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Abstract

This work proposes a model-based tuning method for two-degree-of-freedom PID controllers founded on a polynomial
approach and fundamental notions of control theory for first-order plus time-delay (FOPTD) systems. The technique achieves
rejection of constant disturbance signals through a time response that asymptotically approaches zero with a specified
overshoot and settling time. Likewise, tracking with zero steady-state error of persistent reference inputs such as step, ramp,
or parabola is also attained. Another contribution of the method is that it allows tuning the four PID controller parameters.
Several examples show the ease of implementation of the technique, its effectiveness, and how it can be extended to systems
other than FOPTD.

Keywords: PID, Two-degree-of-freedom PID, Time delay systems, FOPTD, Tracking, Disturbance Rejection, Heat flow
process, Coupled tank system, United Nations SDG 9.

Resumen

Este trabajo propone un método basado en modelos para la sintonizacion de controladores PID de dos grados de libertad
para sistemas de primer orden con retardo en el tiempo (FOPTD) fundamentado en un enfoque polindmico y nociones basicas
de la teoria de control. La técnica logra el rechazo de sefiales de perturbacion constante mediante una respuesta temporal que
tiende asintGticamente a cero con un sobrepico y un tiempo de establecimiento especificados. Asimismo, se logra un
seguimiento con error de estado estacionario cero de entradas de referencia persistentes, como el escalén, la rampa o la
parabola. Otra contribucion del método es que permite ajustar los cuatro pardmetros del controlador PID. Varios ejemplos
muestran la facilidad de implementacién de la técnica, su eficacia y su extension a sistemas distintos de los FOPTD.

Palabras clave: PID, PID de dos grados de libertad, Sistemas con tiempo de retardo, FOPTD, Seguimiento, Rechazo de
perturbaciones, Proceso de flujo de calor, Sistema de tanques acoplados, ODS 9 de las Naciones Unidas.

1 Introduction (1-DoF) controller. The degree of freedom of a control

system is defined as the number of closed-loop transfer

Two fundamental problems arise in the design of
control systems: tracking a reference input and rejecting
disturbance signals. A basic notion of control theory is that a
physical variable can behave in a prescribed manner by using
the difference between a desired reference value and the
actual output value until the two are matched. This notion
results in the classic feedback control loop, where the control
signal is generated using the difference of signals indicated
above; this scheme is also called a one-degree-of-freedom

functions that can be independently adjusted (Teppa-Garran
et al., 2023).

Time-delay control systems are present in numerous
industrial applications, such as chemical engineering,
biochemistry, aerospace, and power generation, to name just
a few (Gu and Niculescu, 2003; Birs et al., 2019). Even if it
is not a natural component of the process, actuators and
sensors in a control system introduce time delays in its
operation (Richard, 2003; Ai et al., 2016). The main reason
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for time delays in industrial processes is transporting
materials or energy in long pipelines (Bresch-Pietri et al.,
2014) or data traffic in communication networks (Ariba et
al., 2009). Time delay is known to degrade process
performance. From the frequency domain point of view,
delay introduces an additional lag in the process phase. This
results in lower phases, gain margins, and the possibility of
losing stability. This has led to the study of the stability of
time delay systems by the Lyapunov and Krasovskii analysis
(Hale and Lunel, 2013) and variants within this general
analysis procedure, such as the Wirtinger-based inequality
(Seuret and Gouaisbaut, 2013), and the Bessel-Legendre
inequalities (Zhang et al., 2019, 2022).

As a special case of time-delay systems, many open-
loop industrial processes of practical interest can be
effectively modeled by a low-order transfer function cascade
with a time delay. First-order plus time-delay (FOPTD)
systems are the most commonly employed process model in
control design (O’Dwyer, 2009).

The proportional-integral-derivative (PID) controller is
the industry's most widely used control strategy nowadays
(Astrom and Hagglund, 1995; Desborough and Miller,
2002). Its success is attributed to its simple structure, the
meaning of its three parameters, its easy understanding by
technical personnel, and because it provides stability and fast
responses for a wide range of operating conditions.

However, despite its wide use, many poorly tuned PID
controllers are found at the industrial level (Lee et al., 2015).
In controlling systems with time delay, the performance of
PID controllers also has limitations. Several factors can be
listed to explain this situation, such as nonlinearities,
uncertainties, external disturbances, variable loads, etc. (Liu
and Daley, 2001). Still, one essential reason is that a 1-DoF
controller must achieve a compromise between tracking a
reference input and disturbance attenuation (Vilanova et al.,
2011; Teppa-Garran et al., 2023). In a two-degree-of-
freedom (2-DoF) controller, the reference input and the
controlled output are processed independently to generate
the control signal. This additional degree of freedom allows
the two fundamental control problems mentioned at the
beginning to be solved separately. The need to satisfactorily
solve both issues motivated the introduction of two-degree-
of-freedom PID controllers (2-DoF PID) (Araki, 1985; Araki
and Taguchi, 2003). Since then, many methods for tuning
their parameters have been proposed, including the internal
model control (Mamat, 2013; Jin and Liu, 2014). The gain-
phase margin (Xing et al., 2006). The maximum sensitivity
function (Alfaro et al., 2010). The fractional order PID
controller (Sharma et al., 2015). The desired dynamic
equation (Zhang et al., 2010). Combining the desired
dynamic equation with the generalized frequency method
(Wang et al., 2018) and fuzzy control (Bi, 2020).

Most of these methods rely on complex mathematical
notions that undermine the simplicity of understanding the
PID operation by industrial technical personnel. The main
contribution of our study is to propose a methodology for

tuning the four parameters (K, K;, K4, 74) of a 2-DoF PID
controller for a FOPTD plant using a straightforward
algebraic approach based on elementary notions of control
theory. To this end, a 2-DoF general control system
architecture defined by (Araqui and Taguchi, 2003) is
employed, which consists of a feedforward and a serial PID
controller. The disturbance attenuation problem is solved
using a dominant pole guarantee criterion proposed in
(Persson and Astrém, 1992) and used in various applications,
for instance (Teppa-Garran and Garcia, 2017; Teppa-Garran
and Vasquez, 2020). Applying the dominant pole guarantee
criterion, the control system's response to any constant
disturbance signal tends asymptotically to zero, exhibiting a
desired overshoot and settling time. On the other hand, the
problem of tracking persistent signals of the step, ramp, or
parabola type is solved using a zero assignment criterion for
the closed-loop transfer function. Several numerical
examples show the proposed methodology's effectiveness
and ease of implementation.

The results of this work promote innovation in the
control of industrial processes by improving the tuning of
PID controllers in a 2-DoF control system architecture and,
in this way, contribute to SDG 9 of the United Nations.

2 Problem formulation and basic notions

The control scheme in Fig. 1 shows a general two-
degree-of-freedom architecture (Araqui and Taguchi, 2003).
The signal r(t): R* — R is the reference input, d(t): R* —
R is a disturbance signal, y(t): R* — R corresponds to the
controlled output, u(t): R* — R is the control signal, and ¢
represents the independent time variable. The controller
consists of two PID compensators represented by the transfer
functions G, (s) and G, (s). The tracking error is defined by

e(t) =r®) —y(®) 1)
There are two closed-loop transfer functions in Fig. 1. One
from d to y and the other from r to y; they are given
respectively by the expressions.

6= O GO

D(s) 14 G,(5)Gy(s) )

Y(s) [G1(s) + Go(5)]Gy(5)
1+ G1(s)Gy(s)

Gyr (s)= (3)

R(s)

Figure 1. Two-degree-of-freedom (2-DoF) control system.
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2.1 Plant model

The plant is modeled by a first-order system with
transport delay 6,; (FOPTD) characterized by the transfer
function.

Y(s) K
= @
Ui) Ts+1
In this work, the transport delay is approximated in two
different ways. (i) Using the denominator Taylor series
expansion (e=%e* ~ 1/(1 + 6,5)) (Hanta and Prochaska,
2009). The plant model takes the form

—HdS

b
Gp(s) = m ®)
Where
by =K/T6;,a;, =(T+86,;)/TO0,,a, =1/TO,
(i) Using a first-order Padé model (e %~

(2—-6;45)/2+ eds)) (Hanta and Prochéska, 2009) allows
us to obtain the following transfer function for the plant

—b1$ + bg
GO = T asta ©
Where

b, = K/T, by = 2K/T64 ay = 2T + 6,)/T04, ag =
2/T6,

Equations (5, 6) will be used to design the PID
controllers G, (s) and G,(s) of Fig. 1.

2.2 PID controller

The mathematical model of a PID controller is given by

t
d
u(t) = Kye(t) + K; f e(t)dr + Kdae(t) @)
0
Or, in the Laplace domain, through the equation
K;
U(s) = (Kp + " + de) E(s) (8)

The error signal e(t) is used to generate the proportional,
integral, and derivative actions, which are combined to form
the control signal u(t). The PID controller parameters are
the proportional K,,, the integral K; and the derivative K,
constants. These constants must be tuned to meet the design
requirements, and several empirical tuning rules have been
formulated for this purpose. A non-exhaustive list is given in
(Teppa-Garran et al., 2021). These easy-to-implement rules
provide tuning methods for PID controller parameters that
often do not result in the best constant settings (Lee et al.,
2014). For this reason, optimal tuning methods have been
proposed: based on genetic algorithms (El-Deen et al., 2015;
Gunawan et al., 2018), computer-assisted (Teppa-Garran et
al., 2021; Teppa-Garran and El Gharib, 2024), or based on
the linear-quadratic regulator (Teppa-Garran et al, 2025a).
In practical applications, the pure derivative action in
(7) is never used, due to the derivative kick and the
amplification of measurement noise (Atherton and Majhi,

1999; Zhu, 2009). For this reason, the derivative term is
cascaded with a first-order low-pass filter, resulting in
equation (8) becoming,

U y«x+m+ &S)E) ©)

() =Ky s Tgs+1 (s
All the rules (empirical and optimal) mentioned previously
consider only the tuning of the three constants K, K;, and
Ky, but not the term 7,. Subsequent simulations based on
predefined ranges are usually used to determine the latter.
For example, the following interval is proposed in (Goodwin
etal., 2001).

0.1(Ky4/K,) < 14 < 0.2(Ky/K,) (10)

In this study, the transfer functions of the PID
controllers G, (s) and G,(s) are modeled by an equation of
the form (9). Another significant contribution of this work is
the proposal of a method that directly adjusts the four
parameters of the PID controller.

2.3 Problem formulation

This work simultaneously aims to solve the two
fundamental control problems mentioned in the introduction.
To this end, the following problem is formulated.

Problem 1: Given a plant model in the form (5) or (6),
determine the four parameters in the controllers G,(s) and
G, (s) modeled through (9) so that the controlled output y(t)
in the control system of Fig. 1 satisfies the following two
conditions: (i) It approaches asymptotically to zero
exhibiting a desired overshoot (0S) and settling time (T)
when a constant disturbance signal d(t) is applied. (ii) It
tracks with zero steady-state error a reference input r(t) of
step, ramp, or parabola type.

3 Problem solution

This section develops the method for synthesizing the
controllers G, (s) and G, (s) to solve problem 1. The transfer
function of G,(s) is given by
Ky s

K;
G (s) = K, +—+—2—
1(5) PLos s+l (11)
And the transfer function of G, (s) through
Ki Kd S
G =K 4z, d”
2(5) rt s + 74,5 +1 (12)

In this work, it is assumed that the following condition is
satisfied in (11) and (12)

Ta = Ta; = Ta, (13)
Let the controller G;,(s) be defined as
K; Kys
G12(5) = G1(s) + Go(s) = K, + 5 + TS 1 (14)

Where K, =K, +Kp,, K;=K; +K;, and K; =K, +

Kg4,. A fundamental result for this study is shown below.
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Theorem 1: Any controller of the form

As’+Bs+C
Ge(s) = Ds?2 + Es

It is identical to a PID controller expressed by the equation

(9), where

(15)

BE — CD
=R

16
AE? — BDE + CD? (16)
E2
D

Td:E

Proof: Equation (9) is rewritten as
(Kg, + Kp,7a)s* + (Kp, + Ki,Ta)s + Ky,
7482 +s

(17)
And (15) as

FSZ + %S + %
"D, . (18)
Fsi+s
The result is established by equating (17) and (18).

Considering Theorem 1 and the condition (13), the
transfer functions of the controllers G, (s), G,(s), and G,,(s)
can be expressed by equations (19), (20), and (21),
respectively.

e,s? +e;s + e

Ga(s) = d,s? +d;s (19)
_fos? tefis+fo
Gx(s) = d,s? +d;s (20)
Z4+nys+
G1a2(s) = Gy (s) + Gy(s) = 2 T Ty

d,s?+d;s
Where n, = e, +f2, ng =eq +f1, and no = 60 +f0.

3.1 Synthesis of controller G4(s)

The PID controller in (11) with condition (13)
expressed in the form (19) is to be designed such that the time
component of the controlled output y(t) in response to a
constant disturbance d(t) tends asymptotically to zero with
a desired overshoot (0S) and settling time (T,). This
objective is best appreciated in the block diagram of Fig. 2,
which results from the simplification of the diagram in Fig.
1 by setting r(t) = 0.

A dominant pole guarantee criterion specifies the
closed-loop performance requirements of the time response
to a constant disturbance signal. This criterion allows the

construction of a desired closed-loop polynomial consisting
of a pair of complex conjugate poles that will dominate the
time response dynamics, with the remaining poles making a
negligible contribution. The dominance of the complex
conjugate pole pair s; , = —a % jf requires that the ratio of
the real parts of the other poles to - a exceeds a factor 1 (1
is typically taken as 3 to 10 times). Thus, the other poles are
positioned to the left of the vertical line s = —Aa. In this
work, the desired closed-loop polynomial is expressed as

(8% + 20wys + w,2) (s + W wy)? (22)
The damping coefficient ¢ and the natural frequency w,, of
the dominant poles are determined in terms of the desired

overshoot 0S and settling time T, by making (Dorf and
Bishop, 2017).

05=e(—§”/\/1——<2):(=;

(23)

T, =4/(w,) = w, =

{ts

In this way, the desired closed-loop polynomial will meet

some design time requirements and will be expressed as
b5t + t383 + tps? + tys + & (24)

With known parameters t; > 0.

Remark 1: There is no loss in generality if the polynomial
(24) is chosen to be monic.

The characteristic equation of the control system in Fig. 2
corresponds to the expression 1+ G;(s)G,(s) =0. To
represent the plant G,(s), the approximation through the
first-order Padé model given by (6) will be used, and for the
controller G,(s), equation (19) will be employed. The
characteristic polynomial results in
d,s* + (aydy + dy — byny)s® + (agd, +
a,d; + bgn, — byn;)s? + (agd, + byny —
bing)s + byn,
To consider the approximation of (4) by the Taylor series
expansion given by (5), it is enough to set b, = 0 in equation
(25). In the following, a result is presented that allows

calculating the constants of the controller G,(s) in the form
(19).

(25)

d +

y

Figure 2. Block diagram for computing the controller G, (s).

Theorem 2: The constants d,,d;,e,,e; and e, of the
controller G, (s) in equation (19) are given by solving the set
of simultaneous equations
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[al 1 _bl O

rono o lal [

a, —b; 0 |le,| =]tz (26)
0 ao 0 bo _bl |81| tl
0 0 0 0

bO leoj tO

Proof: Straightforward, by equating the coefficients of the
polynomials (24) and (25).

A legitimate question is why equation (11) of the PID
controller is represented in form (19). If equation (11) is used
directly to construct the characteristic polynomial in (25), the
resulting system of equations is nonlinear and
overdetermined instead of the simple form obtained in (26).

Remark 2: The determinant of the coefficient matrix in (26)
is equal to by (bo* + a,boby + aghy,”). Foritto be zero, by =
0 must occur. But this is impossible since the gain K in (4)
must also be zero. That is, (26) has a unique solution, so one
can always find values of the controller parameters
Ky, Ki,, Kq, and 7, using (16) from Theorem 1.

The following result shows that the controller G,(s),
with the constants d,, d4, e,, e;, and e, calculated by solving
(26), ensures that the component of the controlled output
y(t) in response to a constant disturbance signal d(t) tends
asymptotically to zero.

Theorem 3: If in the control system of Fig. 2, the controller
parameters in (19) are selected by solving the set of
simultaneous equations (26) then the component of the
disturbance response at the controlled output y(t)
approaches zero asymptotically with a desired overshoot
(0S) and settling time (T,) when a step-type disturbance
signal d(t) is applied.

Proof: Given the specifications 0S and T, and using the
dominant pole guarantee criterion, the desired closed-loop
polynomial (24) is obtained. For a disturbance signal of
constant but unknown amplitude p, we have D(s) = p/s.
Using (2), we can compute the steady-state value of the
response component of the controlled output as
lsl_r}r(} S Gya(s)D(s)
Y(s)

Employing (6) and (19) in the expression for G,,4 we obtain

. s?(=bys + by)(dys +dy) p

lim —

550 (tys* + t353 + 82 +tys+ty) s
Since the limit is equal to zero, the theorem is established.

Remark 3: It should be noted that if the Taylor
approximation (5) is used for the FOPTD plant, Theorem 3
remains valid.

3.2 Synthesis of controller G, (s)

To synthesize the G,,(s) controller, a criterion for
assigning zeros to the closed-loop transfer function (3) will
be used. For ease of reference, equation (3) is rewritten as

_Y(s) _ Gra(5)Gy(s)
Gyr(s) = =
R(s) 1+ G(5)Gy(s)
Using in (27), equations (6), (19), and (21) to represent
Gy (5), G1(5), and Gy, (s), respectively, results in

(27)

—b1ny53+(bgny—byng)s?+(bgny—byng)s+bgong
f4S4+t3S3+t252+t1S+f0

Gyr(5) = (28)

A zero assignment criterion selects the G,, controller
constants in (21) by making.

bony = tg
bony — byng =ty
bony —biny = t;
Or equivalent,

ny = to/bg
™M=, (29)
_ty+ by

Theorem 4: If the controller parameters in (21) are
calculated using (29), then the controlled output y(t) in the
control system of Fig. 1 will track with zero steady-state error
a reference signal of step, ramp, or parabola type.

Proof: Using (28) and taking the Laplace transform of
equation (1) gives
E(s) = [1 - Gy (s)]R(s)
The steady-state value of the tracking error is obtained by
e(0) =lims[1 — G, (s)]R(s)
s-0

Or, equivalently, through the expression
N(s)
tast+tzs3+tas2+t s+tg

|Rs)

(@) =lins |

Where
N(s) = tys* + (t3 + byny)s® + (t, — bgn, + byny)s? +
(ty — bony + bing)s + (tg — bony)
Considering R(s) = u/s* with u a constant value, and k =
1, 2, or 3 depending on whether the reference signal is a step,

a ramp, or a parabola, respectively. Using (29), the above
limit tends to zero; thus, the theorem is established.

3.3 Synthesis of controller G, (s)

The synthesis of this controller is immediate. Using
(21) gives G, = G, — G4, and the PID controller constants
in (20) are computed by
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fo=n0—¢€
fi=n—e
f=n;—e;
It is recalled again that the constants of the PID controllers
in the form of equations (11), (12) and (14) can be obtained

from the constants computed in the form of equations (19),
(20) and (21), respectively, using equation (16) of Theorem
1.

(30)

3.4 Synthesis procedure for the 2-DoF PID controller

For ease of reference, Table 1 summarizes the design
procedure for controllers G, (s), G1,(s), and G,(s).

Table 1. Design procedure for the 2-DoF PID controller.

Input Constants by, by, a1, and a, in equations (5) or (6),
depending on the time-delay 6, approximation for
the FOPTD model of the plant. Constants
to,ty,ty, tz and t, of the desired closed-loop
polynomial in (24) from the 0S and T, design
specifications.

Step 1 Solve (26) to compute constants d,, d4, e, €1, and
eq for controller G, (s) in (19).

Step 2 Apply (16) to find controller constants K, , K; ,
Kq,,and g in (11) (74 = 14, = 74,)

Step 3 Use (29) to determine the constants n,, nq, and n,
for controller G, (s) in (21).

Step 4 Use (30) to determine the constants f,, f;, and f
for controller G, (s) in (20).

Step 5 Apply (16) to find constants K, , K;,, Kg,, and 74
in (12)

Output | Controllers G;(s) and G,(s) in (11) and (12),
respectively.

4 Results

In this section, several examples highlight different
aspects of the design method for FOPTD systems (examples
1 - 3) and how the technique can be applied to other types of
systems (examples 4 and 5).

4.1 Example 1

A heat flow process (Teppa-Garran et al., 20253a) is
considered, which consists of a fiberglass duct with a heater
and a blower located at one end and three temperature
sensors along the duct. The controlled output corresponds to
the temperature, and the control signal is the voltage applied
to the heating element (the blower voltage is kept constant).
The transfer function gives the temperature model at the third
(furthest) sensor.

Y(s) 61
U(s) 28s+1
Using equations (5) and (6) to approximate the time delay in

(31) results in the following design plant models,
respectively.

—0.85s

(31)

0.256
- 32
6(5) = T 12125 + 0.042 (32)
—0.218s + 0.513
Gy(s) = (33)

s2 + 2.389s + 0.084
To compute the desired closed-loop polynomial in (24), the
design specifications were 0S = 10 % and Ty = 40s. The
two fast poles are repeated and fixed ten times, the real part
of the dominant poles. Applying the design procedure
specified in Table 1, the controllers (11) and (12) parameters
are computed, and their values are given in Table 2. It can be
seen that controller G, is PD. To generate the following
figures, the FOPTD model (31) represents the plant in the
control system of Fig. 1. For controllers G, and G, the values
of Table 2 are employed depending on the time-delay
approximation method. Fig. 3 shows the response to a step-
type disturbance. Figures 4, 5, and 6 display the tracking of
a step, ramp, and parabola input reference, respectively. It
can be seen that the disturbance rejection is achieved in the
desired settling time, but not with the desired overshoot. The
fact that an irrational model, very different from the linear
one used in the design of the controllers, is employed to
represent the plant in the simulation produces differences.
Tracking is attained for all the reference inputs, being best
for the parabola and slightly deteriorating until the step. Fig.
7 illustrates the tracking of a reference input composed of a
combination of ramps and steps, and Fig. 8 presents the
evolution of the control signal for this case. The tracking is
very satisfactory for both approximations of the delay-time,
using a lower control effort for the Padé approximation.

Table 2. Constant values of PID controllers in Equations (11) and
(12) for Example 1.

T4

Ky, K;, Kq, Ky, | Ki, | Ka, le

2
Padé 1.39 | 0.14 0.42 0.16 0 0.98 | 4.84
Taylor | 0.68 | 0.06 | 0.0005| 0.16 0 4.67 | 1.01

0.8

Temperature (° C)

0.1 I I I I
0 5 10 15 20 25 30 35 40

Time (s)

Figure 3. Step disturbance response for Example 1.
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Figure 5. Ramp tracking response for Example 1.
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Figure 6. Parabola tracking response for Example 1.
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Figure 8. The heating voltage applied for the heat flow process.
4.2 Example 2

In the previous example, the relationship 8,/T < 1
was fulfilled in (4). In this example, we will deal with the
more demanding situation where 6,/T > 1. For this
purpose, it is considered a high-order process described as

Y(s) 1
U(s) (s+ 1)1
Employing the least-squares fitting between process and

model frequency responses (Hang and Bi, 1997), the
following FOPTD model is obtained.

Y(s) 1
U(s) 272s+1

By applying the design procedure of Table 1, the
parameters of the controllers (11) and (12) are given in Table
3. To compute the desired closed-loop polynomial in (24),
the design specifications were 0S = 10 % and T, = 80 s.
The two fast poles are repeated and fixed five times the real
part of the dominant poles.

Figure 9 shows the tracking of a combined reference
input and the rejection of a constant disturbance signal
applied from time t = 400 s. The FOPTD model of the plant
(35) was used for the simulation. It can be seen that the
performance using the Taylor or Padé approximations for the
delay time is similar.

Fig. 10 compares the performance of the 2-DoF
controller designed with the proposed method (Table 3,
Taylor) with that of a 1-DoF PID tuned by the popular Chien-
Hrones-Reswick (CHR) method (Teppa-Garran et al., 2021).
It may seem that the latter's performance is superior, but it
should be noted that the simulation for this case uses the
linear model obtained from (35) by employing equation (5).
When the FOPTD model (35) is used directly to represent
the plant, the PID-CHR controller fails to stabilize the plant,
as illustrated in Fig. 11.

(34)

e—7.69s (35)

Table 3. Constant values of PID controllers in Equations (11) and
(12) for Example 2.

|
200

|
300

I
400

500

Time (s)

Figure 7. Temperature tracking response for the heat flow process
comparing the Padé and Taylor approximations.

Td
KP1 Kl'1 Kd1 sz Kl'z Kdz le
2
Padé 0.490| 0.096| 0.698 1 0 0.508 | 20.51
Taylor | 0.116] 0.091| 0.322 1 0 1.065 | 9.77
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Figure 9. Tracking and disturbance-step rejection for Example 2
by comparing the Padé and the Taylor approximations.
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Figure 10. Tracking and disturbance-step rejection for Example 2,
comparing the proposed method with a PID tuned by the CHR
method.
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Figure 11. The PID controller tuned by the CHR method fails to
stabilize the system in Example 2.

4.3 Example 3

Now we consider an open-loop unstable system
described by the following FOPTD model (Yuce, 2023).
Yis) 1
UGs) s—1

—0.4s

(36)

The desired closed-loop polynomial is computed for the
specifications 0S = 0.05% and T; = 20s. The two fast
poles are repeated and fixed ten times, the real part of the
dominant poles. Using the Taylor method (5) to approximate
the time delay in (36) and applying the design procedure of
Table 1 gives the controllers.

0.046 0.283s

+ 0.345s +1
1.74s

0.345s + 1
Using equations (36) — (38), the control system of Fig. 1
gives the response of Fig. 12. It can be appreciated that the
correct tracking of the trapezoidal reference input and the
rejection of a constant disturbance of negative amplitude
applied from time t = 25 s.

G,(s) = 1.251 + (37)

Gy(s) = -1+ (38)

1.2 +
1k
0.8
o
©
208 1
g = = =Input reference
T04 Controlled output
0.2
0
| | | |
s} 10 20 30 40 50
Offset=0 Time (s}

Figure 12. Tracking and disturbance rejection for an open-loop
unstable process in Example 3.

4.4 Example 4

This example shows that the proposed method can be
adapted to plants other than the FOPTD system. The state
equations for a nonlinear model of a coupled tank system
(Teppa-Garran et al., 2025b) are

%1 (t) = —0.904+/x,(t) + 0.258u(t)
%, (t) = 0.904/x,(t) — 0.508,/x,(t)
y(t) = x,(t)
The variables x, and x, are the levels of tanks 1 and 2,
respectively. They are restricted to the interval [0, 30] cm.
The control signal u(t) is the voltage applied to a pump,
limited to the range [0, 21] V, and the controlled output y(t)
is the second tank level. To use the design method, the

equation (39) is linearized at the point (15, 15) cm, resulting
in the transfer function.
0.0302

G(S) = 201835 + 0.0077
Equation (40) has the form (5) (Taylor). Hence, a 2-DoF PID
can be designed using the proposed method. To that end, the
desired closed-loop polynomial is computed for the

(39)

(40)
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specifications 0S = 0.05% and T; = 50s. The two fast
poles are repeated and fixed ten times, the real part of the
dominant poles. The design procedure of Table 1 gives the
controllers.

0.181  18.071s

=2. 41

G,(s) =2.232 + * 06325 7 1 (41)
9.556s

= 0. _ OO0 42

G,(s) 0255+0.634$+1 (42)

Figure 13 shows the tracking response of the second-level
tank to an input reference combining different ramps and
steps. From the time instant t =325s, a constant
disturbance signal is applied. The nonlinear model of the
tank given in (39) has been used for the simulation. Figure
14 shows the voltage of the pump; it can be seen that it is
always within the limits of pump operation.

8]
o

[
=

k
wn

Input reference
2nd Tank Level (cm)

F)
=

2nd Tank Level (cm)

| | |
200 300 400
Time (s)

500

Figure 13. The second tank level response of the coupled tank
system is shown in Example 4.

-
2]

-
i

—
[N

-
o

@

Purmp Voltage (V)
(0]

i

300 400

200
Time (s)

500

Figure 14. The voltage applied to the pump of the coupled tank
system in Example 4.

4.5 Example 5

Consider a large chemical plant with the following
transfer function (Tewari, 2003).

Y(s) 0.0033

U(s) s34+ 0.630s2 + 0.109s + 0.0033

(43)

The output is the temperature, and the input is the mass flow
rate of the Xylene gas. To obtain the design model in the
form (5), the order reduction method (Kuo, 1991) is applied,

resulting in
0.0078

Gp(S) = 2302425 +0.0078

The desired closed-loop polynomial is computed for the

specifications 0S = 0.1 % and T; = 30 s. The two fast poles

are repeated and fixed ten times, the real part of the dominant

poles. The design procedure of Table 1 gives the controllers.
4.308 214.66s

(44)

G,(s) = 26.445 + + 03725 7 1 (49)
83.5s

e 46

G(8) =1+ 53705+ 1 (46)

The satisfactory temperature tracking of the large chemical
plant can be seen in Fig. 15. The third-order model of the
plant (43) is used in the simulation. The complete rejection
of a constant disturbance signal applied from time t = 200
s can also be observed.

30

25

20

15

= = =|nput reference
Kylene gas temperature (2 C)

Temperature (2 C)

150 200 250
Time (s)

Figure 15. Temperature tracking and disturbance rejection for the
large chemical plant of Example 5.

0 50 100 300

Discussion and Conclusions

A simple model-based method for the design of two-
degree-of-freedom PID controllers based on a polynomial
approach for FOPTD systems is proposed in this work. The
problems of constant disturbance signal rejection and
tracking step, ramp, or parabola reference inputs are solved
independently. The constant disturbance rejection problem is
solved by imposing a dominant pole guarantee criterion that
allows choosing a desired overshoot and settling time in the
temporal response. The tracking problem is solved by
assigning zeros to the closed-loop transfer function.

Three examples of FOPTD system models are
considered to cover the main cases that may arise in practical
situations. That is, when the ratio of the delay time to the
system time constant is greater than or less than one, and
when the system is open-loop unstable. No specific
advantages were found in using the Taylor or Padé methods
to approximate the delay time in the FOPTD system. Other
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two examples show that although the method was designed
for FOPTD systems, it can be extended to different systems.

A weakness of the method is that the assignment of
zeros imposed to solve the tracking problem can deteriorate
the overshoot and settling time conditions of the transient
component of the response. This is because the zeros cannot
be fixed arbitrarily; their values come from solving equations
that depend primarily on the characteristic polynomial
coefficients, which rely on the overshoot and settling time
specifications. What we wish to point out is that
specifications could generate dominant zeros (near the
imaginary axis of the complex plane), which cause a further
increase in overshoot.

Another contribution of this work is that the proposed
method allows tuning the four parameters of a PID controller
expressed in the parallel form given by equation (9). In one
example, it is observed that current tuning procedures, which
initially focus on tuning the proportional, integral, and
derivative constants using well-known rules and then
adjusting the derivation filter parameter through predefined
relationships, can result in poor performance.
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