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Abstract 

 

This research deals with the problem of extending the conventional finite automata theory to the study of the equality theorem. 

For this purpose, an algebraic approach centered on the concepts of semi-rings, recognizable K-subsets and K-Σ-automata 

is proposed. The decidability of any pair of recognizable K-subsets is proved in this context. This means that the semiring K 

must be known well enough to permit such decisions.  
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Resumen 

 

Esta investigación aborda la extensión de la teoría convencional de autómatas finitos al estudio del teorema de igualdad. 

Para ello, se propone un enfoque algebraico centrado en los conceptos de semianillos, K- subconjuntos reconocibles y K-Σ-

autómatas. En este contexto, se demuestra la decidibilidad de cualquier par de K-subconjuntos reconocibles. Esto significa 

que el semianillo K debe conocerse con suficiente precisión para permitir tales decisiones. 

Palabras clave: álgebra, sistemas, autómatas, lenguajes, ecuaciones, el teorema de igualdad. 

 

1 Introduction 

In systems theory, a class called Systems of Discrete 

Events (SED) is well known (see Branicky, 1995). It includes 

Manufacturing Systems, Chemical Systems, Economic Sys-

tems, Legal Systems, Air Traffic Systems, Telecommunica-

tions Systems; in short, any system whose states change in 

discrete time due to the occurrence of actions or events (see 

Caspi, 1991). 

 

In this manuscript the Automata are presented by means 

of an algebraic approach as it is exposed in (Eilenberg, 1974), 

where the arguments and demonstrations are constructive; in 

this way it breaks with the conventional form imposed in the 

current literature on Automata. 

 

It is of utmost importance to mention that the basic no-

tions on which the theory of Automata is built are those of 

actions: events; and states: configurations of the system in 

time. Al-though these notions seem to be related to time, they 

are independent structurally speaking (see Mata, 2017). In-

deed, at a logical level of abstraction, one is always inter-

ested, in the representation of a SED, only in the possible or-

ders in which the actions of the system can occur (see Mata 

et al., 2018). This situation reasonably leads to verbally de-

scribe an SED as the set of all trajectories of a directed graph. 

Therefore, if Σ and Q are two sets representing actions and 

states respectively, and E is a proper subset of Q×Σ×Q, rep-

resenting changes states by the occurrence of actions, then a 

SED is modeled by a quintuple A=(Q, Σ, E, I, T ), where 

I and T are subsets of Q representing the states in which the 

system can start and the goals respectively. Finally, A is an 

automaton. 

 

Now, from practice, we consider automata whose sets of ac-

tions and states are finite. Thus, the trajectories of an SED can be 

viewed as finite sequences of the form (q0, α1, q1), (q1, α2, q2), 
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..., (qn−1, αn, qn), where each of these triples are elements of E. 

More precisely, the interest is focused on trajectories such that q0 

∈ I and qn ∈ T. This set of trajectories corresponds to a set of 

labels of the form α1α2, ..., αn, which constitute the so-called be-

havior of the automaton A (or system dynamics), denoted by |A|. 

This work consists of the study of mathematical structures (sets, 

functions, and relations) that can be described (or recognized) by 

finite state divides without auxiliary memory or storage capacity, 

and join it we see that the equality theorem silently assumes that a 

number of other facts are decidable. 

2 Preliminaries 

The main purpose of this work is to include the most 

relevant notions of automata theory: regular languages, oper-

ations with automata, among others, which allow to fix the 

terminology and notations that later lead to an extension 

problem. 

Let Σ be a set. The free monoid Σ∗ with basis Σ is de-

fined as follows: the elements of Σ∗ are n-tuples s=(α1, α2, 

···, αn), n>0, of elements of Σ. The integer n is called the 

length of s, which is denoted by |s|. If w=(w1, w2, ···, wm) 

is another element of Σ∗, then the product is defined by con-

catenation; that is, sw=(α1, α2,···, αn, w1, w2,···, wm). 

Then, one obtains the monoid Σ∗ with unit θ = ( ), the 0-

tuple. Clearly, |sw|=|s|+|w| and | θ |=0. Putting α=(α), 

α∈Σ, one can write s=α1α2···αn, if n>1. 

Any subset L of Σ∗ is called a language over Σ. On the 

other hand, s ∈ Σ∗ is called a prefix of w ∈ Σ∗, denoted s ⪯ 

w, if there exists a word σ ∈ Σ∗ such that w=sσ. Let L ⊂ Σ∗ 

be a language over Σ, the subset of all word prefixes of L is 

called the closure of L, denoted L; i.e., L̅={s ∈ Σ∗/∃ w ∈ 

Σ∗, sw ∈ L}. Finally, L is closed if L= L̅. 

For its part, automata theory is an approach that contains 

a state transition structure, which allows directing the analy-

sis and synthesis by making use of the transition mechanism. 

Formally, let Σ be a finite alphabet. A Finite Automaton A 

(AF) over Σ or simply a deterministic Σ-automaton is a 

quin-tuple (Q, Σ, E ,I, T), where Q is a finite set whose ele-

ments are called states, I and T are subsets of Q called initial 

and final state sets respectively, and E is a subset of 

Q×Σ×Q, whose elements are called events. Additionally, if 

A has at most one initial state, and for all q ∈ Q and α ∈ Σ, 

there exists at most one event (q, α, p)∈E, then A is called 

deterministic. 

An event (q, σ, p) is denoted q→
σ

p, and this is said to 

begin at q and end at p with label σ. 

A path c in A is a finite succession c=(q0, α1, q1)(q1, 

α2, q2) ··· (qk−1, αk, qk) of consecutive arcs, where q0 and 

qk are called the beginning and end of the path c respec-

tively, and the integer k≥1 is called the length of the path. 

The following notations are used for a path c: 

q0 →
σ1

q1 →···→
σk

qk, q0 →
c

qk or c: q0 → qk. The el-

ement =α1α2...αk ∈ Σ∗ is called the label of c and is denoted 

by |c|. The length of s is denoted by |s| and that of the path 

by ∥c∥. Thus, it follows that |s|=∥c∥=k. 

For each state q, we include the null path (trivial path) 

1q, which starts and ends at q. By definition, the null path 

has label θ and length 0; that is, |1q|= 0 and ∥1q∥=0. More-

over, given two paths c: p → q and c′: q → r, the path 

cc′: p → r (path composition) is defined by concatena-

tion. then, |cc′|=|c||c′| y ∥cc′∥=∥c∥+∥c′∥. 

Let c: i → t be a path in A, c is said to be a successful 

path if I ∈ I and t ∈ T. The label of this path is called a 

successful label. The set of all successful labels in A is called 

the behavior or dynamics of A, and is denoted by |A|; i.e., 

|A|={s ∈ Σ∗/∃ c: i→t in A, with I ∈ I, t ∈ T, |c|=s}. 

A language B of Σ∗ is called regular if there exists a 

Σ-automaton A such that B=|A|. 

In what follows we write α∗={α}∗, for all α∈Σ, in or-

der to simplify the writing. Also, we treat α ∈ Σ and s ∈ 

Σ∗ as unitary sets. 

Next, some basic automata operations are studied and 

their behaviors are analyzed. Let two AF be, A=(QA, Σ, 

EA, IA, TA) and B=(QB, Σ, EB, IB,TB), where QA ∩ QB=∅. 

The Σ-automaton union is given by C=A∪B= (QC, Σ, 

EC, IC, TC), where QC=QA∪QB, IC= IA∪IB, 

TC=TA∪TB. Moreover, an event is in EC, if and only if, it 

is in EA or it is in EB. Therefore, a path is in C, if and only 

if, it is in A or it is in B. 

The Σ-automaton product (or intersection) of A and 

B is given by C=A×B=(QC, Σ, EC, Ic, TC) where 

QC=QA×QB, IC= IA×IB, TC=TA×TB. Consequently, an 

event (p′, p′′)−→α (q′, q ′′) is in EC , if and only if, p′→α   q′ is an 

event in EA and p′′−→α  q′′  is an event in EB. 

On the other hand, we call the inverse automaton of A 

the Σ-automaton given by Aφ=(Q, Σ, Eφ, I, T), where Eφ is 

the subset whose elements are the inverse events of E; that 

is, if p →
α

q is an event in E, then q →
α

p is an event in Eφ. 

Note that, if c is a path in A with label |c|=α1...αk, then 

cφ is a path in Aφ with label |cφ|= φ(α1...αk) = αk...α1, where 

φ : Σ∗→Σ∗ is the inverse function defined by φ(θ)=θ, 

φ(α)=α, φ(st)=φ(t)φ(s) =ts. 

It can be shown that the class of regular subsets is 
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closed under union, intersection and inverse. 

Now, some constructions on automata are given, relating 

them by a monoid homomorphism f: Γ∗→Σ∗, where Γ and Σ are 

two alphabets. Also, f is assumed to be a fine homomorphism: f 

(α) ∈ Σ∪θ, ∀ α ∈ Γ. The identities θ1 and θ2 of Γ∗ and Σ∗ re-

spectively are referred to as θ. 

Indeed, let f : Γ∗→Σ∗ be a fine homomorphism. We call 

the inverse image of A the Γ-automaton f −1(A), where Q, I, T 

are unperturbed, and the events are given by p →
γ

q, if f (γ) = 

α and p →
α

q  is an event in A, and  q →
γ

p, if f (γ) = θ. 

A path c′: p → q in f −1(A) can be viewed as a pair (c, 

g), where c: p → q is a path in A and g ∈ Γ∗ is such that 

|c′|=g and f (g)=|c|; whence, it can be shown that if f : 

Γ∗→Σ∗ is a fine homomorphism and A ⊂ Σ∗ is regular, 

then f −1(A) ⊂ Γ∗ is regular. 

Finally, let f: Γ∗→Σ∗ be a homomorphism such that 

f(γ)≠θ, for all γ ∈ Γ (or equivalently that f−1(θ)=θ or still 

equivalently that |g| ⩽ |f (g)|, for all g ∈ Γ∗). Let A = (Q, 

Γ, E, I, T) be a Γ-automaton. We call the direct image of A 

the Σ-automaton f (A)=(Q′, Σ, E′, I, T ) where Q'⊃ Q and 

the events are determined as follows: let 𝐩 →
𝛄

𝐪 be an 

event in A and f (γ)=α1···αn, n⩾1; if n=1, then the arc 

𝐩 →
𝛂𝟏

𝐪 is in f (A); if n>1, then the arcs 

𝐩 →
𝛂𝟏

𝐪𝟏 →
𝛂𝟐

𝐪𝟐 →···→ 𝐪𝒏−𝟏 → 𝐪
𝛂𝒏

 are in f (A), where 

the n−1 intermediate states are new distinct states added 

to Q'. Repeating this, for every arc in A, f (A) is obtained. 

 

As before, if f: Γ∗→Σ∗ is a homomorphism such that 

f−1(θ)=θ, and A ⊂ Γ∗ is regular, then f (A) ⊂ Σ∗ is regular. 

3 K- Σ-Automatas 

As a methodological support to formalize the technique de-

scribing the dynamics of an AF, the concept of multiplicity is 

included. This allows an extension grounded on mathematical 

objects (sets, functions, relations, among others) in the field of 

system dynamics. 

  

To make it a little more precise, consider an AF A=(Q, Σ, 

E, I, T) with dynamics |A|. If c: i→t, I ∈ I, t ∈ T, |c|=s is in A 

and n determines the number of these paths, then one can define 

an application μ:Σ∗→ℕ that specifies the multiplicity of the el-

ements of Σ∗. This is referred to for s ∈ Σ∗, with multiplicity n. 

With abuse of language it is written μ=|A| and |A|(s)=n; whence, 

|A|(s)=0 expresses that s ∉ |A|. Finally, Σ∗ is identified in what 

follows with |A|: Σ∗→ ℕ. It is also emphasized that any subset 

A of Σ∗ is equivalent to a function A:Σ∗→β, with β={0, 1}, in 

the sense that s s ∈ A ⇔ A(s)=1. 

 

A fundamental structure for the development of this article 

is included. In fact, the notion of semiring is a weak structure of 

the conventional concept of ring. 

 

Definition 1. A semiring K is a subset endowed with 

two operations: addition (+) and multiplication (.); such that 

(K,+) is a commutative monoid with neutral element 0 and 

(K, .) is a monoid with identity element 1. Moreover, for all 

x, y, z ∈ K one has that x(y + z)=xy + xz; (y + z)x=yx 

+ zx; x0=0=0x. A semiring K is called commutative if (K, 

.) is commutative. Clearly, every ring with unity is a semir-

ing. 

 

Consider {xi}i∈I an arbitrary collection of elements of a 

semiring K, with I a given set of indices. 

 

Assuming finiteness of 𝐼,  ∑ xi ∈ Ki∈I                             (1) 

 

The following properties with respect to the sum are 

true: 

I = {i} ⇒ ∑ xii∈I = xi                                                       (2) 

 

Let I = ⋃ 𝐼𝑗𝑗∈𝐽
 be a partition of I, z ∈ K⇒ ∑ xii∈I =

∑  j∈J (∑ xii∈Ij ); z(∑ xi)i∈I
= ∑ zxi i∈I ; (∑ xi)z

i∈I
=

∑ xiz i∈I ;  I = ∅ ⇒ ∑ xii∈I = 0.                                                  (3) 

 

Considering (1) as the sum x+y and taking (2), (3), 

(K,.), as axioms, we define x1 + x2: = ∑ xii∈I  with 

I={1,2}; and 0: = ∑ xii∈I  if I=∅. 

 

If I is finite, then clearly (1) is well defined. On the other 

hand, if I is an arbitrary index set, then (1) must be well-de-

fined, and is an element of K. Thus, one has the concept of a 

complete semiring under the new definition. Consequently, 

every complete semiring is a semiring. 

  

Definition 2. Given two semirings K and K′, a homo-

morphism φ:K→K′ is any function such that φ(x1+x2) = 

φ(x1)+φ(x2), φ(0) = 0'; and φ(x1.x2) = φ(x1)φ(x2), φ(1) = 

1'. 

 

Definition 3. A semiring K is called positive if it satis-

fies: 0≠1; if x + y = 0, then x = y = 0; if xy = 0, then x = 

0 or y = 0. 

 

K-subconjuncts, with K a semiring, are objects that allow 

identifying functions with their domains, and this constitutes a 

technical approach to notational handling and proof construc-

tion. In the following it is assumed that K is a nontrivial (0 ≠ 1) 

and commutative semiring. 

 

Definition 4. Let X be a set. A K-subset A of X is any 

function A:X→K. For each x ∈ X, the element A(x) is 
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called the multiplicity with which x belongs to A. If the val-

ues taken by A are 0 and 1, the K-subset A of X is said to be 

unambiguous. 

 

Example 1. The subsets 𝐗, ∅ and 𝒙, for all 𝐱 ∈  𝐗, de-

fined by 𝐗(𝐱) = 𝟏, for all 𝐱 ∈ 𝐗;  ∅(𝐱) = 𝟎, for all ; 𝐱 ∈

𝐗; 𝐱(𝐲) = {
𝟏, 𝐢𝐟 𝐱 = 𝐲

𝟎, 𝐢𝐧 𝐚𝐧𝐨𝐭𝐡𝐞𝐫 𝐜𝐚𝐬𝐞
, respectively, are un-

ambiguous. 

 

The unambiguous subsets of x given in Example 1 are 

referred to as simplexes. If A is an unambiguous subset of X, 

then x∈A and A(x) = 1 indicate the same thing. 

 

We define the sum or union operation as follows: for 

each family {Ai}i∈I of K-subsets of X, with I an arbitrary 

family of indices (⋃ 𝐀𝐣
𝐢∈𝐈

) (𝐱) = (∑ 𝐀𝐢)𝐢∈𝐈
(𝐱) =

∑ 𝐀𝐢(𝐱)
𝐢∈𝐈

.             (4) 

 

Now, consider the operation product (or multiplication) 

of k ∈  K by a 𝐾-subset A as follows (kA)(x) = kA(x)  

(5) 

 

i.e., the result is a 𝐊-subset 𝐤𝐀. 

 

We have the following properties: 𝟏𝐀 =  𝐀, 𝟎𝐀 =
 ∅, (𝐤𝟏𝐤𝟐)𝐀 =  𝐤𝟏(𝐤𝟐𝐀), (∑ 𝐤𝐢)𝐢∈𝐈

𝐀 = ∑ 𝐤𝐢𝐀𝐢∈𝐈 ; 

and furthermore, 𝐤(∑ 𝐀𝐢)𝐢∈𝐈
= ∑ 𝐤𝐢𝐀𝐢∈𝐈 .  

 

We define the intersection A ∩ B of two K-subsets as 

(A ∩ B)(x) = A(x)B(x). 

 

The sum ∑ 𝐀(𝐱)𝐱
𝐱∈𝐗

 is called the expansion of A. 

This expression is useful for manipulating K-subsets. 

 

Example 2. 𝐤𝐀 = ∑ 𝐤𝐀(𝐱)𝐱
𝐱∈𝐗

; and further, 

𝐀 ∩  𝐁 = ∑ 𝐀(𝐱)𝐁(𝐱)𝐱𝐱∈𝐗 . 

 

The study of the multiplication or product of K-subsets 

of S is included, being (S, ·) a semigroup. Indeed, a category 

of objects with the above-mentioned operations of addition 

and multiplication is included to formalize matrix notions 

and structures. 

 

Definition 5. Let (S, ·) be a semigroup, A and B K-

subsets of S, where K is a complete semiring. The K-subset 

product AB is given by (𝐀𝐁)(𝐳) =
∑ 𝐀(𝐱)𝐁(𝐲)

𝐱𝐲=𝐳
. 

 

It is clear that the operation AB is associative. There-

fore, KM is a semiring with identity θ, provided M is a mo-

noid, where θ is the identity of M. 

 

Consider P, Q two finite sets. A K-subset of P × Q 

is any matrix whose rows and columns are indexed us-

ing the elements of P and Q respectively, and whose en-

tries are in K. Then, A ∈ KP×Q is written Apq instead of 

A(p,q); thus, the matrix is written A = [Apq]. 

 

The matrix sum operation is established by the sum 

of K-subsets. That is, (A+B)pq = Apq+ Bpq, provided that 

B ∈ KP×Q. 

 

The matrix multiplication operation is given as fol-

lows: let A ∈ KP×Q and B ∈ KQ×R be, then (𝐀𝐁)𝐩𝐫 =

∑ 𝐀𝐩𝐪𝐁𝐪𝐫
𝐪∈𝐐

. 

 

Some properties of multiplication: if P = Q, then 

KP×P is a semiring with unit 1p, where (𝟏𝐩)𝐪′ =

{
𝟏,   𝐬𝐢 𝐪 = 𝐪′

𝟎,   𝐬𝐢 𝐪 ≠ 𝐪′
, A is called a row vector, provided that 

A ∈ KP×Q and P is unitary. Also, A is called a column 

vector, provided that Q is unitary. 

 

Definition 6. Let Σ be a finite alphabet and K a commu-

tative semiring. A K-Σ- automaton A (or a deterministic K-

Σ-automaton) is a quintuple, A=(Q, Σ, E, I, T) where Q is 

a finite set, I and T are K-subsets of Q and E is K-subsets 

of Q×Σ×Q. 

 

Given A=(Q, Σ, E, I, T) a K-Σ-automaton, if E(p,α,q) 

= k≠ 0, then there is said to be an arc from p to q denoted 

𝐩 →
𝐤𝛂

𝐪, labeled kα. Also, 𝐩 →
𝐤𝛂

𝐪 is said to be in A. 

 

Thus, analogous to Σ-automata, one can consider paths 

𝐜: 𝐩 → 𝐪. Then, if c is a path 𝐩 →
𝐤𝟏𝛂𝟏

𝐪𝟏 →
𝐤𝟐𝛂𝟐

···

𝐪𝐧−𝟏 →
𝐤𝐧𝛂𝐧

𝐪, then |c|=ks is its label, with k=k1· · ·kn and 

s=α1···αn, and length ∥c∥=n=|s|. 

 

Definition 7. Let A=(Q, Σ, E, I, T) be a K-Σ-automa-

ton. The behavior or dynamics of A is a K-subset of Σ∗, de-

noted |A|, and is given by |𝐀| =
∑  𝐩,𝐪∈𝐐 ∑ 𝐈(𝐩)

𝐜
|𝐜|𝐓(𝐪), with c varying over all paths 

𝐜: 𝐩 → 𝐪; i.e., |𝐀|(𝐬) = ∑  𝐩,𝐪∈𝐐 ∑ 𝐈(𝐩)
𝐤∈𝐜

𝐤𝐓(𝐪), 

where C = {k∈K: ∃ c:p→q, |c| = ks}. 

 

Note that the K-subset E of Q×Σ×Q can be viewed 

as a function E:Q×Σ×Q→K. In what follows we write 

E(p, α, q) = Epq(α). Then, for all p, q∈Q, one has that Epq is 

a K-subset of Σ. Then, E can be identified with a matrix E: 

Q×Q→KΣ called the transition matrix. 

 

Any K-subset of Σ can be extended to a K-subset of Σ∗ 

as follows: for p, q ∈ Q, Epq: Σ∗→K, 𝐄𝐩𝐪(𝐬) =
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{
𝐄𝐩𝐪(𝐬),   𝐬𝐢 𝐬 ∈ 𝚺

𝟎,              𝐬𝐢 𝐬 ∉ 𝚺
. Thus, E can be viewed as a KΣ

∗
-sub-

set of Q × Q; that is, a Q × Q matrix with entries in KΣ
∗
. 

Consequently, since KΣ
∗
is a semiring, the corresponding op-

erations are used. 

 

Now, for each n∈ℕ, we consider the matrices En: 

Q×Q→KΣ
∗ 

by E0=1Q, E1=E and En=EEn−1, n≥2, 

with En
pr = ∑ EprEn−1

rq
r∈Q

, where p, q∈Q. It is clear 

that if s∈Σ∗ and |s|≠n, one has that En
pq(s) = 0, with p, 

q∈Q; whereupon, {En
pq}n∈ℕ is locally finite. Then, one 

can define E∗
pq = ∑ En

pq

∞

n=0
, and hence, it results in 

the matrix E∗:Q × Q→KΣ
∗

, E∗=1Q + E + E2 +· · · + En 

+···  called the extended transition matrix. 

For each s ∈ Σ∗, let E∗(s)=Ep
∗

q (s)∈KQ×Q be, if 

s=α1···αn, it follows that E∗(s)=En(s)=E(α1)··· 

E(αn)=E∗(α1)···E∗(αn). 

 

Theorem 1. For any p,q∈Q, the K-subset 𝑬∗
𝒑𝒒 is the 

sum of all labels of 𝐜: 𝐩 → 𝐪 in A. 

 

Proof: Let p, q ∈ Q be, as 𝐄∗
𝐩𝐪 = ∑ 𝐄𝐧

𝐩𝐪

∞

𝐩𝐪=𝟏
, it 

suffices to show that 𝐄𝐧
𝐩𝐪 is the sum of all path labels of 

length n. If n = 0, then 𝐄𝟎
𝐩𝐪 

= {
𝛉,   𝐬𝐢 𝐩 = 𝐪
𝟎,   𝐬𝐢 𝐩 ≠ 𝐪

, where 𝛉 is 

the identity of KΣ
∗
. If n=1, then 𝐄𝟏

𝐩𝐪 =

∑ 𝐄𝐩𝐪(𝟏𝐐)𝐫𝐩 =
𝐫∈𝐐

∑ 𝐄𝐩𝐫𝐄𝟎
𝐫𝐪

𝐫∈𝐐
. Assume that the 

result is true for n−1, n ≥2; i.e., 𝐄𝐧−𝟏
𝐩𝐪 =

∑ 𝐄𝐩𝐫𝟏
𝐄𝐩𝐫𝟏𝐫𝟐

···
𝐫𝟏,𝐫𝟐,…,𝐫𝐧−𝟏,

∈𝐐

𝐄𝐫𝐧−𝟏

 

 
= ∑ 𝐄𝐩𝐫𝐄𝐧−𝟐

𝐫𝐪
𝐫∈𝐐

, then 𝐄𝐧
𝐩𝐪 =

∑ 𝐄𝐩𝐫𝐄𝐧−𝟏
𝐫𝐪 =

𝐫∈𝐐
  

∑ 𝐄𝐩𝐫𝟏
𝐫𝟏,∈𝐐

(∑ 𝐄𝐫𝟏𝐫𝟐
𝐄𝐫𝟏𝐫𝟑

··· 𝐄𝐫𝐧𝐪 𝐫𝟏,𝐫𝟐,…,𝐫𝐧,∈𝐐
) =

∑ 𝐄𝐩𝐫𝟏𝐫𝟐
𝐄𝐫𝟏𝐫𝟐

··· 𝐄𝐫𝐧𝐪 𝐫𝟏,𝐫𝟐,…,𝐫𝐧,∈𝐐
=

∑ 𝐄𝐩𝐫𝐄𝐧−𝟐
𝐫𝐪

𝐫∈𝐐
. Consequently, 𝐄𝐧

𝐩𝐪 is the sum of the la-

bels of paths with length n. Therefore, 𝑬∗
𝒑𝒒 is the sum of the 

labels of 𝐜: 𝐩 → 𝐪 in A. 

 

Corollary 1. The behavior of A is |A| = I𝐄∗T with I 

viewed as a row vector and T as a column vector. 

 

Proof:|𝐀| = ∑  𝐩,𝐪∈𝐐 ∑ 𝐈(𝐩)
𝐜

|𝐜|𝐓(𝐪) =

∑ 𝐈(𝐩) 𝐄∗
𝐩𝐪

𝐩,𝐪∈𝐐
𝐓. 

 

Definition 8. Let K be a commutative semiring, and Σ 

be a finite alphabet. A K-subset A of Σ∗ is called regular, if 

there exists a K-Σ-automaton A such that |A| = A. 

 

In what follows, it is always assumed that given two K-

Σ-automata A=(QA, Σ, EA, IA, TA) and B=(QB, Σ, EB, IB, 

TB), QA∩QB =∅. 

 

Definition 9. Let A, B be two K-Σ-automata, the K-Σ-

automata union of A and B is given by 

A∪B=(QA∪B,Σ,EA∪B,IA∪B,TA∪B), where, QA∪B = QA∪QB, 

𝐈𝐀∪𝐁(𝐩) = {
𝐈𝐀(𝐩),   𝐬𝐢 𝐩 ∈ 𝐐𝐀

𝐈𝐁(𝐩),   𝐬𝐢 𝐩 ∈ 𝐐𝐁
, 

 𝐓𝐀∪𝐁(𝐩) = {
𝑻𝐀(𝐩),   𝐬𝐢 𝐩 ∈ 𝐐𝐀

𝐓𝐁(𝐩),   𝐬𝐢 𝐩 ∈ 𝐐𝐁
,  

y 

 𝐄𝐀∪𝐁(𝐩, 𝛂, 𝐪) = {
𝐄𝐀(𝐩, 𝛂, 𝐪),   𝐬𝐢 𝐩, 𝐪 ∈ 𝐐𝐀

𝐄𝐁(𝐩, 𝛂, 𝐪),   𝐬𝐢 𝐩, 𝐪 ∈ 𝐐𝐁

𝟎,   𝐞𝐧 𝐨𝐭𝐫𝐨 𝐜𝐚𝐬𝐨

 

 

Proposition 1. The union of two regular K-subsets of 

Σ∗ is a regular K-subset of Σ∗. 

 

Proof: Consider A and B two regular K-subsets of Σ∗, 

and A, B two K-Σ-automata such that |A|=A and |B|=B. Let 

A ∪ B be a K-Σ-automaton. Then, for all s∈Σ∗,  

|𝐀 ∪  𝐁| = ( ∑  

𝐩,𝐪∈𝐐𝐀 ∪ 𝐁

∑ 𝐈𝐀 ∪ 𝐁(𝐩)

𝐜

|𝐜|𝐓𝐀 ∪ 𝐁(𝐪)) (𝐬) 

 

= ∑  

𝐩,𝐪∈𝐐𝐀 ∪ 𝐐𝐁

∑ 𝐈𝐀 ∪ 𝐁(𝐩)

𝐤

𝐤𝐓𝐀 ∪ 𝐁(𝐪), 

where k∈K is such that there exists 𝐜: 𝐩 → 𝐪 in A∪B 

with |c|=ks; thus, 

 

 ∑  𝐩,𝐪∈𝐐𝐀 ∪ 𝐐𝐁
∑ 𝐈𝐀 ∪ 𝐁(𝐩)𝐤 𝐤𝐓𝐀 ∪ 𝐁(𝐪) =

∑  𝐩,𝐪∈𝐐𝐀
∑ 𝐈𝐀 (𝐩)𝐤 𝐤𝐓𝐀(𝐪) 

+ ∑  

𝐩,𝐪∈𝐐𝐁

∑ 𝐈𝐁 (𝐩)

𝐤

𝐤𝐓𝐁(𝐪) = |𝐀|(𝐬) + |𝐁|(𝐬)

=  𝐀(𝐬) +  𝐁(𝐬) 

= ( 𝐀 ∪  𝐁)(𝐬).  𝐀𝐬𝐢, |𝐀 ∪  𝐁| = 𝐀 ∪  𝐁. 

 

Definition 10. Let A, B be two K-Σ-automata. The K-

Σ-automaton product (or intersection) of A and B is given 

by A×B=(QA×B,Σ,EA×B,IA×B,TA×B), with 

QA×B=QA×QB, IA×B((p,q))=IA(p)IB(q), 

TA×B((p,q))=TA(p)TB(q), 
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EA×B((p,q),α,(p',q'))=EA(p,α,p')EB(q,α,q'). 

 

Proposition 2. The intersection of two K-regular sub-

sets of Σ∗ is a K-regular subset of Σ∗. 

 

Proof: Let A and B be two regular K-subsets of Σ∗ and 

A, B be two K-Σ-automata such that ||A|=A and |B|=B. Let 

A×B be the K-Σ-automaton. Then, for all s∈Σ∗,  

|𝐀 × 𝐁|(𝒔) = ( ∑  

(𝐩,𝐪),(𝐩′,𝐪′)∈𝐐𝐀 × 𝐐𝐁

∑ 𝐈𝐀×𝐁(𝐩, 𝐪)|𝐜|𝐓𝐀×𝐁(𝐩′, 𝐪′)

𝐜

) (𝐬) 

= ( ∑  

𝒑,𝒑′,∈𝑸𝐀;𝒒,𝒒′,∈𝑸𝐁

∑ 𝐈𝐀(𝐩)𝐈𝐁(𝒒)|(𝐜′, 𝐜′′)|𝐓𝐀(𝐩′)𝐓𝐁(𝐪′)

𝐜=(𝐜′,𝐜′′)

) (𝐬)

= ∑  

𝒑,𝒑′,∈𝑸𝐀;𝒒,𝒒′,∈𝑸𝐁

∑ 𝐈𝐀(𝐩)𝐤𝟏𝐓𝐀(𝐩′)𝐈𝐁(𝒒)𝐤𝟐𝐓𝐁(𝐪′)

𝐤𝟏,𝐤𝟐

 

= ∑  

𝑝,𝑝′,∈𝑄A

∑ IA(p)k1TA(p′)

k1,

∑  

𝑞,𝑞′,∈𝑄B

∑ IB(𝑞)k2TB(q′)

k2

 

= ( ∑  

𝑝,𝑝′,∈𝑄A

∑ IA(p)|c′| TA(p′)

c′

) (s) ( ∑  

𝑞,𝑞′,∈𝑄B

∑ IB(𝑞)|c′′|TB(q′) 

c′

) (s) 

= |A|(s)|B|(s) =  ( |A|  ∩ |B|)(s) = ( A ∩  B)(s). 

 

Where 𝐜′: 𝐩 → 𝐩′ is a path in A, 𝐜′′: 𝐪 → 𝐪′ is a path 

in B, |c'|=k1s, |c''|=k2s and k1k2=k with ks=|c|. 

 

Definition 11. Let A=(Q,Σ,E,I,T) be a K-Σ-automaton. 

We call K-Σ-automaton inverse K-Σ-automaton 

Aφ=(Q,Σ, Eφ,Iφ,Tφ), where Iφ(q)=T(q), Tφ(q)= I(q), 

and Eφ(p, α, q)=E(p, α, q). 

 

Remark 1. A path cφ: p→q in Aφ, with label |cφ|=ks, is 

given by a path c: q→p in A with label |c|=kφ(s), where φ: 

Σ∗→Σ∗ is the inverse function defined by φ(θ)=θ, φ(α)=α, 

φ(st)=φ(t)φ(s), where t,s∈Σ∗. 

 

Proposition 3. If A is a regular K-subset of Σ∗ and φ: 

Σ∗→Σ∗ is the inverse function given in Remark 1, then 𝐀 ∘
𝛗 is a regular K-subset of Σ∗; that is, the class of regular K-

subsets of Σ∗ is stable under inverse function. 

 

Proof: Let A be a K-regular subset of Σ∗ and A be a K-

Σ-automaton such that |A|=A. Consider Aφ the inverse K-

Σ-automaton of A, then for all s ∈ Σ∗, 

 |𝐀𝛗|(𝐬) = (∑  𝐩,𝐪∈𝐐 ∑ 𝐈𝛗(𝐩)
𝐜𝛗

|𝐜𝛗|𝐓𝛗(𝐪)) (𝐬) 

= ∑  

𝐩,𝐪∈𝐐

∑ 𝐓(𝐩)

𝐤

𝐤𝐈(𝐪), 

with |cφ|=ks, where k∈K and 

|𝐜| = 𝐤𝛗(𝐬) = ( ∑  

𝐩,𝐪∈𝐐

∑ 𝐈 (𝐪)

𝒄

|𝐜 |𝐓 (𝐩)) (𝛗(𝐬))

= (|𝐀 |)(𝛗(𝐬)) = (𝐀 ∘ 𝛗)(𝐬). 

 

Thus, |𝐀𝛗| =  𝐀 ∘ 𝛗. 

 

Definition 12. Let A=(Q, Σ, E, I, T) be a K-Σ-autom-

aton and f: Γ∗→Σ∗ is a fine homomorphism. We call the in-

verse image of A the K-Γ-automaton f−1(A)=(Q, Γ, E', I, T 

), where E' is given by 

𝐄′ (𝐩, 𝛄, 𝐪)

= {
𝐄 (𝐩, 𝛂, 𝐪),   𝐬𝐢  𝐟(𝛄) = 𝛂  𝐲  𝐄 (𝐩, 𝛂, 𝐪) ≠ 𝟎

𝟏,    𝐬𝐢  𝐟(𝛄) = 𝛉  𝐲  𝐩 = 𝐪 

𝟎,    𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞.                  

 

 

Remark 2. A path 𝐜: 𝐩 → 𝐪 in f −1(A), with label |c| = 

kg, is given as c=(c',g) where 𝐜′: 𝐪 → 𝐪 is a path in A and 

g∈Γ∗ is such that |c'| = kf(g); that is, a path 𝐜: 𝐩 → 𝐪 in f 
−1(A), which associates some g∈Γ∗ in its label, is given by a 

path c' in A which associates f (g) in its label. 

 

Proposition 4. If f: Γ∗→Σ∗ is a fine homomorphism 

and A is K-regular subset of Σ∗, then A∘f is a K-regular sub-

set of Γ∗. 

 

Proof: Let A be a K-Σ-automaton such that |A|=A. Con-

sider the K-Γ-automaton f −1(A), the inverse image of A, and 

let g∈Γ∗ be, then 

|𝐟 −𝟏(𝐀)|(𝐠) = ( ∑  

𝐩,𝐪∈𝐐

∑ 𝐈 (𝐩)

𝒄

|𝐜 |𝐓 (𝐪)) (𝐠) 

= ( ∑  

𝐩,𝐪∈𝐐

∑ 𝐈 (𝐩)

𝐜′

|𝐜 ′|𝐓 (𝐪)) (𝐟(𝐠)) = |𝐀|(𝐟(𝐠))

= (𝐀 ∘ 𝐟)(𝐠). 
  

Thus, |𝐟 −𝟏(𝐀)| =  𝐀 ∘ 𝐟. 

 

Definition 13. Let f: Γ∗→Σ∗ be a homomorphism, such 

that f(γ)≠ θ, ∀γ∈Γ, and let A=(Q,Γ,E,I,T) be a K-Γ au-

tomaton. We call the direct image of A the K-Σ-automaton 

f(A)=(Q',Σ,E',I',T'), where Q'⊃Q and E' are given as fol-

lows: Let E(p,γ,q) = k≠0 in A, and let f (γ)=α1α2···αn, 

with n≥1. If n=1, then E'(p,α1,q)=E(p,γ,q)=k, is an arc in 

f (A). If n>1, consecutive arcs 𝐩 →
𝐤𝟏𝛂𝟏

𝐪𝟏 →
𝐤𝟐𝛂𝟐

···

𝐪𝐧−𝟏 →
𝐤𝐧𝛂𝐧

𝐪 with k1···kn=k, are in f (A), where q1,···, qn−1 

are new states added to Q. These determine states of Q'. Fi-

nally, repeating this process for every arc in A, we obtain 

f(A), with 

𝐓 (𝐩′) = {
𝐈 (𝐩′),   𝐬𝐢  𝐩′ ∈ 𝐐 

𝟎,    𝐬𝐢  𝐩′ ∈ 𝐐′\𝐐 
 

y 

𝐓′
 (𝐩′) = {

𝐓 (𝐩′),   𝐬𝐢 𝐩′ ∈ 𝐐 

𝟎,     𝐬𝐢 𝐩′ ∈ 𝐐′\𝐐 
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Remark 3. To say that f: Γ∗→Σ∗ is a homomorphism 

such that f (γ)≠ θ, ∀γ∈Γ∗ is equivalent to saying that f −1(θ) 

=θ, or it is also equivalent to saying that f −1(s) is finite, for 

all s∈Σ∗. 

 

Proposition 5. Let f: Γ∗→Σ∗ be a homomorphism such 

that f−1(s) is finite, for all s∈Σ∗. If A is K-regular subset of 

Γ∗, then f (A): Σ∗→K, given by 

𝐟(𝐀) (𝐬) = ∑ 𝐀(𝐠)

𝐠∈𝐟−𝟏(𝐬)

 

 

is a K-regular subset of Σ∗. 

Proof: Consider A a K-Γ-automaton such that |A|=A. 

Let f (A) be the K-Σ-automaton direct image of A, then, for 

all s∈Σ∗, it follows that  

|𝐟(𝐀)| = ∑  

𝐩′,𝐪′∈𝐐′

∑ 𝐈′ (𝐩′)

𝒄′

|𝐜′ |𝐓′ (𝐪′)

= ( ∑  

𝐩,𝐪∈𝐐

∑ 𝐈 (𝐩)

𝐜′

|𝐜 ′|𝐓 (𝐪)) 

Then, | 

|𝐟  (𝐀)| = ∑  

𝐩,𝐪∈𝐐

∑ 𝐈 (𝐩)

𝒌

𝐤𝐓 (𝐪), 

with k varying over 𝐜′: 𝐩 → 𝐪, with |c’|=ks, s=f(g), kg=|c|, 

𝐜: 𝐩 → 𝐪 in A. Thus, 

|𝐟  (𝐀)| = ∑  

𝐩,𝐪∈𝐐

∑ 𝐈 (𝐩)

𝒌

𝐤𝐓 (𝐪), 

with k varying over all paths 𝐜: 𝐩 → 𝐪 , such that |c'|=kf (g), 

g∈f −1(s), kg = |c|, c: p → q in A. Therefore,  

|𝐟  (𝐀)|(𝐬) = ∑  

𝐠∈𝐟−𝟏(𝐬)

( ∑  

𝐩,𝐪∈𝐐

∑ 𝐈 (𝐩)

𝒌

𝐤𝐓 (𝐪)) 

with k varying over all paths 𝐜: 𝐩 → 𝐪 in A, kg = |c|; that 

is,  

|𝐟  (𝐀)|(𝐬) = ∑  |𝐀|(𝐠)

𝐠∈𝐟−𝟏(𝐬)

= ∑  𝐀(𝐠)

𝐠∈𝐟−𝟏(𝐬)

 

Finally, f(A) is a K-regular subset of Σ∗. 

 

Definition 14. A K-Σ-automaton A=(Q,Σ,E,I,T ) is 

called normalized if I=i and T= t are two distinct simple 

K-subsets, and there exist no arcs 𝐩 →
𝐤𝛂

𝐢, 𝒕 →
𝐤𝛂

𝐪 with k≠0; 

that is, E(q, α, i)=E(t, α, q)=0, for all q∈Q and α∈Σ. 

 

Remark 4. If A is normalized, then |A|(θ)=0. Then, if 

one observes Σ+ as a B-subset of Σ∗, one obtains |A|⊂Σ+. 

 

Proposition 6. For every K-Σ-automaton A there ex-

ists a normalized K-Σ-automaton A' such that |A'| = |A| ∩ 

Σ∗. 

 

Proof: Let A=(Q,Σ,E,I,T) be a K-Σ-automaton, and 

let Q'=Q ∪ i ∪ t, where i and t are two different new states. 

Consider the new matrix 𝐄′ as follows: 𝐄′𝐩𝐪 = 𝐄𝐩𝐪,  

𝐄′𝐢𝐪 = ∑ 𝐈𝐩𝐄𝐩𝐪
𝐩∈𝐐

, 𝐄′𝐩𝐭 = ∑ 𝐄𝐩𝐪𝐓𝐪
𝐪∈𝐐

, 𝐄′𝐢𝐭 =

∑ 𝐈𝐩𝐄𝐩𝐪𝐓𝐪
𝐩,𝐪∈𝐐

 , 

𝐄′𝐩𝐢 = 𝐄𝐭𝐢 = 𝐄𝐭𝐪 = ∅, where 𝐈𝐩 = 𝐈(𝐩) and 𝐓𝒒 =

𝐓(𝐪).  A calculation determines that 𝐄′∗
𝒊𝒕 = 𝐈𝐄+𝐓, where 

𝐄+ = 𝐄 + 𝐄𝟐 +··· +𝐄𝒏 +···= 𝐄𝐄+. 

 

The K-Σ-automaton A'=(Q',Σ,E',i, t) is normalized, and 

using Corollary 1 one has |𝐀′| = 𝐄′∗
𝒊𝒕 = 𝐈𝐄+𝐓 = 𝐈𝐄∗𝐓 ∩

𝚺+ = |𝐀 | ∩ 𝚺+. 

 

Remark 5. The construction of A' from A, as in Propo-

sition 6, is always interpreted as the normalization design. 

 

Proposition 7. Let A be a K-regular subset of Σ*, and 

let k∈K, then kA is a K-regular subset of Σ+. 

 

Proof: Let A be a K-Σ-automaton such that |A| = A, 

and let k∈K be, consider the K-Σ-automaton 

kA=(Q,Σ,E,kI,T), where (kI)q=kIq, then  

|𝐤𝐀| = ∑ 𝐤𝐈𝐩𝐄 ∗
𝐩𝐪

𝐩,𝐪∈𝐐

𝑻𝒒 = 𝐤 ∑ 𝐈𝐩𝐄 ∗
𝐩𝐪

𝐩,𝐪∈𝐐

𝑻𝒒

= 𝐤|𝐀| = 𝐤𝐀 

 

Proposition 8. A K-subset A of Σ∗ is regular, if and only 

if, the K-subset A'=A ∩ Σ+ is also regular. 

 

Proof: Let A be a K-Σ-automaton such that |A| = A. 

Then, there exists a normalized K-Σ-automaton A' such that 

|A'|=|A|∩Σ+= A ∩ Σ+=A'. Reciprocally, suppose that A 

∩Σ+=A' is a K-regular subset of Σ∗. Since 

A'(θ)=0(Σ+(θ)=0), it follows that A=kθ+A', where 

k=A(θ). Then, since θ is a K-regular subset of Σ∗, then from 

Proposition 1 and Proposition 7 one has that A is regular. 

 

Proposition 9. If A and B are two K-regular subsets of 

Σ∗, then AB is a K-regular subset. 

 

Proof: Let A=kθ+A',B=lθ+B', with A'=A∩Σ+, 

B’=B∩Σ+, k=A(θ) and l=B(θ). Then, AB=kl(θ)+kB'+ 

lA'+A'B'. It suffices to show that A'B' is regular, for this, let 

A=(Q1,Σ,E1,i1,t1) and B=(Q2,Σ,E2,i2, t2) be two K-Σ-nor-

malized automata recognizing A' and B' respectively. Con-

sider the normalized K-Σ-automaton C=(Q,Σ,E,i1,t2), where 

Q is a partition of Q1 and Q2, except when t1=i2. Then, an arc 

in C is either an arc in A or is an arc in B. Thus, |𝐂| =
𝐄 ∗

𝐢𝟏𝐭𝟐
= 𝐄 ∗

𝟏𝐢𝟏𝐭𝟐
= 𝐄 ∗

𝟐𝐢𝟐𝐭𝟐
= |𝐀 ||𝐁 | = 𝐀′𝐁′. 

 

Proposition 10. Let A be a K-regular subset of Σ+. 

Then, the K-subsets A+=A+A2+···+An+··· and 
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A∗=θ+A+A2+ ···+An+···are regular. 

 

Proof: Since A⊂Σ+, it follows that An(s)=0, when 

|s|<n. Then, {An}n∈N is locally finite; thus, A+ and A∗ are 

well defined. Let A=(Q,Σ,E,i,t) be a K-Σ-normalized autom-

aton recognizing A. Then, considering i and t as a single state, 

which is initial and final, we obtain a K-Σ-normalized au-

tomaton A∗, where |A∗|=A∗. Thus, A∗ is regular. Then, since 

A+=A∗∩Σ+, it follows that A+ is regular. 

 

Theorem 2. A K-subset A of Σ+ is regular, if and only 

if, there exists an integer n>1 and a matrix E n×n whose 

entries are K-subsets of Σ such that A=E+. 

 

Proof: Let 𝑨 be a 𝑲-regular subset of 𝜮 +, and 𝑨 =
(𝑸, 𝜮, 𝑬, 𝒊, 𝒕) be a 𝑲 − 𝜮 −normalized automaton that recog-

nizes 𝑨. There is no loss of generality in assuming 𝑸 = 𝟏,···
, 𝒏}, with 𝒊 = 𝟏 and 𝒕 = 𝒏. Since 𝒊 ≠ 𝒕 has to 𝒏 > 𝟏. Then, 

from Corollary 1 it follows that |𝐀| = 𝐄 ∗
𝒊𝒏 = 𝐄 +

𝒊𝒏 = 𝐀.  

Reciprocally, if, 𝐀 = 𝐄 +
𝟏𝒏,  where 𝑬 is a matrix n×n of K-

subsets of Σ and n>1, then, with Q={1,···,n}, I=1 and T=n, 

one obtains a K-Σ-automaton A=(Q,Σ,E,1,n) such that 

|A|=E+=A. 

 

Corollary 2. If E is a matrix n×n of K-subsets of Σ, 

then for any 1≤i, j≤n, the K-subsets 𝐄 ∗
𝒊𝒋 and 𝐄 +

𝒊𝒋 are reg-

ular. 

 

Proof: It follows from Theorem 2. 

 

Proposition 11. Let φ: K→K′ be a homomorphism of 

semirings. If A is a regular K-subsubset of Σ∗, then φ ◦ A is 

a regular K′-subset of Σ∗. 

 

Proof: Let A=(Q,Σ,E,I,T) be a K-Σ-automaton such 

that |A|=A, then the K′-Σ-automaton 

φ(A)=(Q,Σ,φ(E),φ(I), φ(T)) satisfies |φ(A)|=φ(|A|) 

=φ(A). Since K is a positive semiring, then T: K→B, given 

by T (0) =0 and T (x)=1, for all x≠0, is a homomorphism. 

 

Corollary 3. If K is a positive semiring, and A is a reg-

ular K-subset of Σ∗, then T (A) is a regular B-subset of Σ∗. 

 

Proof: It follows from the composition of the image au-

tomaton and from Proposition 11. 

 

Proposition 12. Let A be a regular B-subsubset of Σ∗. 

Then, A viewed as an unambiguous K-subsubset of Σ∗ is reg-

ular. 

 

Proof: Let A be a deterministic Σ-automaton with dy-

namics A. If A is viewed as a K-Σ- automaton, then its dy-

namics is viewed as a K-subset of Σ∗. 

 

Remark 6. Corollary 3 and Proposition 12 simultane-

ously show that for any unambiguous subsets of Σ∗, regular-

ity is independent of the choice of K. 

4 The Equality Theorem 

In this section it will be assumed that K is a subsemiring 

of a commutative semiring. 

 

Theorem 3. (The Equality Theorem). Let A₁ and A₂ be 

recognizable K-subsets of Σ∗ and let Ai=(Qi,Σi,Ei,Ii,Ti) be 

K-Σ- automata such that | Ai |= Ai, i=1,2. If nᵢ = Card Qᵢ and 

if A₁(s) = A₂(s), ∀ s ∈ Σ∗ such that |s| < n₁ + n₂, then A₁ = A₂. 

 

Proof: Consider the automaton A1 ∪ 

A2=(Q1∪Q2,Σ1∪Σ2, E1∪E2,I1∪I2,T₁ ∪T2), where Q1 and 

Q2 are assumed disjoint and the transition matrix is From A1 

∪ A2 we derive the automata Bi=(Q1∪Q2,E1∪E2,Ii,T₁∪T2), 

i=1,2 and observe that |Bi|=|Ai|= Ai, i=1,2. Thus the conclu-

sion of Theorem 3 follows from: 

 

Theorem 4. Let Ai =(Qi,Σi,Ei,Ii,Ti), i=1,2 be K-Σ-au-

tomata differing only in their initial subsets. Then |A1|=|A2| 

if and only if |A1|(s) = |A2|(s), ∀ s ∈ Σ∗ such that |s| < Card Q. 

 

Proof: By assumption K is a subsemiring of a semiring 

(field F). Thus, we may regard Ai as F-Σ-automata. If |A1| 

and |A2| are equal as F-subsets of Σ∗, then they are also equal 

as K-subsets. Thus, we may replace K by F, or equivalently 

assume that K is a field. Thus KQ is a vector space over K of 

dimension n=Card Q. Consider the K-Σ-automaton 

A=(Q,Σ,E,I,T) with I= I1\I2. Since |A|(s) |A1|(s) \|A1|(s) we 

have |A|(s)=0 if |s|<n, and we wish to prove that |A|(s)=0, ∀ 

s ∈ Σ∗. Equivalently, in view of Corollary 1, we are given that 

(I(s))T=0, if |s|<n and we wish to prove that (I(s))T=0, ∀ s ∈ 

Σ∗. Define W={X | X∈KQ, XT=0}, Vⱼ=subspace of KQ gen-

erated by vectors I(s), with |s|≤j. Assuming that n>0, we have 

V₀⊂V₁⊂...⊂Vn-1⊂ W. The cases I=0 or T=0 may be ruled 

out since then obviously (I(s))T=0. Therefore, dimV₀=1, dim 

W=n-1. It follows that for some 0≤j<n-1, Vⱼ=Vj+1. Since Vj+2 

is generated by all the vectors X and Xτ, with X∈Vj+1, it fol-

lows that Vj+1= Vj+2 and thus by induction Vⱼ=Vj+p, ∀p≥0. 

This implies Vⱼ⊂W, ∀j∈ℕ. Thus, for any ∀ s ∈ Σ∗ we have 

I(s)∈W; i.e, (I(s))T=0. 

 

Corolario 4. If A=(Q,Σ,E,I,T) is a K-Σ-automaton, 

then |A|=0, if and only if, |A|(s)=0, ∀ s ∈ Σ∗ such that |s| < 

Card Q. 

 

The following example shows that the numerical bound 

in Theorem 3 is the best possible. 

 

Example 3. Let 0 < n1 ≤ n2 be integers. Consider the 

alphabet Σ consisting of a single letter τ. Let A1 be the deter-

ministic automaton, with n1 states represented symbolically 
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by the path → 𝐢 →
 𝛕 𝐧𝟏−𝟏

𝐭 →  Thus A₁=τn1-1. Let A2 be the 

deterministic complete automaton, with n2 states represented 

symbolically by the loop → 𝐢 →
 𝛕 𝐧𝟐

𝐢, with t=iτn1-1 as terminal 

state. Then A₂= τn1-1(τn2). Thus τn1+ n2-1 ∈ A₂\A₁. However, for 

all lower exponents k we have τk∈A₂, if and only if, τk∈A₁. 

 

5 Conclusion 

 

An important consequence of Theorem 3 is: given any 

two recognizable K-subsets A₁ and A₂ of Σ∗, it is decidable 

whether or not A₁=A₂. This statement requires several cave-

ats. First the word given should be interpreted to mean that 

K-Σ- automata Ai=(Qi,Σi,Ei,Ii,Ti) such that |Ai|= Ai, for 

i=1,2 are explicitly provided. Then, all the paths of length 

less than n=Card Q1+Card Q2 can be enumerated and thus 

|A1|(s) and |A2|(s) can be computed for |s| < n. 
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