z  and 2z  and are defined as 

1 1 2 2 1 2( , ) (0,0), ( , ) ( , ),p z z p z z a c= =             (9) 

obtaining that the equilibrium points are isolated and the 

Linearization method is applied. 

 

The Jacobian matrix of the system (8) is 

2 1

2 1

( )
c z z

A z
z a z

− + 
=  

− − 

 and will be evaluated at each 

equilibrium point in order to study its behavior. 

 

The local behavior of the finite equilibrium points of 

the system (8) can be interpreted using the following Theo-

rems and Corollaries: 

 

Theorem 1 Let 1p  and 2p   be the equilibrium points of the 

system (8), if 0a   and 0c  , then 1p  is an attractor 

equilibrium point and 2p  is a saddle. 

 

Proof   For 1p  to be an attractor equilibrium point the ei-

genvalues 
1,2  must have negative signs, and in turn for 2p  

to be a saddle the eigenvalues 
3,4  must have opposite 

signs, then the necessary conditions are the following: 

(i) 
1 2 0,ac  = −   

(ii) 
1 2 0,a c + = −   

(iii) 
3 4 0.ac  =   

Since 0a   and 0c   the constraints ( ) ( ),i ii  and ( )iii  

are satisfied, thus, 1p  behaves as an attractor equilibrium 

point and 2p  behaves like a saddle.             

 

Theorem 2 Let 1p  and 2p  be the equilibrium points of the 

system (8), if 0a  , 0c   and | | | |a c , then 
1p  is a re-

peller equilibrium point and 
2p  is a saddle. 

 

Proof   For 
1p  to be a repeller equilibrium point the eigen-

values 
1,2  must have positive signs and for 

2p  to be a sad-

dle the eigenvalues 
3,4  must have opposite signs, then the 

necessary conditions are the following: 
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(i) 
1 2 0,ac  = −   

(ii) 
1 2 0,a c + = −   

(iii) 
3 4 0.ac  =   

Since 0a   and 0c   the constraints ( ) ( ),i ii  and ( )iii  

are satisfied if | | | |a c , thus, 
1p  behaves as a repeller 

equilibrium point and 
2p  behaves as a saddle.             

 

Theorem 3 Let 
1p  and 

2p  be the equilibrium points of the 

system (8), if , 0a c   or , 0a c  , then 
1p  is a saddle and 

2p  is a center. 

 

Proof   For 1p to be a repeller equilibrium point the ei-

genvalues 
1,2   must have opposite signs and for 2p  to be a 

center the eigenvalue 
3,4  must be complex conjugates with 

a real part equal to zero and imaginary part different from 

zero, for this, the necessary conditions are the following: 

 

(i) 
1 2 0,ac  = −   

(ii) 
3,4 3[ ] 0 [ ] 0Re Re = → =  and 

4[ ] 0,Re  =  

(iii) 
3,4 3[ ] 0 [ ] 0Im Im i ac  → =   and 

4[ ] 0.Im i ac = −   

 

If , 0a c   or , 0a c   the restrictions ( ) ( ),i ii  and ( )iii  are 

satisfied, thus, it is then proven, that if ,a c  have the same 

sign, 
1p  is a saddle and 

2p  is a center.             

 

Theorem 4 Let 1p  and 2p   be the equilibrium points of the 

system (8), if 0a  , 0c   and a c= − , then 
1p  is a stable 

degenerate node and 
2p  is saddle. 

 

Proof   For 
1p  to be a stable degenerate node the ei-

genvalues  
1,2   must be equal and have negative signs, in 

turn for 
2p  to be a saddle the eigenvalues 

3,4  must have 

opposite signs so the necessary conditions are the follow-

ing: 

 

(i) 
1 2 ,a c = = − =  

(ii) 
1 2 0,ac  = −   

(iii) 
1 2 0,a c + = −   

(iv) 
3 4 0.ac  =   

 

The first condition is satisfied if a c= −  and since 0a  , 

0c   it is easy to check that ( ) ( ) ( ), ,i ii iii   and ( )iv  are ful-

filled. Therefore, it is proven that if 0a  , 0c   and also 

a c= − , then 
1p  is a stable degenerate node and 

2p  is a 

saddle.                                   

 

 

Theorem 5 Let 
1p  and 

2p  be the equilibrium points of the 

system (8), if 0a  , 0c   and a c= − , then
1p  is an unsta-

ble degenerate node and 
2p  is saddle. 

 

Proof   For 
1p  to be an unstable degenerate node the 

eigenvalues  
1,2   must be equal and have positive signs. In 

turn, for 
2p  to be a saddle the eigenvalues 

3,4  must have 

opposite signs, so the necessary conditions are the follow-

ing: 

 

(i) 
1 2 ,a c = = − =  

(ii) 
1 2 0,ac  = −   

(iii) 
1 2 0,a c + = −   

(iv) 
3 4 0.ac  =   

 

The first condition is satisfied if a c= −  and since 0a  , 

0c   it is easy to check that ( ) ( ) ( ), ,i ii iii  and ( )iv  are ful-

filled. Therefore, it is proven that if 0a  , 0c   and also 

a c= − , then 
1p  is an unstable degenerate node and 

2p  is a 

saddle.                                   

 

 

Corollary 1 Let 
1p  and 

2p   be the equilibrium points 

of the system (8), if , 0a c   or , 0a c   and also a c= , 

then 
1p  and 

2p  have the behavior described in Theorem 3. 

 

 

Theorem 6 Since the constraints of the parameters 0a = , 

0c   or if 0, 0a c = , then there are infinitely stable 

equilibrium points and infinitely unstable equilibrium 

points. 

 

Proof   In the case that 0a =  and 0c = , the system 

(8) takes the form 

21 21 2 1( ), ,z z cz z z z= − = −& &     (10) 

where there is an equilibrium point defined by 

3 2(0, )p z= , that is, the axis 
2z  is a line of infinite equi-

librium points. By linearizing (10) at the point 3p , we ob-

tain 
2

2

0
( ) ,

0

z c
A z

z

− 
=  

− 
  where the eigenvalues are 

1 2 ,z c = −  and 
2 0. =  
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Since there exists the line 
1 0z =  with infinite equilib-

rium points and since that
2 0 = , then the Theorem 13 ex-

plains that there is a stable submanifold, an unstable sub-

manifold and a tangent. The stable submanifold exists when 

1 2 0z c = −  , that is, when 
2z c , and the unstable 

submanifold exists when 
1 2 0z c = −  , that is, when 

2 .z c  

On the other hand, for the case that 0a   and 0c = , 

the system (8) take the form 

1 1 2 2 2 1, ( )z z z z z a z= = −& &         (11) 

where there is an equilibrium point defined by 
4 1( ,0)p z= , 

that is, the axis 
1z  is a line of infinite equilibrium points. 

By linearizing (11) at the point 
4p , we obtain 

1

1

0
( ) ,

0

z
A z

a z

 
=  

− 
 where the eigenvalues are 

1 1a z = −  and 
2 0. =  

 

Since there exists the line 
2 0z =  with infinitely equi-

librium points and 
2 0 = , using the Theorem 13, the stable 

submanifold exists when 1 1 0a z = −  , that is, when 

1a z , and the unstable submanifold when 

1 1 0a z = −  , that is, when 
1a z .                                 

 

 

2.1.1 Resume of Finite Equilibrium Point Analysis 
 

The theorems in the previous section demonstrate the 

behavior of the finite equilibria of the normalized system 

(8). This is a parametric analysis defined in the full range of 

parameters , [ , ]a c   . The graphs contained within 

each of the quadrants of the plane a  versus c , without the 

box and the four colors, represent the behavior of the finite 

equilibria per quadrant. The graphs within the quadrant 

boxes pointed with an arrow represent the behavior of the 

lines.  

 

Fig. 2 shows how finite equilibria behave in the entire 

range of ,a c . Generally quadrant I, 0, 0a c   is used as 

a model to represent the behavior of the species and specifi-

cally because the equilibrium point (0,0)  is one saddle and 

the other equilibrium (function of ,a b ) is a center.  

 

All the behaviors corresponding to the linearization 

technique have been considered except for the parametric 

value 0, 0a c= =  where it is conjectured that the solution 

is only ( ) 0x t = . 

 

 
Fig. 2. Behaviors of Finite Equilibrium Points  

in Parameters Plane a  vs. c . 

 

2.2 Analysis of Equilibrium Points in Infinity 

 

2.2.1 Analysis of the equilibrium points at infinity 

of the system (8) 

 
Let X  be the vector field associated with the system (8), 

then the expression for ( )X  on the local chart 
1U  is ob-

tained with the coordinates ( , )u v , which are defined by 

1 1/z v= , 
2 /z u v= . From system (8) is obtained 

1 2 1 2 1 2 2 1( , ) ( ), ( , ) ( ),P z z z z c Q z z z a z= − = −        (12) 

substituting 21,z z  in the previous equation is obtained 

1 1 1 1
, , ,
u u u u

P c Q a
v v v v v v v v

       
= − = −       

       
       (13) 

and by substituting (13) in (3) it takes the form 
2 2, .u u u uva uvc v uv cv= − − + + = − +& &        (14) 

where the equilibrium points are 
1 (0,0)P = , 

2 ( 1,0)P = −  

and 
3 ( ,1 )P c a a= . The equilibrium point 

3P  is discarded 

from the analysis since 0v  . 

 

Theorem 7 Since the system (14), then 1P  and its an-
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tipodal 
'

1P  behave as a saddle-node and 
2P   behaves as a 

repeller node (or unstable node) while its antipodal 
'

2P  be-

haves as an attractor node (or stable node). 

 

Proof   To study the behavior of the equilibrium points, 

the Linearization method must be applied to the system 

(14), obtaining that the matrix A  of the linearized system is 

1 2
.

2

u av cv au cu
A

v u cv

− − + + + 
=  

− − + 
 

       Evaluating 
1 ( , ) (0,0)P u v= =  in A  we obtain 

1

1 0
( )

0 0
A P

− 
=  
 

, where the eigenvalues are 
1 1 = −  and 

2 0 = . Since one of the eigenvalues is zero, the infinite 

equilibrium point 
1P  is semi-hyperbolic; therefore, its be-

havior is determined by the Theorem 12. 

 

It is observed that the behavior of the equilibrium 

point does not depend on the values of the parameters a  

and c . Since 
1 0   can be reduced to 

1 0   by changing 

X  to X− , then 
2 2, ,u u u uva uvc v uv cv= + − − = −& &        (15) 

for this system the linearized matrix evaluated at the equi-

librium point 
1P  becomes  

1

1 0
( )

0 0
A P

 
=  
 

, where 
1 1 =  

and 
2 0 = . For the system (15) to have the form of the sys-

tem described in the Theorem 12, a linear transformation 

must be applied which is given by u V=  and v U=  stay-

ing 
2 2, ,U UV cU V V V aUV cUV= − = + − −& &  

where 
2( , )A U V UV cU= − , 

2( , )B U V V aUV cUV= − −  

and 0   are defined. Let ( )V f U=  be the solution of 

the equation 
2 0V V aUV cUV+ − − = , by solving the 

previous equation we obtain that ( ) 0f U =  and 

( ) 1f U aU cU= − + +  are the solutions. Substituting the 

first and second solutions into ( ) ( , ( ))g U A U f U=   is 

obtained 
2

1( )g U cU= −  and 
2

2 ( )g U U aU= − + , where 

it is observed that with 
2 ( )g U  the Theorem 12 can’t be ap-

plied, so the second solution is discarded. Then in 
1( )g U  it 

is observed that 2m =  and 
ma c= − . Since m  is even, part 

( )iii  of Theorem 12 indicates that the equilibrium point 
1P  

behaves as a saddle-node. 

Evaluating 
2 ( , ) ( 1,0)P u v= = −  in A  we have 

2

1
( ) ,

0 1

a c
A P

− − 
=  
 

 where the eigenvalues are 
1 2 1 = = . 

In this case, the behavior of the equilibrium point does not 

depend on the values of the parameters a  and c  either. 

Since both eigenvalues are different from zero, we have a 

hyperbolic infinite equilibrium point, so its behavior is de-

termined by the Theorem 11. Specifically in part ( )ii , 
1,2  

must be real with 
2 1| | | |  , 

1 2 0    and also 
1 0  . 

Since all the above conditions are met for 
1,2   then the in-

finite equilibrium point '

2P  behaves as a repeller node (or 

unstable node). 

 

Finally, since the degree of the system (8) is even, that 

is, 2d = , then the equilibrium point '

1P  antipodal to 
1P  

which is located at infinity, it behaves as a saddle-node and 

the equilibrium point 
'

2P  antipodal to 
2P  behaves as an at-

tractor node (or stable node).                      

 

On the other hand, the expression for ( )X  on the lo-

cal chart 
2U  is obtained with the coordinates ( , )u v , which 

are defined by 
1 /z u v= , 

2 1/z v= . Substituting 
1 2,z z in 

(12) we obtain 

1 1 1 1
, , , ,

u u u u
P c Q a

v v v v v v v v

       
= − = −       

       
       (16) 

 

substituting (16) into (4) gives 

 
2 2, ,u u u auv cuv v uv av= + − − = −& &        (17) 

 

where the equilibrium points are 
4 (0,0)P = , 

5 ( 1,0)P = −  

and 
6 ( / ,1/ )P a c c= . The equilibrium point 

6P  is discard-

ed from the analysis since 0v  . 

 

Theorem 8 Since the system (17), then 
4P  and its an-

tipodal 
'

4P  behave as a saddle-node and 
5P   behaves as an 

attractor node (or stable node) while its antipodal '

5P  be-

haves like a repeller node (or unstable node). 

 

Proof   By applying the Linearization method to the 

system (17), then the matrix A  of the linearized system is 

1 2
.

2

u av cv au cu
A

v u av

+ − − − − 
=  

− 
 

Evaluating
4 ( , ) (0,0)P u v= =  in A  gives 

4

1 0
( )

0 0
A P

 
=  
 

, 

where the eigenvalues are 
1 1 =  and 

2 0 = . Since one of 
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the eigenvalues is zero, then the infinite equilibrium point 

4P  is semi-hyperbolic, therefore its behavior is determined 

by the Theorem 12. It is observed that the behavior of the 

equilibrium point does not depend on the values of the pa-

rameters a  and c . 

For this case, a procedure similar to that developed 

in Theorem 7 is applied when analyzing the behavior of 
1P , 

where for 
4P  it is obtained that 2m = , 

ma a= −  and given 

that m  is even, part ( )iii  of Theorem 12 indicates that the 

equilibrium point behaves as a saddle-node. 

 

Substituting 
5 ( , ) ( 1,0)P u v= = −   into A  gives 

5

1
( )

0 1

a c
A P

− + 
=  

− 

, where the eigenvalues are 

3 4 1 = = − . In this case, the behavior of the equilibrium 

point does not depend on the values of the parameters a  

and c   either. Since both eigenvalues are different from ze-

ro, we have a hyperbolic equilibrium point at infinity and 

we have that in part ( )ii   of Theorem 12, 
3,4  must be real 

with 
4 3| | | |  , 

3 4 0    and also 
3 0  . Since for 

3,4  all the previous conditions are met then the infinite 

equilibrium point 
5P  behaves as an attractor node (or stable 

node). 

 

Finally, since the degree of the system (17) is even, 

that is, 2d = , then the equilibrium point 
'

4P , antipodal to 

4P , which is located at infinity, it behaves as a saddle-node 

and the equilibrium point 
'

5P , antipodal to 
5P , behaves as a 

repeller node (or unstable node).                            

 

On the other hand, the expression for ( )X  on the 

local chart 
2U  is obtained with the coordinates ( , )u v , 

which are defined by 
1 /z u v= , 2 1/z v= . Substituting 

1 2,z z  in (12) we obtain 

 

1 1 1 1
, , , ,

u u u u
P c Q a

v v v v v v v v

       
= − = −       

       
       (16) 

 

substituting (16) into (4) gives 

 
2 2, ,u u u auv cuv v uv av= + − − = −& &        (17) 

 

where the equilibrium points are 4 (0,0)P = , 
5 ( 1,0)P = −  

and 
6 ( / ,1/ )P a c c= . The equilibrium point 

6P  is discard-

ed from the analysis since 0v  . 

 

 

2.2.2 Analysis of the equilibrium points at infinity 

of the system (10) 
 

        Let 
1X  be the vector field associated with the system 

(10). Then the expression for 
1( )X  on the local chart 

1U  

is obtained with the coordinates ( , )u v , which are defined 

by 
1 1/z v= , 

2 /z u v= . From (10) we have that 

1 2 1 2( , ) ( )P z z z z c= − , 
1 2 2 1( , )Q z z z z= − , where this sys-

tem has 
1z  as a common factor, for which a linear trans-

formation defined by 
1z dt ds=  is applied to facilitate the 

calculations, obtaining 

1 2
1 2 2 1 2 2( , ) , ( , ) .

dz dz
P z z z c Q z z z

ds ds
= = − = = −        (18) 

 

Remark 1 The orbits of the system (10) are obtained 

from the orbits of the system (18) as follows: 

- The system (10) has the line 
1 0z =  of equilibrium points, 

which the system (18) does not have. 

- The system (10) in the half-plane 
1 0z   has the same or-

bits as the system (18) in the same direction but with differ-

ent speeds. 

- The system (10) in the half-plane 
1 0z   has the same or-

bits as the system (18) in the opposite direction with differ-

ent speeds. 

 

Substituting 
1 1/z v= , 

2 /z u v=  in the system (18) 

 

1 1
, , , ,
u u u u

P c Q
v v v v v v

   
= − = −   

   
           (19) 

and substituting (19) into (3), we obtain 

 
2 2, ,u u u uvc v uv cv= − − + = − +& &            (20) 

where the equilibrium points are 
7 (0,0)P = , 

8 ( 1,0).P = −  

 

Theorem 9 Since the system (20), then 
7P  and its an-

tipodal '

7P  behave as a saddle-node and 
8P   behave as a re-

peller node (or unstable node), while it’s antipodal 
'

8P  be-

have as an atractor node (or stable node). 

 

Proof   Applying the Linearization method to the sys-

tem (20), we obtain that the matrix A  of the linearized sys-

tem is 
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1 2
.

2

u cv cu
A

v u cv

− − + 
=  

− + 
 

        Evaluating 
7 ( , ) (0,0)P u v= =  in A  gives 

7

1 0
( ) ,

0 0
A P

− 
=  
 

 where the eigenvalues are 
1 1 = −  and 

2 0 = . Since one of the eigenvalues is zero, then the infi-

nite equilibrium point 
7P  is semi-hyperbolic, therefore its 

behavior is determined by the Theorem 12.  

 

In this case, the same procedure developed in Theorem 7 

will be applied when analyzing the behavior of 
1P , obtain-

ing for 
7P  that 2m = , 

ma c= −  and given that m  is even, so 

the equilibrium point behaves as a saddle-node. 

 

Now, 
8 ( , ) ( 1,0)P u v= = −  is evaluated in A  obtaining 

8

1
( )

0 1

c
A P

− 
=  
 

, where the eigenvalues are 
1 2 1 = = . 

Since both eigenvalues are different from zero, we have that 

8P  is a hyperbolic equilibrium point and applying part ( )ii  

of Theorem 11, 1,2  must be real with 
2 1| | | |  , 

1 2 0    and also 
1 0  . Since all the above conditions 

are met for 
1,2  then the infinite equilibrium point 

8P  be-

haves as a repeller node (or unstable node). 

 

Finally, since the degree of the system (10) is even, 

that is, 2d = , then the equilibrium point '

7P  antipodal to 

7P  which is located at infinity, behaves as a saddle-node and 

the equilibrium point '

8P  antipodal to 
8P  behaves as an at-

tractor node (or stable node). 

 

2.2.3 Analysis of the equilibrium points at Infinity 

of the system (11) 
 

Let 
2X  be the vector field associated with the system 

(11), then the expression for 
2( )X  on the local chart 

2U  

is obtained with the coordinates ( , )u v , defined for 

1 /z u v= , 
2 1/z v= . 

 

From (11) we have 
1 2 1 2( , )P z z z z= , 

1 2 2 1( , ) ( )Q z z z a z= − , 

where this system has 
2z  as a common factor, for which the 

linear transformation 
2z dt ds=  is applied to facilitate the 

calculations, obtaining 

 

1 2
1 2 1 1 2 1( , ) , ( , ) ( ),

dz dz
P z z z Q z z a z

ds ds
= = = = −    (21) 

 

Remark 2. The orbits of the system (11) are obtained from 

the orbits of the system (21) as follows: 

− The system (11) has the line 
2 0z =  of equilibrium 

points, which the system (21) does not have. 

− The system (11) in the half-plane 
2 0z   has the same 

orbits as the system (21) in the same direction but with 

different speeds. 

− The system (11) in the half-plane 
2 0z   has the same 

orbits as the system (21) in the opposite direction with 

different speeds. 

 

        Substituting 1 /z u v= , 2 1/z v=  in the system (21)  

 

1 1
, , , ,

u u u u
P Q a

v v v v v v

   
= = −   

   
           (22) 

 

and by substituting (22) in (4) we obtain 

 
2 2, ,u u u uva v uv av= + − = −& &       (23) 

where the equilibrium points are 
9 (0,0)P = , 

10 ( 1,0)P = − . 

 

Theorem 10  Since the system (23), the equilibrium point 

9P  and its antipodal 
'

9P  behave like a saddle-node the equi-

librium point 
10P   behaves as an attractor node (or stable 

node), while it’s antipodal '

10P  behaves as repeller  node (or 

unstable node). 

 

Proof   By applying the Linearization method to the system 

(23), we obtain that the matrix A  is 

1 2
.

2

u av au
A

v u av

+ − − 
=  

− 
 

 

        Evaluating 
9 ( , ) (0,0)P u v= =  in A  gives 

9

1 0
( )

0 0
A P

 
=  
 

, where the eigenvalues are 
1 1 =  and 

2 0 = . Given that one of the eigenvalues is zero, the equi-

librium point 
9P  is a semi-hyperbolic equilibrium point and 

applying the same procedure developed in Theorem 7 when 

analyzing the behavior of 
1P , for 

9P  we obtain that 

2m = , 
ma a= −  and since m  is even, the equilibrium 

point behaves as a saddle-node. 
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        Now, 
10 ( , ) ( 1,0)P u v= = −  is evaluated in A  to 

study the behavior of the equilibrium point 

10

1
( )

0 1

a
A P

− 
=  

− 
, where the eigenvalues are 

1 2 1 = = − . Since both eigenvalues are different from 

zero, 10P  is a hyperbolic equilibrium point and according to 

part ( )ii  of Theorem 12, 
1,2  must be real with 

2 1| | | |  , 

1 2 0    and also 
1 0  . Since all the above conditions 

are met for 1,2  then the infinite equilibrium point 
10P   be-

haves as an attractor node (or stable node). 

 

      Finally, since the degree of the system (11) is even, that 

is, 2d = , then the equilibrium point 
'

9P   antipodal to 9P  

which is located at infinity , behaves as a saddle-node and 

the equilibrium point '

10P  antipodal to 
10P  behaves as a re-

peller node (or unstable node). 

 

     Tables 1 and 2 summarize the qualitative behavior of the 

system (8) that were obtained in Theorems 1, 2, 3, 4, 5, 6, 7, 

8, 9 and 10, in addition to 1 2 3, ,p p p   and 4p   are the finite 

equilibrium points; 1P , 
'

1P , 2P , 4P , 
'

4P , 5P , 7P , 
'

7P , 8P , 
'

8P , 

9P , 
'

9P , 10P  and 
'

10P   are equilibrium points at infinity. Al-

so, SN: stable node, UN: unstable node, S: saddle, C: cen-

ter, UDN: unstable degenerate node, SDN: stable degener-

ate node, S-N: saddle-node. 

 
Table 1: Summary of Finite and Infinity Equilibrium Points 

 
 

Table 2: Summary of Equilibrium Points 

 
 

 

 
 

Fig. 3. Poincaré Disk of system (8). 

 

 

In the qualitative maps 1, 2, 3, 4, 5 and 6 of Tables 1 

and 2, the system (8) has 2 finite equilibria and 6 equilibri-

um points at infinity as seen in the Fig. 3, while in the quali-

tative maps 7, 8, 9 and 10 there are infinitely many finite 

equilibrium points and 4 equilibrium points at infinity, as 

seen in Fig. 4 and 5. 

 

 

 
Fig. 4. Poincaré Disk of system (10) 
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Fig. 5. Poincaré Disk of system (11). 

5 Analysis of Trajectories  

The procedure allows obtaining information regarding 

the finite equilibrium points and their vicinities, the equilib-

rium points at infinity and their vicinities, but there is no 

information about the flow   that exists outside the equi-

librium points and their vicinities. To explain the behavior 

of the flow, in this research it has been decided to present 

the following conjecture: 

 

Conjecture 1. The flow   is continuous and differentiable 

for any path   and for any initial condition. 

 

This conjecture is based on the text of Hartman (1973), es-

pecially in the chapter referring to the Continuous Depend-

ence of the Solutions on the Initial Conditions and Parame-

ters and specifically the Theorems 2.1 and 3.1, pp 94 and 95 

respectively, which refer to continuity and differentiability. 

 

If the conjecture is true and the theorems are sufficient, the 

flow   is homogeneous throughout the space 
2¡  without 

taking into account the set of equilibrium points and invari-

ant manifold, in words simple, the flow will not contain ir-

regularities. 

6 Conclusions  

After applying the suggested methodology to the Pred-

ator-Prey model, interesting results were obtained regarding 

qualitative behavior that can be summarized as: 

 

− The model has two finite equilibrium points 1 2,p p  as 

long as none of the parameters ,a c  is equal to zero; its 

behavior is demonstrated in Theorems 1, 2, 3, 4 and 5. 

− If one of the parameters ,a c  is equal to zero, a straight 

line of finite equilibrium points appears in the model, 

its behavior is demonstrated in Theorem 6. 

− The model has six equilibrium points at infinity as long 

as none of the parameters ,a c  is equal to zero; its be-

havior is demonstrated in Theorems 7 and 8. 

− If one of the parameters ,a c  is equal to zero, the sys-

tem has four equilibrium points at infinity; its behavior 

is demonstrated in Theorems 9 and 10. 

− After applying Poincaré Compactification, ten Poinca-

ré Disks were obtained that describe the global behav-

ior of the system for all parameter values, except when 

both ,a c  are equal to zero. 
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7 Appendix  

Theorem 11 (Hyperbolic Singular Point Theorem). Let 

(0,0)  be a singular point isolated from a vector field X  

given by  

 

( , ),

( , ),

x ax by A x y

y cx dy B x y

= + +

= + +

&

&
   (24) 

where A  and B  are analytic functions in a vicinity of the 

origin with (0,0) (0,0) (0,0) (0,0) 0A B DA DB= = = = ,  DA  

and DB  are the derivatives of the functions A  and B  re-

spectively. Let 
1  and 

2  be eigenvalues of the linear part 

(0)DX  of the system at the origin. So the following state-

ments hold. 

 

(i)  If 
1  and 

2  are real and 
1 2 0   , then (0,0)  is a 

chair (see Fig. 6(a)). If we denote by 
1E  and 

2E   the 

eigenspaces of 
1  and 

2  respectively, then two in-

variant analytical curves can be found, tangent to 1E  

and 2E  at 0  respectively, at one of the points they are 

attracted towards the origin, and at one of the points 

they are repelled from the origin. 

 

(ii) If 
1  and 

2  are real with 
1 2| | | |   and 

1 2 0   , then (0,0)  is a node (see Fig. 6(b)). If 

1 0   (respectively
1 0  ) then it is a repeller or 

unstable node (respectively attractor or stable node). 

 

(iii) If 
1 i  = +  and 

2 i  = − with , 0   , 

then (0,0)  is a “strong” focus (see Fig. 6(c)). If 

0   (respectively 0  ), it is a repeller focus or 

unstable focus (respectively attractor focus or stable 

focus). 

 

(iv) If 
1 i =  and 

2 i = −  with 0  , then (0,0)  

is a linear center, a “weak” focus or center (see Fig. 

6(d)). 

 

(v) If 
1 2 = , the we have an equilibrium point that be-

haves like a degenerate node, (see figure 6(e)). If 

1 0   (respectively 
1 0  ) then the equilibrium 

point behaves as a unestable degenerate node (respec-

tively a stable degenerate node).  

 

 

 
Fig. 6. Phase-Portraits of Hyperbolic Equilibrium Points 

 

 

Theorem 12 (Semi-Hyperbolic Singular Point Theorem). 

Let (0,0)  be a singular point isolated from a vector field X  

given by  

 

( , ),

( , ),

x A x y

y y B x y

=

= +

&

&
                          (25) 

where A  and B  are analytic functions in a vicinity of the 

origin with (0,0) (0,0) (0,0) (0,0) 0A B DA DB= = = = ,  DA  

and DB  are the derivatives of the functions A  and B  re-

spectively. Let ( )y f x=  be the solution of the equation 

( , ) 0y B x y + =  in a vicinity of the point (0,0) , and as-

suming that the function ( ) ( , ( ))g x A x f x=   has the expres-

sion ( ) ( )m m

mg x a x o x= + , where 2m   and 0ma  . Then 

there will always exist an invariant analytical curve, called 

strong unstable manifold, tangent to 0  on the y-axis, in 

which X  is analytically conjugate to ;y y=&  represents a 

behavior repeller since 0  . Furthermore, the following 

statements hold up. 

(i) If m  is odd and also 0ma  , then (0,0)  is a topo-

logical saddle (see Fig. 7(a)). 

(ii) If m  is odd and also 0ma  , then (0,0)  is a topo-

logical unstablenode (see Fig. 7(b)). 

(iii) If m  is even, then (0,0)  is a chair node (S-N), (see 

Fig. 7(c)). 

 

Remark 3. The case 0   can be reduced to 0   by 

changing X  to X− . Furthermore, for the Theorem 12 in 

the case that ( ) ( , ( ))g x A x f x=  is identically zero, and 

then there will be an analytical curve consisting of equilib-

rium points. 
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Fig. 7. Phase-Portraits of Semi-Hyperbolic Equilibrium Points. 

 

Theorem 13 (Normally Hyperbolic Invariant Maniflod).  

Let   be a normally hyperbolic submanifold of equilibrium 

points for t . Then there exist smooth manifolds along sta-

ble and unstable   that are tangent to 
sE T   and 

uE T  , respectively. Furthermore,   and the stable and 

unstable manifolds are permanent under small flow pertur-

bations. 
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