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Abstract

This research deals with the problem of extending the conventional finite automata theory to the study of the equality theorem.
For this purpose, an algebraic approach centered on the concepts of semi-rings, recognizable K-subsets and K-X-automata
is proposed. The decidability of any pair of recognizable K-subsets is proved in this context. This means that the semiring K

must be known well enough to permit such decisions.
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Resumen

Esta investigacion aborda la extension de la teoria convencional de autématas finitos al estudio del teorema de igualdad.
Para ello, se propone un enfoque algebraico centrado en los conceptos de semianillos, K- subconjuntos reconocibles y K-2-
autématas. En este contexto, se demuestra la decidibilidad de cualquier par de K-subconjuntos reconocibles. Esto significa
que el semianillo K debe conocerse con suficiente precision para permitir tales decisiones.

Palabras clave: algebra, sistemas, automatas, lenguajes, ecuaciones, el teorema de igualdad.

1 Introduction

In systems theory, a class called Systems of Discrete
Events (SED) is well known (see Branicky, 1995). It includes
Manufacturing Systems, Chemical Systems, Economic Sys-
tems, Legal Systems, Air Traffic Systems, Telecommunica-
tions Systems; in short, any system whose states change in
discrete time due to the occurrence of actions or events (see
Caspi, 1991).

In this manuscript the Automata are presented by means
of an algebraic approach as it is exposed in (Eilenberg, 1974),
where the arguments and demonstrations are constructive; in
this way it breaks with the conventional form imposed in the
current literature on Automata.

It is of utmost importance to mention that the basic no-
tions on which the theory of Automata is built are those of

actions: events; and states: configurations of the system in
time. Al-though these notions seem to be related to time, they
are independent structurally speaking (see Mata, 2017). In-
deed, at a logical level of abstraction, one is always inter-
ested, in the representation of a SED, only in the possible or-
ders in which the actions of the system can occur (see Mata
et al., 2018). This situation reasonably leads to verbally de-
scribe an SED as the set of all trajectories of a directed graph.
Therefore, if £ and Q are two sets representing actions and
states respectively, and E is a proper subset of Q<X x=Q, rep-
resenting changes states by the occurrence of actions, then a
SED is modeled by a quintuple A=(Q, X, E, I, T), where
I and T are subsets of Q representing the states in which the
system can start and the goals respectively. Finally, A is an
automaton.

Now, from practice, we consider automata whose sets of ac-
tions and states are finite. Thus, the trajectories of an SED can be
viewed as finite sequences of the form (qo, a1, g1), (01, a2, 02),
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ooy (Qn-1, an, qn), Where each of these triples are elements of E.
More precisely, the interest is focused on trajectories such that go
€l and g, € T. This set of trajectories corresponds to a set of
labels of the form a0z, ..., an, Which constitute the so-called be-
havior of the automaton A (or system dynamics), denoted by |A|.
This work consists of the study of mathematical structures (sets,
functions, and relations) that can be described (or recognized) by
finite state divides without auxiliary memory or storage capacity,
and join it we see that the equality theorem silently assumes that a
number of other facts are decidable.

2 Preliminaries

The main purpose of this work is to include the most
relevant notions of automata theory: regular languages, oper-
ations with automata, among others, which allow to fix the
terminology and notations that later lead to an extension
problem.

Let X be a set. The free monoid X+ with basis X is de-
fined as follows: the elements of X+ are n-tuples s=(a., oz,
-+, an), N>0, of elements of . The integer n is called the
length of s, which is denoted by |s|. If w=(w1, Wy, ---, W)
is another element of X+, then the product is defined by con-
catenation; that is, sw=(au1, 02,"**, On, W1, Wo, *+, Wpm).
Then, one obtains the monoid >+ with unit 6 = (), the 0-
tuple. Clearly, |sw|=|s|+|w| and | 6 |=0. Putting a=(a),
QEX, One can write s=o oz - o, if N>1.

Any subset L of X+ is called a language over X. On the
other hand, s € >+ is called a prefix of w € X, denoted s <
w, if there exists a word ¢ € X+ such that w=sc. Let L c X+
be a language over %, the subset of all word prefixes of L is
called the closure of L, denoted L; i.e., L={s € =+/3 w €
*,sw € L}. Finally, L is closed if L= L.

For its part, automata theory is an approach that contains
a state transition structure, which allows directing the analy-
sis and synthesis by making use of the transition mechanism.
Formally, let X be a finite alphabet. A Finite Automaton A
(AF) over = or simply a deterministic X-automaton is a
quin-tuple (Q, Z, E I, T), where Q is a finite set whose ele-
ments are called states, I and T are subsets of Q called initial
and final state sets respectively, and E is a subset of
QxXxQ, whose elements are called events. Additionally, if
A has at most one initial state, and forallg € Q and a € X,
there exists at most one event (q, a, p)€E, then A is called
deterministic.

An event (q, o, p) is denoted g— p, and this is said to
begin at g and end at p with label o.

A path c in A is a finite succession c=(qo, a1, q1)(qs,
o2, 92) -+ (Qx-1, 0k, Q) Of consecutive arcs, where qo and

gk are called the beginning and end of the path c respec-
tively, and the integer k=1 is called the length of the path.

The following notations are used for a path c:
O1 ok c

do = d1 ==k, 9o —> qk 0f ¢:do — qxk. The el-

ement =aay...0x € X* is called the label of ¢ and is denoted

by [c|. The length of s is denoted by |s| and that of the path
by licll. Thus, it follows that |s|=llcll=k.

For each state g, we include the null path (trivial path)
14, which starts and ends at g. By definition, the null path
has label 6 and length 0; that is, |14/= 0 and 1|14lI=0. More-
over, given two paths c:p — q and ¢': q — r, the path
cc': p — r (path composition) is defined by concatena-
tion. then, |cc|=[c|ic] y licclI=licli+IIc'l.

Let c:i — t be a path in A, c is said to be a successful
path if I € 1 and t € T. The label of this path is called a
successful label. The set of all successful labels in A is called
the behavior or dynamics of A, and is denoted by |A|; i.e.,
|Al={s € Z+/3 c: i—t in A, with 1 € I,t € T, |c|=s}.

A language B of X+ is called regular if there exists a
-automaton A such that B=|A|.

In what follows we write a*={a}*, for all a€X, in or-
der to simplify the writing. Also, we treat a € X and s €
>* as unitary sets.

Next, some basic automata operations are studied and
their behaviors are analyzed. Let two AF be, A=(Qa, X,
E/_\, IA, T/_\) and B:(QB, Z, EB, IB,TB), where QA N QB:(D.
The X-automaton union is given by C=AuUB= (Qc, X,
Ec, lc, Tc), where Qc=QaUQs, lc= laUlg,
Tc=TaUTg. Moreover, an event is in Ec, if and only if, it
isin Ea oritisin Eg. Therefore, a path is in C, if and only
if, itisin AoritisinB.

The X-automaton product (or intersection) of A and
B is given by C=AxB=(Qc, X, Ec, I, Tc) where
Qc=QaxQg, Ic= laxlg, Tc=TaxTs. Consequently, an
event (p, p)=(q’,q") isin Ec, if and only if, p %> q'is an
event in Ea and p"%>q” is an event in Eg.

On the other hand, we call the inverse automaton of A
the X-automaton given by A*=(Q, X, E®, I, T), where E® is
the subset whose elements are the inverse events of E; that

is, if p 5 g isaneventinE, thenq 5 p isaneventin E°.

Note that, if ¢ is a path in A with label |c|=a...0x, then
c® is a path in A®with label |c?|= ¢(a4...0k) = 0k...01, Where
¢ : X*—3* is the inverse function defined by ¢(6)=6,
o()=a, p(sH=e()e(s) =ts.

It can be shown that the class of regular subsets is
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closed under union, intersection and inverse.

Now, some constructions on automata are given, relating
them by a monoid homomorphism f: I'*—X*, where I" and X are
two alphabets. Also, f is assumed to be a fine homomorphism: f
(o) € XUB, ¥V a € T'. The identities 6; and 6, of I'* and X~ re-
spectively are referred to as 0.

Indeed, let f : T*—X* be a fine homomorphism. We call
the inverse image of A the I'-automaton f~1(A), where Q, I, T

Y

are unperturbed, and the events are givenby p — q, if f(y) =
Y

oand p 5 q isaneventin A,and q — p, if f(y) = 0.

Apathc:p — q inf!(A) can be viewed as a pair (c,
g), where c:p — q is a path in A and g € I'*is such that
Ic]=g and f (g)=|c|; whence, it can be shown that if f:
I'~—X~ is a fine homomorphism and A c X~ is regular,
then f~'(A) c I'* is regular.

Finally, let f: I'™*—X*be a homomorphism such that
f(y)#0, for all y € T (or equivalently that f1(0)=0 or still
equivalently that |g| < |f (g)|, forall g € T™*). Let A = (Q,
I,E, I, T) be aI'-automaton. We call the direct image of A
the Z-automaton f(A)=(Q’, =, E, I, T) where Q'> Q and

. Y
the events are determined as follows: let p — q be an
event in A and f(y)=au---an, n>1; if n=1, then the arc
o
p—gq is in f (A): if n>l, then the arcs

ag az Apn

P— 41— q2 2~ qu_1 — q are in f(A), where
the n—1 intermediate states are new distinct states added
to Q'. Repeating this, for every arc in A, f(A) is obtained.

As before, if f: I'*—X*is a homomorphism such that
f1(0)=0, and A c I'* is regular, then f(A) c X~ is regular.

3 K- X-Automatas

As a methodological support to formalize the technique de-
scribing the dynamics of an AF, the concept of multiplicity is
included. This allows an extension grounded on mathematical
objects (sets, functions, relations, among others) in the field of
system dynamics.

To make it a little more precise, consider an AF A=(Q, X,
E, I, T) with dynamics |A|. If c: i—t, | €I, t € T, |[c|=sis in A
and n determines the number of these paths, then one can define
an application p:X*—N that specifies the multiplicity of the el-
ements of X+ This is referred to for s € X+, with multiplicity n.
With abuse of language it is written u=|A| and |A|(s)=n; whence,
|A|(s)=0 expresses that s & |A|. Finally, =+ is identified in what
follows with |A: Zx— N. It is also emphasized that any subset
A of Z+ is equivalent to a function A:X*—, with p={0, 1}, in
the sense thats s € A & A(s)=1.

A fundamental structure for the development of this article
is included. In fact, the notion of semiring is a weak structure of
the conventional concept of ring.

Definition 1. A semiring K is a subset endowed with
two operations: addition (+) and multiplication (.); such that
(K,+) is a commutative monoid with neutral element 0 and
(K, .) is a monoid with identity element 1. Moreover, for all
X, Y, z € K one has that X(y + z)=xy + xz; (y + z)X=yx
+ zx; X0=0=0x. A semiring K is called commutative if (K,
.) is commutative. Clearly, every ring with unity is a semir-

ing.

Consider {xi}iel an arbitrary collection of elements of a
semiring K, with | a given set of indices.

Assuming finiteness of I, Yie1x; € K (D)

The following properties with respect to the sum are
true:

[={i} = Yierxi = x; 2

Letl = Uje] I; be apartitionof I, z€ K= ;e x; =

Yjej (Zite X;); Z(Zielxi) = YierZXi ; (ZieIXi)Z =
YierXiZ; [=0 = Yiex; = 0. 3)

Considering (1) as the sum x+y and taking (2), (3),
(K,.), as axioms, we define x; + X,: = DjerX; With
1={1,2}; and 0: = >} X; if 1=0.

If 1 is finite, then clearly (1) is well defined. On the other
hand, if 1 is an arbitrary index set, then (1) must be well-de-
fined, and is an element of K. Thus, one has the concept of a
complete semiring under the new definition. Consequently,
every complete semiring is a semiring.

Definition 2. Given two semirings K and K’, a homo-
morphism ¢:K—K' is any function such that @(xi1+x2) =

e(x1)+@(x2), (0) = 0'; and @(x1.X2) = P(x1)P(x2), ¢(1) =
1.

Definition 3. A semiring K is called positive if it satis-
fies: 0#1;if x +y = 0,thenx =y = 0; if xy =0, then x =
Oory =0.

K-subconjuncts, with K a semiring, are objects that allow
identifying functions with their domains, and this constitutes a
technical approach to notational handling and proof construc-
tion. In the following it is assumed that K is a nontrivial (0 # 1)
and commutative semiring.

Definition 4. Let X be a set. A K-subset A of X is any
function A:X—K. For each x € X, the element A(X) is
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called the multiplicity with which x belongs to A. If the val-
ues taken by A are 0 and 1, the K-subset A of X is said to be
unambiguous.

Example 1. The subsets X, @ and x, for all x € X, de-
fined by X(x) = 1, forallx € X; 0(x) = 0, forall ;x €

1, ifx=
X; X(y)={ y

. , respectively, are un-
0, in another case P y
ambiguous.

The unambiguous subsets of x given in Example 1 are
referred to as simplexes. If A is an unambiguous subset of X,
then xeA and A(x) = 1 indicate the same thing.

We define the sum or union operation as follows: for
each family {Ai}iel of K-subsets of X, with | an arbitrary

family of indices (U Aj) ®) = (2, AD) X =
i€l
> Ai(). 4)

Now, consider the operation product (or multiplication)
of k € K by a K-subset A as follows (kA) (%) = kA(x)

O]

i.e., the result is a K-subset KA.

We have the following properties: 1A = A,0A =
@, (k1k2)A = k1(k2A),( Ziel ki) A =Yia KiA;
and furthermore, k();,_, A;) = Nic1 KiA.

We define the intersection A N B of two K-subsets as
(A N B)(X) = AX)B(X).

The sum erXA(x)x is called the expansion of A.
This expression is useful for manipulating K-subsets.

Example 2. kA= >, _KA(X)x; and further,
AN B=Y,xAX)BX)x.

The study of the multiplication or product of K-subsets
of S is included, being (S, -) a semigroup. Indeed, a category
of objects with the above-mentioned operations of addition
and multiplication is included to formalize matrix notions
and structures.

Definition 5. Let (S, -) be a semigroup, A and B K-
subsets of S, where K is a complete semiring. The K-subset
product AB is given by (AB)(2) =

Y ry—a ACOB().

It is clear that the operation AB is associative. There-
fore, KM is a semiring with identity 0, provided M is a mo-
noid, where 6 is the identity of M.

Consider P, Q two finite sets. A K-subset of P x Q
is any matrix whose rows and columns are indexed us-
ing the elements of P and Q respectively, and whose en-
tries are in K. Then, A € KP*Q is written Ayq instead of
A(p,q); thus, the matrix is written A = [Apqg].

The matrix sum operation is established by the sum
of K-subsets. That is, (A+B)pq = Apgt+ Bpg, provided that
B € KP*Q,

The matrix multiplication operation is given as fol-
lows: let A € KP*Q and B € K?*R be, then (AB) py =

ApgBagr:
q€Q

Some properties of multiplication: if P = Q, then
KPP is a semiring with unit 1,, where (1,)q =

1 ia=d’ i .
{ ’ S} 1 » A is called a row vector, provided that
0, siq#q
A € KP*Q and P is unitary. Also, A is called a column
vector, provided that Q is unitary.

Definition 6. Let X be a finite alphabet and K a commu-
tative semiring. A K-Z-automaton A (or a deterministic K-
X-automaton) is a quintuple, A=(Q, =, E, I, T) where Q is
a finite set, 1 and T are K-subsets of Q and E is K-subsets
of QxXxQ.

Given A=(Q, %, E, I, T) a K-X-automaton, if E(p,a,q)
= k+# 0, then there is said to be an arc from p to q denoted

Kka ka | . .
P — q, labeled ka. Also, p — q is said to be in A.

Thus, analogous to X-automata, one can consider paths
klal kz(xz

c:p—q. Then if c is a path p — q1 — -
kn n
Qn_1 " q, then [c|=ks is its label, with k=k;- - -k, and

S=a1-"-an, and length [lcll=n=]s|.

Definition 7. Let A=(Q, X, E, I, T) be a K-X-automa-
ton. The behavior or dynamics of A is a K-subset of X+, de-
noted |A], and is given by |A] =
Ypacq 2. 1) clT(q), with c varying over all paths
cp—q; ie, |Al(S) =Xpqeq e [P KT(Q),
where C = {keK: 3 c:p—q, |c| = ks}.

Note that the K-subset E of QxXxQ can be viewed
as a function E:QxZxQ—K. In what follows we write
E(p, a,q) = Epq(a). Then, for all p, g€Q, one has that Ey is
a K-subset of . Then, E can be identified with a matrix E:
QxQ—KE called the transition matrix.

Any K-subset of £ can be extended to a K-subset of Z*
as follows: for p, g € Q, Epg Z*—K, Epq(s) =
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{qu (s), sise Z. Thus, E can be viewed as a K=" -sub-

o, sisgX
*
set of Q x Q; that is, a Q x Q matrix with entries in K* .

- *. - . -
Consequently, since K* is a semiring, the corresponding op-
erations are used.

Now, for each n€EN, we consider the matrices E™:
*
QxQ—K= by E°=1g, E'=E and E"=EE"!, n>2,

with E"p . = EprEM?
reQ
that if SEX* and [s|#n, one has that E",q (s) = 0, with p,

q€Q; whereupon, {E"q}nen is locally finite. Then, one

rq» Where p, g€Q. It is clear
* — n . .
can define E*pq = E n=0E pq- and hence, it results in

*
the matrix E*:Q x Q—K=* | E*x=1q+E +E?+- -
+- -+ called the extended transition matrix.

.+En

For each s € =, let E*(s)=Ef;q (5)EK Q*Q be, if

s=a; -0y, it follows that E*(s)=E“(s)=E(a;)--"

E(on)=E*(01)---E*(aw).

Theorem 1. For any p,q€Q, the K-subset E*,,, is the
sum of all labels of c:p — q in A.

Proof: Letp,q € Q be, as E*pq = z E'pq. it
pq=1

suffices to show that E",q is the sum of all path labels of

0, sip=q .
— 0 —

lengthn. If n=0, then E®pq = {0' sip=q where 0 is
the identity of KE. I n=1, then E',q=

Z Epq(1Q)rp =z EpE%q. Assume that the
reQ reQ

result is true for n-1, n >2; e, E"l,4=
z EpriEpryr,
T2, rn_q €Q
Ern—l = z EpI‘En_qu; then Enpq
reqQ

E,.E"1 . =

ZI‘EQ pr ra

Z Epr1 (Z Er1r2 Er1r3 Ernq ) =
ri,€Q r1r2,..m €Q

Z QEPF11"2 Erjr, " Epgq =

ry,rz,..m,€

-2 -
ZFEQEprE“ rq- Consequently, E" 4 is the sum of the la-

bels of paths with length n. Therefore, E*,,, is the sum of the
labelsof c:p — q in A.

Corollary 1. The behavior of A is |A| = IE*T with |

viewed as a row vector and T as a column vector.
Proof:|Al = Xpqeq 2. 1P IcIT(q) =
Z I(p) E'pq T.
P.9€Q

Definition 8. Let K be a commutative semiring, and £
be a finite alphabet. A K-subset A of X+ is called regular, if
there exists a K-X-automaton A such that |A| = A.

In what follows, it is always assumed that given two K-
T-automata A=(Qa, , Ea, la, Ta) and B=(Qs, X, Eg, I,
Te), QaNQs =0.

Definition 9. Let A, B be two K-X-automata, the K-X-

automata union of A and B is given by
AUB=(Qaus,~,Eaus,laus, Taus), where, Qaus = QaUQs,
Ls(p) = {IA(p)' Si_ PEQa

Ig(p), sip € Qp’

Ta(p), sip€Qa

Taus(P) = {TB(p)' sip €Qg’

y
Ea(p,a,q), sip,q€Q,

Eais(P, o, q) = {Es(p. a,q), sip,q€EQg
0, en otro caso

Proposition 1. The union of two regular K-subsets of
>+ is a regular K-subset of x*.

Proof: Consider A and B two regular K-subsets of X+,

and A, B two K-X-automata such that |A|=A and |B|=B. Let
A U B be a K-X-automaton. Then, for all seX:

S hes® lelTaun@ |

P.9€QauBs ¢

|A U B|=

= Z ZIAUB(p) kT, 5(q),

P.a€QauQp k . .
where keK is such that there exists c: p — q in AUB

with |c|=ks; thus,

Zp,qEQA u Qg Yklaus(P) KTayp(q) =
Zp,qEQA Zk IA (p) kTA(q)

+ 0 D I (KTa(@) = Al + [BI(S)
P.a€Qs Kk
= A(s) + B(s)
= (A U B)(s). Asi, |]A U B|=AUB.

Definition 10. Let A, B be two K-X-automata. The K-
>-automaton product (or intersection) of A and B is given
by AXB:(QAXB,Z,EAXB,|AxB,TAxB), with
Qaxe=Qa%QE, Laxe ((p,.0))=1a(P)1& (1),
Taxe((P.9))=Ta(P)Ts (1),
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Eaxe ((p,q),a, (pl!q ')):EA(P»OL,P')EB(CI’“’Q')-

Proposition 2. The intersection of two K-regular sub-
sets of X+ is a K-regular subset of X+.

Proof: Let A and B be two regular K-subsets of X+ and
A, B be two K-X-automata such that ||A|=A and |B|=B. Let
AxB be the K-X-automaton. Then, for all seX+

1A X BI(s) = ( > D s Dlel Tacs (' q')) ®
(P.9).(p".9")€EQax Qs ¢

( L(PIs(@I(c, C”)ITA(p’)TB(q’)> (s)
p.p'.€Qaiq.49'.€Qp c=(c’,c’)

= DD LT @k Ta(@)
pp'.€QA;q.9 . €Qp kikz

= D 2 hEKTE) Y D @kT@)

pp'€QA ki, 40.q9".€Qp k2

=< > ZIA<p>|c'|TA<p')>(s)< > Zlg<q)|c”|TB<q')>(s)
pp'.€Qa a.q'.€Qp ¢’

= |AI(9)IBI(s) = (|Al N [BD(s) = (A N B)(s).

Where c¢':p — p’isapathin A, c¢":q — q’ isapath
in B, |c'|=kis, |c"|=kzs and kiko.=k with ks=|c]|.

Definition 11. Let A=(Q,X,E,I,T) be a K-Z-automaton.
We call K-XZ-automaton inverse K-X-automaton
A'=(Q.Z, Eq,1,,Ty), where 1,(q)=T(q), To(a)= 1(a),
and Eq(p, o, 9)=E(p, o, 9).

Remark 1. A path c?: p—q in A, with label |c?|=ks, is
given by a path ¢: g—p in A with label |c|=ko(s), where ¢:
>*— 2>+ is the inverse function defined by ¢(0)=6, ¢(a)=0a,
o(st)=(t)o(s), where t,sEX*.

Proposition 3. If A is a regular K-subset of £+ and :
>*—2X* is the inverse function given in Remark 1, then A o
@ is a regular K-subset of X+; that is, the class of regular K-
subsets of X+ is stable under inverse function.

Proof: Let A be a K-regular subset of £+ and A be a K-
>-automaton such that |[A|=A. Consider A® the inverse K-
>-automaton of A, then for all s € =+,

|A®|(s) = <2p,qu D Je® |c¢|T¢(q)) )

= > D T®K@,

p.9eQ k
with |c?|=ks, where ke K and

cl=ke® = > D 1@IcIT® | (@)

P.9eQ ¢

= (AD(@(s)) = (A @)(9).

Thus, |A®?| = Ao .

Definition 12. Let A=(Q, X, E, I, T) be a K-X-autom-
aton and f: I'*—X+is a fine homomorphism. We call the in-
verse image of A the K-I'-automaton f 1(A)=(Q,I', E', I, T
), where E' is given by
E'(pv. @)

E(oaq, sif(y)=ayE(paq)+#0
= 1, sif(y)=0yp=gq

0, otherwise.

Remark 2. A path c: p — q in f I(A), with label |c| =
kg, is given as c=(c',g) where ¢': q — q is a path in A and
geIl™ is such that |c'| = kf(g); that is,apathc:p — q inf
~I(A), which associates some g€I'* in its label, is given by a
path ¢ in A which associates f(g) in its label.

Proposition 4. If f: I'*—X* is a fine homomorphism
and A is K-regular subset of >+, then Aofis a K-regular sub-
set of ',

Proof: Let A be a K-X-automaton such that |A|=A. Con-
sider the K-T"-automaton f!(A), the inverse image of A, and
let geI™* be, then

Wi ={ > D ImicIT@ |®

P.9€EQ ¢

=1 D DiwicIT@ | (t®) = 1aI(f@)

P.9EQ c’
= (A-f)(g).

Thus, |f "1(A)| = Aof.

Definition 13. Let f: I'*—X* be a homomorphism, such
that f(y)# 0, vyer, and let A=(Q,I',E,I,T) be a K-T" au-
tomaton. We call the direct image of A the K-X-automaton
f(A)=(Q',Z.E'I','T"), where Q'>Q and E' are given as fol-
lows: Let E(p,y,q) = k#0 in A, and let f(y)=a102:-an,
with n=1. If n=1, then E'(p,a1,9)=E(p,y,q)=k, is an arc in

k1a1 kzaz
f (A). If

P> a1 >
Knan

dn_1 — qWwithki---ks=k, are in f(A), where qi,--+,qn-1
are new states added to Q. These determine states of Q'. Fi-
nally, repeating this process for every arc in A, we obtain
f(A), with

n>1, consecutive arcs

n_ (1), sip'eEQ

T(p)_{o, si p/EQI\Q
y

vy _ (TP, sip’€Q

T (p)_{o’ si p/EQ/\Q
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Remark 3. To say that f: I"*—>* is a homomorphism
such that f(y)#0, Vy€eIl™ is equivalent to saying that f~!(0)
=0, or it is also equivalent to saying that f~'(s) is finite, for
all sex~.

Proposition 5. Let f: I'*—ZX*be a homomorphism such
that f!(s) is finite, for all s€Z+. If A is K-regular subset of
I'*, then f(A): Z*—K, given by

f(A) (s) = A(®

gef~1(s)

is a K-regular subset of X+

Proof: Consider A a K-I'-automaton such that |A|=A.
Let f (A) be the K-X-automaton direct image of A, then, for
all SEX*, it follows that

W= > > re)e T @)

p/.qQ/€Qr ¢

=1 > Dimieir@

p.9eQ c’
Then, |

f@I= > > I®KT@,

P.9EQ k
with k varying over ¢: p — q, with |c’[=ks, s=f(g), kg=|c|,
c¢p — qinA. Thus,

f@I= > > 1®KT)

P.9€Q k
with k varying over all paths c: p — q, such that |c'|=kf(g),

gef 7'(s), kg = |c|, ¢ p — q in A. Therefore,
If (A)I(s) = D I®KT@
gef-1(s) \pP.aeQ k

with k varying over all paths c:p — q in A, kg = [c|; that
is,
If (A)(s) =

gef~1(s)

[Al(g) = A(g)
gef-1(s)

Finally, f(A) is a K-regular subset of X+.
Definition 14. A K-X-automaton A=(Q,X,E,ILT ) is
called normalized if 1=i and T=1 are two distinct simple
k k
K -subsets, and there exist no arcs p = it = q with k#0;
that is, E(q, a, )=E(t, a, q)=0, for all g€Q and aeX.

Remark 4. If A is normalized, then |A|(8)=0. Then, if
one observes ~* as a B-subset of X+, one obtains |A|cX*.

Proposition 6. For every K-X-automaton A there ex-
ists a normalized K-X-automaton A’ such that |A'| = |A| N
DR

Proof: Let A=(Q,X,E,I,T) be a K-Z-automaton, and
let Q'=Q U i U t, where i and t are two different new states.
Consider the new matrix E’ as follows: E'pq = Epq,

pPEQ qeQ

Z IP quTq !
pP.q€Q

E'pi = Eyi = E¢q = 0, Where I, = I(p) and T, =
T(q). A calculation determines that E”*;, = IE*T, where
E* =E+E%+-- +E" +---= EE*.

The K-X-automaton A'=(Q',%,E',i, t) is normalized, and
using Corollary 1 one has |A’| = E"*;; = IE*T = IE*T N
Tt=|A|n =%

Remark 5. The construction of A’ from A, as in Propo-
sition 6, is always interpreted as the normalization design.

Proposition 7. Let A be a K-regular subset of =", and
let keK, then KA is a K-regular subset of X*.

Proof: Let A be a K-X-automaton such that |A| = A,

and let keK be, consider the K-X-automaton
kA=(Q,X,EkILT), where (kD)g=klg, then
|kA| = z KI,E g Tq =k Z I,E ' pq Ty
pP.9€Q pP.9€Q
= KkJ|A| = KA

Proposition 8. A K-subset A of X+ is regular, if and only
if, the K-subset A'=A N =* is also regular.

Proof: Let A be a K-Z-automaton such that |A| = A.
Then, there exists a normalized K-Z-automaton A' such that
[AT=IAINZ = A N Z*=A". Reciprocally, suppose that A
N =A"' is a K-regular subset of >+ Since
A'(0)=0(="(0)=0), it follows that A=k0O+A', where
k=A(0). Then, since 0 is a K-regular subset of X+, then from
Proposition 1 and Proposition 7 one has that A is regular.

Proposition 9. If A and B are two K-regular subsets of
¥+, then AB is a K-regular subset.

Proof: Let A=kO0+A'B=10+B', with A'=ANX",
B’=BNX*, k=A(0) and 1=B(0). Then, AB=kI(0)+kB'+
IA'+A'B'. It suffices to show that A'B' is regular, for this, let
A=(Q1,%,E1,i1,t1) and B=(Q2,X,Ey,i2, t) be two K-Z-nor-
malized automata recognizing A" and B' respectively. Con-
sider the normalized K-Z-automaton C=(Q,%,E,i1,t2), where
Q is a partition of Q; and Q, except when t;=i,. Then, an arc
in C is either an arc in A or is an arc in B. Thus, |C| =
E'iyt; =E 1i3e, = E 2150, = |A|[B| =A'B".

Proposition 10. Let A be a K-regular subset of X*.
Then, the K-subsets A*=A+A%+---+A"+... and
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A*=0+A+A%+ ---+A"+---are regular.

Proof: Since AcXx™, it follows that A"(s)=0, when
[s|<n. Then, {A"}nen is locally finite; thus, A* and A+ are
well defined. Let A=(Q,X,E,i,t) be a K-X-normalized autom-
aton recognizing A. Then, considering i and t as a single state,
which is initial and final, we obtain a K-X-normalized au-
tomaton A*, where |A*|=A*. Thus, A= is regular. Then, since
AT =A+NZ", it follows that A* is regular.

Theorem 2. A K-subset A of X is regular, if and only
if, there exists an integer n>1 and a matrix E nxn whose
entries are K-subsets of X such that A=E*.

Proof: Let A be a K-regular subset of ¥ +, and 4 =
(Q,X,E,i,t) bea K — X —normalized automaton that recog-
nizes A. There is no loss of generality in assuming Q = 1,
,n},withi = 1 andt = n.Since i # t haston > 1. Then,
from Corollary 1 it follows that |A| = E *;,, = E*;,, = A.
Reciprocally, if, A = E *4,,, where E is a matrix nxn of K-
subsets of X and n>1, then, with Q={1,---,n}, I=1 and T=n,
one obtains a K-X-automaton A=(Q,X,E,1,n) such that
|A|=E*=A.

Corollary 2. If E is a matrix nxn of K-subsets of %,
then for any 1<i, j<n, the K-subsets E *;; and E +,-]- are reg-
ular.

Proof: It follows from Theorem 2.

Proposition 11. Let ¢: K—K' be a homomorphism of
semirings. If A is a regular K-subsubset of X+, then ¢ ° A is
a regular K'-subset of Z*.

Proof: Let A=(Q,X,E,I,T) be a K-X-automaton such
that |A|=A, then the K'-Z-automaton
o(A)=(Q.Z,9(E),p(I), ¢(T)) satisfies [p(A)=0(JAl)
=@(A). Since K is a positive semiring, then T: K—B, given
by T (0) =0 and T (x)=1, for all x#0, is a homomorphism.

Corollary 3. If K is a positive semiring, and A is a reg-
ular K-subset of X+, then T (A) is a regular B-subset of X+,

Proof: It follows from the composition of the image au-
tomaton and from Proposition 11.

Proposition 12. Let A be a regular B-subsubset of X*.
Then, A viewed as an unambiguous K-subsubset of * is reg-
ular.

Proof: Let A be a deterministic Z-automaton with dy-
namics A. If A is viewed as a K-Z-automaton, then its dy-
namics is viewed as a K-subset of X+,

Remark 6. Corollary 3 and Proposition 12 simultane-
ously show that for any unambiguous subsets of X+, regular-
ity is independent of the choice of K.

4 The Equality Theorem

In this section it will be assumed that K is a subsemiring
of a commutative semiring.

Theorem 3. (The Equality Theorem). Let A: and A be
recognizable K-subsets of * and let Ai=(Q;,%i,Ei,li,Ti) be
K-XZ-automata such that | Ai |= A, i=1,2. If n; = Card Q; and
if Ai(s) = Az(s), V S € Z*such that |s| <11 + n2, then A1 = A..

Proof: Consider the automaton A u
Azz(QlUQz,leZZ, E1UE2,|1U|2,T1 UTz), where Q1 and
Q2 are assumed disjoint and the transition matrix is From A;
U Az we derive the automata Bi=(Q1UQ2,E1UE>,1;,T1UT)),
i=1,2 and observe that |Bi|=|Ai|= A, i=1,2. Thus the conclu-
sion of Theorem 3 follows from:

Theorem 4. Let Ai =(Qi,Zi,Ej, i, Ti), i=1,2 be K-X-au-
tomata differing only in their initial subsets. Then |Ai|=|Ay|
if and only if |A4|(S) = |A2|(S), V s € Z*such that |s| < Card Q.

Proof: By assumption K is a subsemiring of a semiring
(field F). Thus, we may regard Ai as F-Z-automata. If |Aq]
and |A,| are equal as F-subsets of £+, then they are also equal
as K-subsets. Thus, we may replace K by F, or equivalently
assume that K is a field. Thus K@ is a vector space over K of
dimension n=Card Q. Consider the K-X-automaton
A=(Q,X,E,I,T) with I= I1\l>. Since |A|(S) |A1|(S) |A1|(S) we
have |A|(s)=0 if |s|<n, and we wish to prove that |A|(s)=0, V
s € X+ Equivalently, in view of Corollary 1, we are given that
(1(s))T=0, if |s|<n and we wish to prove that (1(s))T=0, V¥ s €
2. Define W={X | XeK®, XT=0}, V;=subspace of K° gen-
erated by vectors I(s), with [s|<j. Assuming that n>0, we have
VocVic...cVnic W. The cases 1=0 or T=0 may be ruled
out since then obviously (1(s))T=0. Therefore, dimVo=1, dim
W=n-1. It follows that for some 0<j<n-1, V;i=Vj:1. Since V.2
is generated by all the vectors X and X, with X€Vj44, it fol-
lows that Vj«1= Vij:2 and thus by induction Vi=Vij.p, Vp>0.
This implies V;cW, VjEN. Thus, for any V s € Z* we have
I1(S)eW; i.e, (I(s)) T=0.

Corolario 4. If A=(Q,X,E,I,T) is a K-X-automaton,
then |A|=0, if and only if, |A|(s)=0, V s € X+ such that |s| <
Card Q.

The following example shows that the numerical bound
in Theorem 3 is the best possible.

Example 3. Let 0 < n; < ny be integers. Consider the
alphabet X consisting of a single letter 1. Let Az be the deter-
ministic automaton, with n; states represented symbolically
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«hl-1
by the path i — t — Thus Ai=t""". Let A; be the
deterministic complete automaton, with n; states represented

th2 i i .
symbolically by the loop — i — i, with t=it""? as terminal
state. Then A.= t""}(1"?). Thus t"** "1 € A-\A.. However, for
all lower exponents k we have ™°€A., if and only if, T™*€A..

5 Conclusion

An important consequence of Theorem 3 is: given any
two recognizable K-subsets A: and A. of ¥, it is decidable
whether or not Ai1=A.. This statement requires several cave-
ats. First the word given should be interpreted to mean that
K-X-automata Ai=(Q;,%i,Ei,li,Ti) such that |Ai|= A, for
i=1,2 are explicitly provided. Then, all the paths of length
less than n=Card Q:+Card Q; can be enumerated and thus
|A1](s) and |A2|(s) can be computed for |s| < n.

References

Branicky, M. (1995). Studies in hybrid systems: Modeling,
analysis and control [Doctoral dissertation, Massa-
chusetts Institute of Technology].
DSpace. https://dspace.mit.edu/han-
dle/1721.1/11398

Caspi, P. (1991). Model of discrete event systems in com-
puter science [Paper presentation]. European Con-
trol Conference, Grenoble, France.

Eilenberg, S. (1974). Automata, languages and ma-
chines (Vol. A). Academic Press.

Mata, G. (2017). Supervisory control application to solving
optimal control problems for discrete event sys-
tems. Revista  Ingenieria  UC, 24(1), 81-
90. https://www.servicio.bc.uc.edu.ve/ingenie-
ria/revista/v24n1/art10-124.pdf

Mata, G., Giraldo, R. E., & Rojas, N. M. (2018). A planning

algorithm in a class of discrete event sys-
tems. DYNA,  85(206),  283-293. https://dial-

net.unirioja.es/descarga/articulo/7664680.pdf

Recibido: 22 de abril 2025
Aceptado: 01 de julio 2025

Mantilla Morales, Gisella. Engineer in Electronics and Tel-

ecommunications, Master's degree in Mathematics; full-time

professor at the Technical University of Manabi.
https://orcid.org/ 0000-0002-0826-774

Bastidas Chalan, Rodrigo. Engineer in Electronics and

Control. Active professor at the University of the Armed

Forces-ESPE. E-mail: rvbastidas@espe.edu.ec
https://orcid.org/ 0000-0002-2811-1672

Renteria Torres, Anibal. Engineer in Electrical. Active pro-
fessor at the University of the Armed Forces-ESPE. E-mail:

avrenteria@espe.edu.ec
https://orcid.org/ 0009-0002-9057-4536

Bustos Ganchozo, Oscar. Graduate in Physics. Active pro-
fessor at the University of the Armed Forces-ESPE. E-mail:
ofbustos@espe.edu.ec

https://orcid.org/ 0009-0005-3509-0370

Ferrer-Guillén, Maria Dolores. Master's degree in Compu-
ting. Active Full Professor. Department of Calculation, Fac-
ulty of Engineering, ULA. Research area: analysis and con-
trol in dynamic systems. E-mail: mariadfg@gmail.com
https://orcid.org/0009-0002-8162-233X

Mata-Diaz, Guelvis E. Graduate in Mathematics. Master of
Science in Mathematics. PhD in Applied Sciences. Active
Full Professor. Faculty of Sciences, ULA. Department of
Mathematics. Research area: analysis and control in dis-
crete-event dynamic systems. E-mail: gema-
tad2017@gmail.com

https://orcid.org/ 0000-0001-7147-1422

Revista Ciencia e Ingenieria. Vol. 47, No.1, diciembre-marzo, 2026


https://www.google.com/url?sa=E&q=https%3A%2F%2Fdspace.mit.edu%2Fhandle%2F1721.1%2F11398
https://www.google.com/url?sa=E&q=https%3A%2F%2Fdspace.mit.edu%2Fhandle%2F1721.1%2F11398
https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.servicio.bc.uc.edu.ve%2Fingenieria%2Frevista%2Fv24n1%2Fart10-124.pdf
https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.servicio.bc.uc.edu.ve%2Fingenieria%2Frevista%2Fv24n1%2Fart10-124.pdf
https://www.google.com/url?sa=E&q=https%3A%2F%2Fdialnet.unirioja.es%2Fdescarga%2Farticulo%2F7664680.pdf
https://www.google.com/url?sa=E&q=https%3A%2F%2Fdialnet.unirioja.es%2Fdescarga%2Farticulo%2F7664680.pdf
https://orcid.org/%200000-0001-8003-0354
mailto:rvbastidas@espe.edu.ec
https://orcid.org/%200000-0001-8003-0354
mailto:avrenteria@espe.edu.ec
https://orcid.org/%200009-0002-9057-4536
https://orcid.org/%200009-0002-9057-4536
mailto:ofbustos@espe.edu.ec
https://orcid.org/%200000-0001-8003-0354
https://orcid.org/%200000-0001-8003-0354
mailto:mariadfg@gmail.com
https://orcid.org/%200000-0001-8003-0354
https://orcid.org/%200000-0001-8003-0354
mailto:gematad2017@gmail.com
mailto:gematad2017@gmail.com
https://orcid.org/%200000-0001-8003-0354
https://orcid.org/%200000-0001-8003-0354

28

Mantilla-Morales et al.

Revista Ciencia e Ingenieria. Vol. 47, No.1, diciembre-marzo, 2026



