
Artículo de Investigación. Revista Ciencia e Ingeniería. Vol. 47, No. 1, pp. 29-40, diciembre-marzo, 2026.  

ISSN 1316-7081. ISSN Elect. 2244-8780 Universidad de los Andes (ULA) 

Revista Ciencia e Ingeniería. Vol. 47, No. 1, diciembre-marzo, 2026 

 

 

 

Algebraic design of two-degree-of-freedom PID controllers for 

FOPTD systems 

Diseño algebraico de controladores PID de dos grados de 

libertad para sistemas FOPTD 

 Teppa-Garran, Pedro1*; Caraballo, Luis2; Garcia, Germain3 

1Departamento de Gestión de Proyectos y Sistemas, Universidad Metropolitana, Caracas, Venezuela. 
2Escuela de Ingeniería Eléctrica, Universidad Metropolitana, Caracas, Venezuela. 

3CNRS, LAAS, 7 Avenue du Colonel Roche, Toulouse, France, Université de Toulouse, INSA, Toulouse, France. 
*pteppa@unimet.edu.ve 

 

Abstract 

 

This work proposes a model-based tuning method for two-degree-of-freedom PID controllers founded on a polynomial 

approach and fundamental notions of control theory for first-order plus time-delay (FOPTD) systems. The technique achieves 

rejection of constant disturbance signals through a time response that asymptotically approaches zero with a specified 

overshoot and settling time. Likewise, tracking with zero steady-state error of persistent reference inputs such as step, ramp, 

or parabola is also attained. Another contribution of the method is that it allows tuning the four PID controller parameters. 

Several examples show the ease of implementation of the technique, its effectiveness, and how it can be extended to systems 

other than FOPTD. 

 

Keywords: PID, Two-degree-of-freedom PID, Time delay systems, FOPTD, Tracking, Disturbance Rejection, Heat flow 

process, Coupled tank system, United Nations SDG 9. 

 

Resumen 

 

Este trabajo propone un método basado en modelos para la sintonización de controladores PID de dos grados de libertad 

para sistemas de primer orden con retardo en el tiempo (FOPTD) fundamentado en un enfoque polinómico y nociones básicas 

de la teoría de control. La técnica logra el rechazo de señales de perturbación constante mediante una respuesta temporal que 

tiende asintóticamente a cero con un sobrepico y un tiempo de establecimiento especificados. Asimismo, se logra un 

seguimiento con error de estado estacionario cero de entradas de referencia persistentes, como el escalón, la rampa o la 

parábola. Otra contribución del método es que permite ajustar los cuatro parámetros del controlador PID. Varios ejemplos 

muestran la facilidad de implementación de la técnica, su eficacia y su extensión a sistemas distintos de los FOPTD.  

 

Palabras clave: PID, PID de dos grados de libertad, Sistemas con tiempo de retardo, FOPTD, Seguimiento, Rechazo de 

perturbaciones, Proceso de flujo de calor, Sistema de tanques acoplados, ODS 9 de las Naciones Unidas. 

 

1   Introduction 

Two fundamental problems arise in the design of 

control systems: tracking a reference input and rejecting 

disturbance signals. A basic notion of control theory is that a 

physical variable can behave in a prescribed manner by using 

the difference between a desired reference value and the 

actual output value until the two are matched. This notion 

results in the classic feedback control loop, where the control 

signal is generated using the difference of signals indicated 

above; this scheme is also called a one-degree-of-freedom 

(1-DoF) controller. The degree of freedom of a control 

system is defined as the number of closed-loop transfer 

functions that can be independently adjusted (Teppa-Garran 

et al., 2023).  

Time-delay control systems are present in numerous 

industrial applications, such as chemical engineering, 

biochemistry, aerospace, and power generation, to name just 

a few (Gu and Niculescu, 2003; Birs et al., 2019). Even if it 

is not a natural component of the process, actuators and 

sensors in a control system introduce time delays in its 

operation (Richard, 2003; Ai et al., 2016). The main reason 



30                                                                                                                                                               Teppa-Garran et al. 

Revista Ciencia e Ingeniería. Vol. 47, No. 1, diciembre-marzo, 2026 

 

for time delays in industrial processes is transporting 

materials or energy in long pipelines (Bresch-Pietri et al.,  

2014) or data traffic in communication networks (Ariba et 

al., 2009). Time delay is known to degrade process 

performance. From the frequency domain point of view, 

delay introduces an additional lag in the process phase. This 

results in lower phases, gain margins, and the possibility of 

losing stability. This has led to the study of the stability of 

time delay systems by the Lyapunov and Krasovskii analysis 

(Hale and Lunel, 2013) and variants within this general 

analysis procedure, such as the Wirtinger-based inequality 

(Seuret and Gouaisbaut, 2013), and the Bessel-Legendre 

inequalities (Zhang et al., 2019, 2022). 

As a special case of time-delay systems, many open-

loop industrial processes of practical interest can be 

effectively modeled by a low-order transfer function cascade 

with a time delay. First-order plus time-delay (FOPTD) 

systems are the most commonly employed process model in 

control design (O’Dwyer, 2009). 

The proportional-integral-derivative (PID) controller is 

the industry's most widely used control strategy nowadays 

(Åström and Hagglund, 1995; Desborough and Miller, 

2002). Its success is attributed to its simple structure, the 

meaning of its three parameters, its easy understanding by 

technical personnel, and because it provides stability and fast 

responses for a wide range of operating conditions.  

However, despite its wide use, many poorly tuned PID 

controllers are found at the industrial level (Lee et al., 2015). 

In controlling systems with time delay, the performance of 

PID controllers also has limitations. Several factors can be 

listed to explain this situation, such as nonlinearities, 

uncertainties, external disturbances, variable loads, etc. (Liu 

and Daley, 2001). Still, one essential reason is that a 1-DoF 

controller must achieve a compromise between tracking a 

reference input and disturbance attenuation (Vilanova et al., 

2011; Teppa-Garran et al., 2023). In a two-degree-of-

freedom (2-DoF) controller, the reference input and the 

controlled output are processed independently to generate 

the control signal. This additional degree of freedom allows 

the two fundamental control problems mentioned at the 

beginning to be solved separately. The need to satisfactorily 

solve both issues motivated the introduction of two-degree-

of-freedom PID controllers (2-DoF PID) (Araki, 1985; Araki 

and Taguchi, 2003). Since then, many methods for tuning 

their parameters have been proposed, including the internal 

model control (Mamat, 2013; Jin and Liu, 2014). The gain-

phase margin (Xing et al., 2006). The maximum sensitivity 

function (Alfaro et al., 2010). The fractional order PID 

controller (Sharma et al., 2015). The desired dynamic 

equation (Zhang et al., 2010). Combining the desired 

dynamic equation with the generalized frequency method 

(Wang et al., 2018) and fuzzy control (Bi, 2020). 

Most of these methods rely on complex mathematical 

notions that undermine the simplicity of understanding the 

PID operation by industrial technical personnel. The main 

contribution of our study is to propose a methodology for 

tuning the four parameters (𝐾𝑝, 𝐾𝑖 , 𝐾𝑑, 𝜏𝑑) of a 2-DoF PID 

controller for a FOPTD plant using a straightforward 

algebraic approach based on elementary notions of control 

theory. To this end, a 2-DoF general control system 

architecture defined by (Araqui and Taguchi, 2003) is 

employed, which consists of a feedforward and a serial PID 

controller. The disturbance attenuation problem is solved 

using a dominant pole guarantee criterion proposed in 

(Persson and Åström, 1992) and used in various applications, 

for instance (Teppa-Garran and Garcia, 2017; Teppa-Garran 

and Vasquez, 2020). Applying the dominant pole guarantee 

criterion, the control system's response to any constant 

disturbance signal tends asymptotically to zero, exhibiting a 

desired overshoot and settling time. On the other hand, the 

problem of tracking persistent signals of the step, ramp, or 

parabola type is solved using a zero assignment criterion for 

the closed-loop transfer function. Several numerical 

examples show the proposed methodology's effectiveness 

and ease of implementation. 

The results of this work promote innovation in the 

control of industrial processes by improving the tuning of 

PID controllers in a 2-DoF control system architecture and, 

in this way, contribute to SDG 9 of the United Nations.  

2   Problem formulation and basic notions 

The control scheme in Fig. 1 shows a general two-

degree-of-freedom architecture (Araqui and Taguchi, 2003). 

The signal 𝑟(𝑡):ℝ+ → ℝ  is the reference input, 𝑑(𝑡): ℝ+ →
ℝ  is a disturbance signal, 𝑦(𝑡):ℝ+ → ℝ  corresponds to the 

controlled output, 𝑢(𝑡):ℝ+ → ℝ is the control signal, and 𝑡 
represents the independent time variable. The controller 

consists of two PID compensators represented by the transfer 

functions 𝐺1(𝑠) and 𝐺2(𝑠). The tracking error is defined by 

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) (1) 

There are two closed-loop transfer functions in Fig. 1. One 

from 𝑑 to 𝑦 and the other from 𝑟 to 𝑦; they are given 

respectively by the expressions. 

𝐺𝑦𝑑(𝑠) =
𝑌(𝑠)

𝐷(𝑠)
=

𝐺𝑝(𝑠)

1 + 𝐺1(𝑠)𝐺𝑝(𝑠)
 (2) 

𝐺𝑦𝑟(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=
[𝐺1(𝑠) + 𝐺2(𝑠)]𝐺𝑝(𝑠)

1 + 𝐺1(𝑠)𝐺𝑝(𝑠)
 (3) 

 

Figure 1. Two-degree-of-freedom (2-DoF) control system. 
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2.1 Plant model 

The plant is modeled by a first-order system with 

transport delay 𝜃𝑑 (FOPTD) characterized by the transfer 

function. 

𝑌(𝑠)

𝑈(𝑠)
=

𝐾

𝑇𝑠 + 1
𝑒−𝜃𝑑𝑠 (4) 

In this work, the transport delay is approximated in two 

different ways. (i) Using the denominator Taylor series 

expansion (𝑒−𝜃𝑑𝑠 ≈ 1 (1 + 𝜃𝑑𝑠)⁄ ) (Hanta and Procháska, 

2009). The plant model takes the form 

𝐺𝑝(𝑠) =
𝑏0

𝑠2 + 𝑎1𝑠 + 𝑎0
 (5) 

Where 

𝑏0 = 𝐾 𝑇𝜃𝑑⁄ , 𝑎1 = (𝑇 + 𝜃𝑑) 𝑇𝜃𝑑⁄ , 𝑎0 = 1 𝑇𝜃𝑑⁄  

(ii) Using a first-order Padé model (𝑒−𝜃𝑑𝑠 ≈

(2 − 𝜃𝑑𝑠) (2 + 𝜃𝑑𝑠)⁄ ) (Hanta and Procháska, 2009) allows 

us to obtain the following transfer function for the plant 

𝐺𝑝(𝑠) =
−𝑏1𝑠 + 𝑏0

𝑠2 + 𝑎1𝑠 + 𝑎0
 (6) 

Where 

𝑏1 = 𝐾 𝑇⁄ , 𝑏0 = 2𝐾 𝑇𝜃𝑑⁄ , 𝑎1 = (2𝑇 + 𝜃𝑑) 𝑇𝜃𝑑⁄ , 𝑎0 =
2 𝑇𝜃𝑑⁄  

Equations (5, 6) will be used to design the PID 

controllers 𝐺1(𝑠) and 𝐺2(𝑠) of Fig. 1. 

2.2 PID controller 

The mathematical model of a PID controller is given by 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏 + 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡) (7) 

Or, in the Laplace domain, through the equation 

𝑈(𝑠) = (𝐾𝑝 +
𝐾𝑖
𝑠
+ 𝐾𝑑𝑠)𝐸(𝑠) (8) 

The error signal 𝑒(𝑡) is used to generate the proportional, 

integral, and derivative actions, which are combined to form 

the control signal 𝑢(𝑡).  The PID controller parameters are 

the proportional 𝐾𝑝, the integral  𝐾𝑖, and the derivative 𝐾𝑑 

constants. These constants must be tuned to meet the design 

requirements, and several empirical tuning rules have been 

formulated for this purpose. A non-exhaustive list is given in 

(Teppa-Garran et al., 2021). These easy-to-implement rules 

provide tuning methods for PID controller parameters that 

often do not result in the best constant settings (Lee et al., 

2014). For this reason, optimal tuning methods have been 

proposed: based on genetic algorithms (El-Deen et al., 2015; 

Gunawan et al., 2018), computer-assisted (Teppa-Garran et 

al., 2021; Teppa-Garran and El Gharib, 2024), or based on 

the linear-quadratic regulator (Teppa-Garran et al, 2025a). 

In practical applications, the pure derivative action in 

(7) is never used, due to the derivative kick and the 

amplification of measurement noise (Atherton and Majhi, 

1999; Zhu, 2009). For this reason, the derivative term is 

cascaded with a first-order low-pass filter, resulting in 

equation (8) becoming, 

𝑈(𝑠) = (𝐾𝑝 +
𝐾𝑖
𝑠
+

𝐾𝑑𝑠

𝜏𝑑𝑠 + 1
)𝐸(𝑠) (9) 

All the rules (empirical and optimal) mentioned previously 

consider only the tuning of the three constants 𝐾𝑝, 𝐾𝑖, and 

𝐾𝑑, but not the term 𝜏𝑑. Subsequent simulations based on 

predefined ranges are usually used to determine the latter. 

For example, the following interval is proposed in (Goodwin 

et al., 2001). 

0.1(𝐾𝑑 𝐾𝑝⁄ ) ≤ 𝜏𝑑 ≤ 0.2(𝐾𝑑 𝐾𝑝⁄ ) (10) 

In this study, the transfer functions of the PID 

controllers 𝐺1(𝑠) and 𝐺2(𝑠) are modeled by an equation of 

the form (9). Another significant contribution of this work is 

the proposal of a method that directly adjusts the four 

parameters of the PID controller. 

2.3 Problem formulation 

This work simultaneously aims to solve the two 

fundamental control problems mentioned in the introduction. 

To this end, the following problem is formulated. 

 

Problem 1: Given a plant model in the form (5) or  (6), 

determine the four parameters in the controllers 𝐺1(𝑠) and 

𝐺2(𝑠) modeled through (9) so that the controlled output 𝑦(𝑡) 
in the control system of Fig. 1 satisfies the following two 

conditions: (i) It approaches asymptotically to zero 

exhibiting a desired overshoot (𝑂𝑆) and settling time (𝑇𝑠)  
when a constant disturbance signal 𝑑(𝑡) is applied. (ii) It 

tracks with zero steady-state error a reference input 𝑟(𝑡) of 

step, ramp, or parabola type. 

3   Problem solution 

This section develops the method for synthesizing the 

controllers 𝐺1(𝑠) and 𝐺2(𝑠) to solve problem 1. The transfer 

function of 𝐺1(𝑠) is given by 

𝐺1(𝑠) = 𝐾𝑝1 +
𝐾𝑖1
𝑠
+

𝐾𝑑1𝑠

𝜏𝑑1𝑠 + 1
 (11) 

And the transfer function of 𝐺2(𝑠) through 

𝐺2(𝑠) = 𝐾𝑝2 +
𝐾𝑖2
𝑠
+

𝐾𝑑2𝑠

𝜏𝑑2𝑠 + 1
 (12) 

In this work, it is assumed that the following condition is 

satisfied in (11) and (12) 

𝜏𝑑 = 𝜏𝑑1 = 𝜏𝑑2 (13) 

Let the controller 𝐺12(𝑠) be defined as 

𝐺12(𝑠) = 𝐺1(𝑠) + 𝐺2(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠
+

𝐾𝑑𝑠

𝜏𝑑𝑠 + 1
 (14) 

Where 𝐾𝑝 = 𝐾𝑝1 + 𝐾𝑝2, 𝐾𝑖 = 𝐾𝑖1 + 𝐾𝑖2 and 𝐾𝑑 = 𝐾𝑑1 +

𝐾𝑑2. A fundamental result for this study is shown below. 
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Theorem 1: Any controller of the form 

𝐺𝑐(𝑠) =
𝐴𝑠2 + 𝐵𝑠 + 𝐶

𝐷𝑠2 + 𝐸𝑠
 (15) 

It is identical to a PID controller expressed by the equation 

(9), where 

𝐾𝑝 =
𝐵𝐸 − 𝐶𝐷

𝐸2
 

𝐾𝑖 =
𝐶

𝐸
 

𝐾𝑑 =
𝐴𝐸2 − 𝐵𝐷𝐸 + 𝐶𝐷2

𝐸2
 

𝜏𝑑 =
𝐷

𝐸
 

(16) 

 

Proof: Equation (9) is rewritten as 

(𝐾𝑑1 + 𝐾𝑝1𝜏𝑑)𝑠
2 + (𝐾𝑝1 + 𝐾𝑖1𝜏𝑑)𝑠 + 𝐾𝑖1
𝜏𝑑𝑠

2 + 𝑠
 (17) 

And (15) as 

𝐴
𝐸
𝑠2 +

𝐵
𝐸
𝑠 +

𝐶
𝐸

𝐷
𝐸
𝑠2 + 𝑠

 (18) 

The result is established by equating (17) and (18). 

 

Considering Theorem 1 and the condition (13), the 

transfer functions of the controllers 𝐺1(𝑠), 𝐺2(𝑠), and 𝐺12(𝑠) 
can be expressed by equations (19), (20), and (21), 

respectively. 

𝐺1(𝑠) =
𝑒2𝑠

2 + 𝑒1𝑠 + 𝑒0
𝑑2𝑠

2 + 𝑑1𝑠
 (19) 

𝐺2(𝑠) =
𝑓2𝑠

2 + 𝑒𝑓1𝑠 + 𝑓0
𝑑2𝑠

2 + 𝑑1𝑠
 (20) 

𝐺12(𝑠) = 𝐺1(𝑠) + 𝐺2(𝑠) =
𝑛2𝑠

2 + 𝑛1𝑠 + 𝑛0
𝑑2𝑠

2 + 𝑑1𝑠
 (21) 

Where 𝑛2 = 𝑒2 + 𝑓2, 𝑛1 = 𝑒1 + 𝑓1, and  𝑛0 = 𝑒0 + 𝑓0. 

3.1 Synthesis of controller 𝑮𝟏(𝒔) 

The PID controller in (11) with condition (13) 

expressed in the form (19) is to be designed such that the time 

component of the controlled output 𝑦(𝑡) in response to a 

constant disturbance 𝑑(𝑡) tends asymptotically to zero with 

a desired overshoot (𝑂𝑆) and settling time (𝑇𝑠). This 

objective is best appreciated in the block diagram of Fig. 2, 

which results from the simplification of the diagram in Fig. 

1 by setting 𝑟(𝑡) = 0. 

 

A dominant pole guarantee criterion specifies the 

closed-loop performance requirements of the time response 

to a constant disturbance signal. This criterion allows the 

construction of a desired closed-loop polynomial consisting 

of a pair of complex conjugate poles that will dominate the 

time response dynamics, with the remaining poles making a 

negligible contribution. The dominance of the complex 

conjugate pole pair 𝑠1,2 = −𝛼 ± 𝑗𝛽  requires that the ratio of 

the real parts of the other poles to –𝛼 exceeds a factor 𝜆 (𝜆 

is typically taken as 3 to 10 times). Thus, the other poles are 

positioned to the left of the vertical line 𝑠 = −𝜆𝛼. In this 

work, the desired closed-loop polynomial is expressed as 

(𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2)(𝑠 + 𝜆𝜁𝜔𝑛)

2 (22) 

The damping coefficient 𝜁 and the natural frequency 𝜔𝑛 of 

the dominant poles are determined in terms of the desired 

overshoot 𝑂𝑆 and settling time 𝑇𝑠 by making (Dorf and 

Bishop, 2017). 

𝑂𝑆 = 𝑒(−𝜁𝜋
√1−𝜁2⁄ )

 ⟹ 𝜁 =
1

√1+(
𝜋

𝑙𝑛(𝑂𝑆)
)
2
 

𝑇𝑠 = 4 (𝜁𝜔𝑛)⁄ ⟹ 𝜔𝑛 =
4

𝜁𝑡𝑠
 

(23) 

In this way, the desired closed-loop polynomial will meet 

some design time requirements and will be expressed as 

𝑡4𝑠
4 + 𝑡3𝑠

3 + 𝑡2𝑠
2 + 𝑡1𝑠 + 𝑡0 (24) 

With known parameters 𝑡𝑖 > 0.   

 

Remark 1: There is no loss in generality if the polynomial 

(24) is chosen to be monic. 

 

The characteristic equation of the control system in Fig. 2 

corresponds to the expression 1 + 𝐺1(𝑠)𝐺𝑝(𝑠) = 0. To 

represent the plant 𝐺𝑝(𝑠), the approximation through the 

first-order Padé model given by (6) will be used, and for the 

controller 𝐺1(𝑠), equation (19) will be employed. The 

characteristic polynomial results in 

𝑑2𝑠
4 + (𝑎1𝑑2 + 𝑑1 − 𝑏1𝑛2)𝑠

3 + (𝑎0𝑑2 +

𝑎1𝑑1 + 𝑏0𝑛2 − 𝑏1𝑛1)𝑠
2 + (𝑎0𝑑1 + 𝑏0𝑛1 −

𝑏1𝑛0)𝑠 + 𝑏0𝑛0  
(25) 

 To consider the approximation of (4) by the Taylor series 

expansion given by (5), it is enough to set 𝑏1 = 0 in equation 

(25). In the following, a result is presented that allows 

calculating the constants of the controller 𝐺1(𝑠) in the form 

(19). 

 

Figure 2. Block diagram for computing the controller 𝐺1(𝑠). 

Theorem 2: The constants 𝑑2, 𝑑1, 𝑒2, 𝑒1, and 𝑒0 of the 

controller 𝐺1(𝑠) in equation (19) are given by solving the set 

of simultaneous equations 
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[
 
 
 
 
1 0 0 0 0
𝑎1 1 −𝑏1 0 0
𝑎0 𝑎1 𝑏0 −𝑏1 0
0 𝑎0 0 𝑏0 −𝑏1
0 0 0 0 𝑏0 ]

 
 
 
 

[
 
 
 
 
𝑑2
𝑑1
𝑒2
𝑒1
𝑒0]
 
 
 
 

=

[
 
 
 
 
𝑡4
𝑡3
𝑡2
𝑡1
𝑡0]
 
 
 
 

 (26) 

 

Proof: Straightforward, by equating the coefficients of the 

polynomials (24) and (25). 

 

A legitimate question is why equation (11) of the PID 

controller is represented in form (19). If equation (11) is used 

directly to construct the characteristic polynomial in (25), the 

resulting system of equations is nonlinear and 

overdetermined instead of the simple form obtained in (26). 

 

Remark 2: The determinant of the coefficient matrix in (26) 

is equal to 𝑏0(𝑏0
2 + 𝑎1𝑏0𝑏1 + 𝑎0𝑏1

2). For it to be zero, 𝑏0 =

0 must occur. But this is impossible since the gain 𝐾 in (4) 

must also be zero. That is, (26) has a unique solution, so one 

can always find values of the controller parameters 

𝐾𝑝1 , 𝐾𝑖1 , 𝐾𝑑1, and 𝜏𝐷 using (16) from Theorem 1. 

 

The following result shows that the controller 𝐺1(𝑠), 
with the constants 𝑑2, 𝑑1, 𝑒2, 𝑒1, and 𝑒0 calculated by solving 

(26), ensures that the component of the controlled output 

𝑦(𝑡) in response to a constant disturbance signal 𝑑(𝑡) tends 

asymptotically to zero. 

 

Theorem 3: If in the control system of Fig. 2, the controller 

parameters in (19) are selected by solving the set of 

simultaneous equations (26) then the component of the 

disturbance response at the controlled output 𝑦(𝑡) 
approaches zero asymptotically with a desired overshoot 
(𝑂𝑆) and settling time (𝑇𝑠) when a step-type disturbance 

signal 𝑑(𝑡)  is applied. 

 

Proof: Given the specifications 𝑂𝑆 and 𝑇𝑠, and using the 

dominant pole guarantee criterion, the desired closed-loop 

polynomial (24) is obtained. For a disturbance signal of 

constant but unknown amplitude 𝜌, we have 𝐷(𝑠) = 𝜌 𝑠⁄ . 

Using (2), we can compute the steady-state value of the 

response component of the controlled output as 

lim
𝑠→0

𝑠 𝐺𝑦𝑑(𝑠)𝐷(𝑠)⏟      
𝑌(𝑠)

 

Employing (6) and (19) in the expression for 𝐺𝑦𝑑, we obtain 

lim
𝑠→0

𝑠2(−𝑏1𝑠 + 𝑏0)(𝑑2𝑠 + 𝑑1)

(𝑡4𝑠
4 + 𝑡3𝑠

3 + 𝑡2𝑠
2 + 𝑡1𝑠 + 𝑡0)

𝜌

𝑠
 

Since the limit is equal to zero, the theorem is established. 

 

Remark 3: It should be noted that if the Taylor 

approximation (5) is used for the FOPTD plant, Theorem 3 

remains valid. 

3.2 Synthesis of controller 𝑮𝟏𝟐(𝒔) 

To synthesize the 𝐺12(𝑠) controller, a criterion for 

assigning zeros to the closed-loop transfer function (3) will 

be used. For ease of reference, equation (3) is rewritten as 

𝐺𝑦𝑟(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

𝐺12(𝑠)𝐺𝑝(𝑠)

1 + 𝐺1(𝑠)𝐺𝑝(𝑠)
 (27) 

Using in (27), equations (6), (19), and (21) to represent 

𝐺𝑝(𝑠), 𝐺1(𝑠), and 𝐺12(𝑠), respectively, results in 

𝐺𝑦𝑟(𝑠) =
−𝑏1𝑛2𝑠

3+(𝑏0𝑛2−𝑏1𝑛1)𝑠
2+(𝑏0𝑛1−𝑏1𝑛0)𝑠+𝑏0𝑛0

𝑡4𝑠
4+𝑡3𝑠

3+𝑡2𝑠
2+𝑡1𝑠+𝑡0

  (28) 

A zero assignment criterion selects the 𝐺12 controller 

constants in (21) by making. 

𝑏0𝑛0 = 𝑡0 

𝑏0𝑛1 − 𝑏1𝑛0 = 𝑡1 

𝑏0𝑛2 − 𝑏1𝑛1 = 𝑡2 

Or equivalent, 

𝑛0 = 𝑡0 𝑏0⁄  

𝑛1 =
𝑡1 + 𝑏1𝑛0

𝑏0
 

𝑛2 =
𝑡2 + 𝑏1𝑛1

𝑏0
 

(29) 

 

Theorem 4: If the controller parameters in (21) are 

calculated using (29), then the controlled output 𝑦(𝑡)  in the 

control system of Fig. 1 will track with zero steady-state error 

a reference signal of step, ramp, or parabola type. 

 

Proof: Using (28) and taking the Laplace transform of 

equation (1) gives 

𝐸(𝑠) = [1 − 𝐺𝑦𝑟(𝑠)]𝑅(𝑠) 

The steady-state value of the tracking error is obtained by 

𝑒(∞) = lim
𝑠→0

𝑠[1 − 𝐺𝑦𝑟(𝑠)]𝑅(𝑠) 

Or, equivalently, through the expression 

𝑒(∞) = lim
𝑠→0

𝑠 [
𝑁(𝑠)

𝑡4𝑠
4+𝑡3𝑠

3+𝑡2𝑠
2+𝑡1𝑠+𝑡0

] 𝑅(𝑠)  

Where 

𝑁(𝑠) = 𝑡4𝑠
4 + (𝑡3 + 𝑏1𝑛2)𝑠

3 + (𝑡2 − 𝑏0𝑛2 + 𝑏1𝑛1)𝑠
2 +

(𝑡1 − 𝑏0𝑛1 + 𝑏1𝑛0)𝑠 + (𝑡0 − 𝑏0𝑛0)  

Considering 𝑅(𝑠) = 𝜇 𝑠𝑘⁄  with 𝜇 a constant value, and 𝑘 =
1, 2, or 3 depending on whether the reference signal is a step, 

a ramp, or a parabola, respectively. Using (29), the above 

limit tends to zero; thus, the theorem is established. 

3.3 Synthesis of controller 𝑮𝟐(𝒔) 

The synthesis of this controller is immediate. Using 

(21) gives 𝐺2 = 𝐺12 − 𝐺1, and the PID controller constants 

in (20) are computed by  
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𝑓0 = 𝑛0 − 𝑒0 

𝑓1 = 𝑛1 − 𝑒1 

𝑓2 = 𝑛2 − 𝑒2 

(30) 

It is recalled again that the constants of the PID controllers 

in the form of equations (11), (12) and (14) can be obtained 

from the constants computed in the form of equations (19), 

(20) and (21), respectively, using equation (16) of Theorem 

1. 

3.4 Synthesis procedure for the 2-DoF PID controller 

For ease of reference, Table 1 summarizes the design 

procedure for controllers 𝐺1(𝑠), 𝐺12(𝑠), and 𝐺2(𝑠). 

Table 1. Design procedure for the 2-DoF PID controller. 

Input Constants 𝑏1, 𝑏0, 𝑎1, and 𝑎0 in equations (5) or (6), 

depending on the time-delay 𝜃𝑑 approximation for 

the FOPTD model of the plant. Constants 

𝑡0, 𝑡1, 𝑡2, 𝑡3, and 𝑡4 of the desired closed-loop 

polynomial in (24) from the 𝑂𝑆 and 𝑇𝑠 design 

specifications. 

Step 1 Solve (26) to compute constants 𝑑2, 𝑑1, 𝑒2, 𝑒1, and 

𝑒0 for controller 𝐺1(𝑠) in (19). 

Step 2 Apply (16) to find controller constants 𝐾𝑝1, 𝐾𝑖1, 

𝐾𝑑1, and 𝜏𝑑 in (11) (𝜏𝑑 = 𝜏𝑑1 = 𝜏𝑑2) 

Step 3 Use (29) to determine the constants 𝑛2, 𝑛1, and 𝑛0 

for controller 𝐺12(𝑠) in (21). 

Step 4 Use (30) to determine the constants 𝑓2, 𝑓1, and 𝑓0 

for controller 𝐺2(𝑠) in (20). 

Step 5 Apply (16) to find constants 𝐾𝑝2, 𝐾𝑖2, 𝐾𝑑2, and 𝜏𝑑 

in (12)  

Output Controllers 𝐺1(𝑠) and 𝐺2(𝑠) in (11) and (12), 

respectively. 

4   Results 

In this section, several examples highlight different 

aspects of the design method for FOPTD systems (examples 

1 - 3) and how the technique can be applied to other types of 

systems (examples 4 and 5). 

4.1 Example 1 

A heat flow process (Teppa-Garran et al., 2025a) is 

considered, which consists of a fiberglass duct with a heater 

and a blower located at one end and three temperature 

sensors along the duct. The controlled output corresponds to 

the temperature, and the control signal is the voltage applied 

to the heating element (the blower voltage is kept constant). 

The transfer function gives the temperature model at the third 

(furthest) sensor. 

𝑌(𝑠)

𝑈(𝑠)
=

6.1

28𝑠 + 1
𝑒−0.85𝑠 (31) 

Using equations (5) and (6) to approximate the time delay in 

(31) results in the following design plant models, 

respectively. 

𝐺𝑝(𝑠) =
0.256

𝑠2 + 1.212𝑠 + 0.042
 (32) 

𝐺𝑝(𝑠) =
−0.218𝑠 + 0.513

𝑠2 + 2.389𝑠 + 0.084
 (33) 

To compute the desired closed-loop polynomial in (24), the 

design specifications were 𝑂𝑆 = 10 % and 𝑇𝑠 = 40 s. The 

two fast poles are repeated and fixed ten times, the real part 

of the dominant poles. Applying the design procedure 

specified in Table 1, the controllers (11) and (12) parameters 

are computed, and their values are given in Table 2. It can be 

seen that controller 𝐺2 is PD. To generate the following 

figures, the FOPTD model (31) represents the plant in the 

control system of Fig. 1. For controllers 𝐺1 and 𝐺2, the values 

of Table 2 are employed depending on the time-delay 

approximation method. Fig. 3 shows the response to a step-

type disturbance. Figures 4, 5, and 6 display the tracking of 

a step, ramp, and parabola input reference, respectively. It 

can be seen that the disturbance rejection is achieved in the 

desired settling time, but not with the desired overshoot. The 

fact that an irrational model, very different from the linear 

one used in the design of the controllers, is employed to 

represent the plant in the simulation produces differences. 

Tracking is attained for all the reference inputs, being best 

for the parabola and slightly deteriorating until the step. Fig. 

7 illustrates the tracking of a reference input composed of a 

combination of ramps and steps, and Fig. 8 presents the 

evolution of the control signal for this case. The tracking is 

very satisfactory for both approximations of the delay-time, 

using a lower control effort for the Padé approximation. 

Table 2. Constant values of PID controllers in Equations (11) and 

(12) for Example 1. 

 
𝑲𝒑𝟏  𝑲𝒊𝟏  𝑲𝒅𝟏 𝑲𝒑𝟐  𝑲𝒊𝟐  𝑲𝒅𝟐 

𝝉𝒅𝟏 

𝝉𝒅𝟐 

Padé 1.39 0.14 0.42 0.16 0 0.98 4.84 

Taylor 0.68 0.06 0.0005 0.16 0 4.67 1.01 

 

 

Figure 3. Step disturbance response for Example 1. 
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Figure 4. Step tracking response for Example 1. 

 

Figure 5. Ramp tracking response for Example 1. 

 

Figure 6. Parabola tracking response for Example 1. 

 

Figure 7. Temperature tracking response for the heat flow process 

comparing the Padé and Taylor approximations. 

 

Figure 8. The heating voltage applied for the heat flow process. 

4.2 Example 2 

In the previous example, the relationship 𝜃𝑑 𝑇⁄ < 1 

was fulfilled in (4). In this example, we will deal with the 

more demanding situation where 𝜃𝑑 𝑇⁄ > 1. For this 

purpose, it is considered a high-order process described as 

𝑌(𝑠)

𝑈(𝑠)
=

1

(𝑠 + 1)10
 (34) 

Employing the least-squares fitting between process and 

model frequency responses (Hang and Bi, 1997), the 

following FOPTD model is obtained. 

𝑌(𝑠)

𝑈(𝑠)
=

1

2.72𝑠 + 1
𝑒−7.69𝑠 (35) 

By applying the design procedure of Table 1, the 

parameters of the controllers (11) and (12) are given in Table 

3. To compute the desired closed-loop polynomial in (24), 

the design specifications were 𝑂𝑆 = 10 % and 𝑇𝑠 = 80 s. 
The two fast poles are repeated and fixed five times the real 

part of the dominant poles.  

Figure 9 shows the tracking of a combined reference 

input and the rejection of a constant disturbance signal 

applied from time 𝑡 = 400 s. The FOPTD model of the plant 

(35) was used for the simulation. It can be seen that the 

performance using the Taylor or Padé approximations for the 

delay time is similar.  

Fig. 10 compares the performance of the 2-DoF 

controller designed with the proposed method (Table 3, 

Taylor) with that of a 1-DoF PID tuned by the popular Chien-

Hrones-Reswick (CHR) method (Teppa-Garran et al., 2021). 

It may seem that the latter's performance is superior, but it 

should be noted that the simulation for this case uses the 

linear model obtained from (35) by employing equation (5). 

When the FOPTD model (35) is used directly to represent 

the plant, the PID-CHR controller fails to stabilize the plant, 

as illustrated in Fig. 11. 

Table 3. Constant values of PID controllers in Equations (11) and 

(12) for Example 2. 

 
𝑲𝒑𝟏  𝑲𝒊𝟏  𝑲𝒅𝟏 𝑲𝒑𝟐  𝑲𝒊𝟐  𝑲𝒅𝟐 

𝝉𝒅𝟏  

𝝉𝒅𝟐  

Padé 0.490 0.096 0.698 1 0 0.508 20.51 

Taylor 0.116 0.091 0.322 1 0 1.065 9.77 
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Figure 9. Tracking and disturbance-step rejection for Example 2 

by comparing the Padé and the Taylor approximations. 

 

 
 
Figure 10. Tracking and disturbance-step rejection for Example 2, 

comparing the proposed method with a PID tuned by the CHR 

method. 

 
 
Figure 11. The PID controller tuned by the CHR method fails to 

stabilize the system in Example 2. 

4.3 Example 3 

Now we consider an open-loop unstable system 

described by the following FOPTD model (Yuce, 2023). 

𝑌(𝑠)

𝑈(𝑠)
=

1

𝑠 − 1
𝑒−0.4𝑠 (36) 

The desired closed-loop polynomial is computed for the 

specifications 𝑂𝑆 = 0.05 % and 𝑇𝑠 = 20 s. The two fast 

poles are repeated and fixed ten times, the real part of the 

dominant poles. Using the Taylor method (5) to approximate 

the time delay in (36) and applying the design procedure of 

Table 1 gives the controllers. 

𝐺1(𝑠) = 1.251 +
0.046

𝑠
+

0.283𝑠

0.345𝑠 + 1
 (37) 

𝐺2(𝑠) = −1 +
1.74𝑠

0.345𝑠 + 1
 (38) 

Using equations (36) – (38), the control system of Fig. 1 

gives the response of Fig. 12. It can be appreciated that the 

correct tracking of the trapezoidal reference input and the 

rejection of a constant disturbance of negative amplitude 

applied from time 𝑡 = 25 s. 
 

 
 

Figure 12. Tracking and disturbance rejection for an open-loop 

unstable process in Example 3. 

4.4 Example 4 

This example shows that the proposed method can be 

adapted to plants other than the FOPTD system. The state 

equations for a nonlinear model of a coupled tank system 

(Teppa-Garran et al., 2025b) are 

𝑥̇1(𝑡) = −0.904√𝑥1(𝑡) + 0.258𝑢(𝑡) 

𝑥̇2(𝑡) = 0.904√𝑥1(𝑡) − 0.508√𝑥2(𝑡) 

𝑦(𝑡) = 𝑥2(𝑡) 

(39) 

The variables 𝑥1 and 𝑥2 are the levels of tanks 1 and 2, 

respectively. They are restricted to the interval [0, 30] cm. 

The control signal 𝑢(𝑡) is the voltage applied to a pump, 

limited to the range [0, 21] V, and the controlled output 𝑦(𝑡) 
is the second tank level. To use the design method, the 

equation (39) is linearized at the point (15 , 15) cm, resulting 

in the transfer function. 

𝐺𝑝(𝑠) =
0.0302

𝑠2 + 0.183𝑠 + 0.0077
 (40) 

Equation (40) has the form (5) (Taylor). Hence, a 2-DoF PID 

can be designed using the proposed method. To that end, the 

desired closed-loop polynomial is computed for the 
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specifications 𝑂𝑆 = 0.05 % and 𝑇𝑠 = 50 s. The two fast 

poles are repeated and fixed ten times, the real part of the 

dominant poles. The design procedure of Table 1 gives the 

controllers. 

𝐺1(𝑠) = 2.232 +
0.181

𝑠
+

18.071𝑠

0.634𝑠 + 1
 (41) 

𝐺2(𝑠) = 0.255 +
9.556𝑠

0.634𝑠 + 1
 (42) 

Figure 13 shows the tracking response of the second-level 

tank to an input reference combining different ramps and 

steps. From the time instant 𝑡 = 325 𝑠, a constant 

disturbance signal is applied. The nonlinear model of the 

tank given in (39) has been used for the simulation. Figure 

14 shows the voltage of the pump; it can be seen that it is 

always within the limits of pump operation. 

 

 
 

Figure 13. The second tank level response of the coupled tank 

system is shown in Example 4. 

 

 
 

Figure 14. The voltage applied to the pump of the coupled tank 

system in Example 4. 

4.5 Example 5 

Consider a large chemical plant with the following 

transfer function (Tewari, 2003). 

𝑌(𝑠)

𝑈(𝑠)
=

0.0033

𝑠3 + 0.630𝑠2 + 0.109𝑠 + 0.0033
 (43) 

The output is the temperature, and the input is the mass flow 

rate of the Xylene gas. To obtain the design model in the 

form (5), the order reduction method (Kuo, 1991) is applied, 

resulting in 

𝐺𝑝(𝑠) =
0.0078

𝑠2 + 0.242𝑠 + 0.0078
 (44) 

The desired closed-loop polynomial is computed for the 

specifications 𝑂𝑆 = 0.1 % and 𝑇𝑠 = 30 s. The two fast poles 

are repeated and fixed ten times, the real part of the dominant 

poles. The design procedure of Table 1 gives the controllers. 

𝐺1(𝑠) = 26.445 +
4.308

𝑠
+

214.66𝑠

0.372𝑠 + 1
 (45) 

𝐺2(𝑠) = 1 +
83.5𝑠

0.372𝑠 + 1
 (46) 

The satisfactory temperature tracking of the large chemical 

plant can be seen in Fig. 15. The third-order model of the 

plant (43) is used in the simulation. The complete rejection 

of a constant disturbance signal applied from time 𝑡 =  200 

s can also be observed. 

 
Figure 15. Temperature tracking and disturbance rejection for the 

large chemical plant of Example 5. 

Discussion and Conclusions 

A simple model-based method for the design of two-

degree-of-freedom PID controllers based on a polynomial 

approach for FOPTD systems is proposed in this work. The 

problems of constant disturbance signal rejection and 

tracking step, ramp, or parabola reference inputs are solved 

independently. The constant disturbance rejection problem is 

solved by imposing a dominant pole guarantee criterion that 

allows choosing a desired overshoot and settling time in the 

temporal response. The tracking problem is solved by 

assigning zeros to the closed-loop transfer function.  

Three examples of FOPTD system models are 

considered to cover the main cases that may arise in practical 

situations. That is, when the ratio of the delay time to the 

system time constant is greater than or less than one, and 

when the system is open-loop unstable. No specific 

advantages were found in using the Taylor or Padé methods 

to approximate the delay time in the FOPTD system. Other 
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two examples show that although the method was designed 

for FOPTD systems, it can be extended to different systems.  

A weakness of the method is that the assignment of 

zeros imposed to solve the tracking problem can deteriorate 

the overshoot and settling time conditions of the transient 

component of the response. This is because the zeros cannot 

be fixed arbitrarily; their values come from solving equations 

that depend primarily on the characteristic polynomial 

coefficients, which rely on the overshoot and settling time 

specifications. What we wish to point out is that 

specifications could generate dominant zeros (near the 

imaginary axis of the complex plane), which cause a further 

increase in overshoot.  

Another contribution of this work is that the proposed 

method allows tuning the four parameters of a PID controller 

expressed in the parallel form given by equation (9). In one 

example, it is observed that current tuning procedures, which 

initially focus on tuning the proportional, integral, and 

derivative constants using well-known rules and then 

adjusting the derivation filter parameter through predefined 

relationships, can result in poor performance. 

Acknowledgments 

The authors are grateful for the support provided by the 

Research Program of the Metropolitan University in Caracas, 

Venezuela, through project number PI-A-01-23-24. 

References 

Ai, B., Sentis, L., Paine, N., Han, S., Mok, A., and Fok, C. 

(2016). Stability and performance analysis of time-

delayed actuator control systems, Journal of Dynamic 

Systems, Measurement, and Control, vol. 138, no. 5. 

Alfaro, V., Vilanova, R., and Arrieta, O. (2010). Maximum 

sensitivity based robust tuning for two-degree-of-

freedom proportional− integral controllers, Industrial 

& Engineering Chemistry Research, vol. 49, no. 11, 

pp. 5415-5423. 

Araki, M. (1985). Two degree of freedom control system: 

part I, Systems and Control, vol. 29, pp. 649-656. 

Araki, M., and Taguchi, H. (2003). Two-degree-of-freedom 

PID controllers, International Journal of Control, 

Automation, and Systems, vol. 1, no. 4, pp. 401-411. 

Ariba, Y., Gouaisbaut, F., and Labit, Y. (2009). Feedback 

control for router management and TCP/IP network 

stability, IEEE Transactions on Network and Service 

Management, vol. 6, no. 4, pp. 255-266.  

Åström, K., and Hagglund, T. (1995). PID controllers: 

Theory, design and tuning, NC: Instrument Society of 

America, Research Triangle Park. 

Atherton, D. and Majhi, S. (2009). Limitations of PID 

controllers, Proc. of the 1999 American Control 

Conference (Cat. No. 99CH36251), vol. 6, pp. 3843-

3847, IEEE. 

Bi, M. (2020). Control of robot arm motion using trapezoid 

fuzzy two-degree-of-freedom PID algorithm, 

Symmetry, vol. 12, no. 4, p. 665. 

Birs, I., Muresan, C., Nascu, I., and Ionescu, C. (2019). A 

survey of recent advances in fractional order control 

for time delay systems, IEEE Access, vol. 7, pp. 

30951-30965. 

Bresch-Pietri, D., Chauvin, J., and Petit, N. (2014). 

Prediction-based stabilization of linear systems 

subject to input-dependent input delay of integral-

type, IEEE Transactions on Automatic Control, vol. 

59, no. 9, pp. 2385-2399. 

Desborough, L. and Miller, R. (2002). Increasing customer 

value of industrial control performance monitoring 

Honeywell's experience, AIChE symposium. New 

York; American Institute of Chemical Engineers, no. 

326, pp. 169-189. 

Dorf, R., and Bishop, R. (2017). Modern control systems, 

Pearson Prentice Hall. 

El-Deen, A. Mahmoud, A. and El-Sawi, A. (2015). Optimal 

PID tuning for DC motor speed controller based on 

genetic algorithm, Int. Rev. Autom. Control, vol. 8, 

no. 1, pp. 80-85. 

Goodwin, G., Graebe, S., and Salgado, M. (2001). Control 

system design, Upper Saddle River: Prentice Hall. 

Gu, K. and Niculescu, S. I. (2003). Survey on recent results 

in the stability and control of time-delay systems, 

Journal of Dynamic Systems, Measurement, and 

Control, vol. 125, no. 2, pp. 158-165.  

Gunawan, S., Yuwono, Y., Pratama, G., Cahyadi, A., and 

Winduratna, B. (2018). Optimal fractional-order PID 

for DC motor: Comparison study, Proc. 4th 

International Conference on Science and Technology 

(ICST), pp. 1-6, IEEE. 

Hale, J. K., and Lunel, S. M. (2013). Introduction to 

functional differential equations, vol. 99, Springer 

Science & Business Media. 

Hang, H., and Bi, Q. (1997). A frequency domain controller 

design method, Chemical Engineering Research and 

Design, vol. 75, no. 1, pp. 64-72. 

Hanta, V. and Procházka, A. (2009). Rational approximation 

of time delay, Institute of Chemical Technology in 

Prague. Department of computing and control 

engineering. Technická, vol. 5, no. 166, p. 28. 

Jin, Q., and Liu, Q. (2014). Analytical IMC-PID design in 

terms of performance/robustness tradeoff for 

integrating processes: From 2-Dof to 1-Dof, Journal 

of Process Control, vol. 24, no. 3, pp. 22-32. 

Kuo, B. (1991). Automatic Control Systems, Sixth Ed. 

Prentice-Hall, New Jersey, p. 357. 

Lee, J., Cho, W., and Edgar, T. (2014). Simple analytic PID 

controller tuning rules revisited, Industrial & 

Engineering Chemistry Research, vol. 53, no. 13, pp. 

5038-5047. 



Algebraic design of two-degree-of-freedom PID controllers …                                                                                              39 

Revista Ciencia e Ingeniería. Vol. 47, No. 1, diciembre-marzo, 2026 

 

Liu, G. and Daley, S. (2001). Optimal-tuning PID control for 

industrial systems, Control Engineering Practice, 

vol. 9, no. 11, pp. 1185-1194. 

Mamat, R. (2013). A new tuning method for two-degree-of-

freedom internal model control under parametric 

uncertainty, Chinese Journal of Chemical 

Engineering, vol. 21, no. 9, pp. 1030-1037. 

O’Dwyer, A. (2009). Handbook of PI and PID Controller 

Tuning Rules, 3rd ed.; Imperial College Press: 

London, UK. 

Persson, P., and Åström, K. (1992). Dominant pole design-a 

unified view of PID controller tuning, IFAC 

Proceedings Volumes, vol. 25, no. 14, pp. 377-382. 

Richard, J. P. (2003). Time-delay systems: an overview of 

some recent advances and open problems, 

Automatica, vol. 39, no. 10, pp. 1667-1694. 

Seuret, A., and Gouaisbaut, F. (2013). Wirtinger-based 

integral inequality: Application to time-delay 

systems, Automatica, vol. 49, no. 9, pp. 2860-2866. 

Sharma, R., Gaur, P., and Mittal, A. (2015). Performance 

analysis of two-degree of freedom fractional order 

PID controllers for robotic manipulator with payload, 

ISA transactions, vol. 58, pp. 279-291. 

Teppa-Garran, P., and Garcia, G. (2017). Design of an 

optimal PID controller for a coupled tanks system 

employing ADRC, IEEE Latin America 

Transactions, vol. 15, no. 2, pp. 189-196. 

Teppa-Garran, P. and Vásquez, W. (2020). Desired 

Trajectory following by feedforward anticipation, 

IEEE Latin America Transactions, vol. 18, no. 8, pp. 

1416-1424. 

Teppa-Garran, P.,  Arzola, F., and Elyas, E. (2021). Ajuste 

óptimo de controladores PID mediante 

Matlab/Simulink, Anales de Ciencias Básicas, 

Físicas y Naturales, vol. 37, no. 15, pp. 15–32. 

Teppa-Garran, P., Faggioni, M. and Garcia, G. (2023). 

Optimal tracking in two-degree-of-freedom control 

systems: Coupled tank system, Journal of Applied 

Research and Technology, vol. 21, no. 4, pp. 560-

570.  

Teppa-Garran, P., and El Gharib, G. (2024). Sintonización 

óptima asistida por computadora de controladores PI 

para sistemas no lineales con restricciones de 

amplitud en el actuador, Ciencia e Ingeniería,vol. 45, 

no. 1, pp. 1-10. 

Teppa-Garran, P., Bohórquez, G., and Garcia, G. (2025 a). 

Optimal tuning of PID-type controllers, Journal of 

Applied Research and Technology, vol. 23, no. 2, pp. 

145–154. 

Teppa-Garran, P., Muñoz-de Escalona, D., and Zambrano, J. 

(2025 b). Liquid level tracking for a coupled tank 

system using quasi–LPV control, Ingenius, vol. 33, 

pp. 15-26. 

Tewari, A. (2003). Modern control design with Matlab and 

Simulink, John Wiley & Sons, USA, p. 100. 

Vilanova, R., Alfaro, V., and Arrieta, O. (2011). Analytical 

Robust Tuning Approach for Two Degree of 

Freedom PI/PID Controllers, Engineering Letters, 

vol. 19, no. 3. 

Wang, X., Yan, X., Li, D., and Sun, L. (2018). An approach 

for setting parameters for two degree of freedom PID 

controllers, Algorithms, vol. 11, no. 4, p. 48. 

Xing, Z., Zhu, Q., and Ding, Y. (2006). Two-degree-of-

freedom IMC−PID design of missile servo system 

based on tuning gain and phase margin, J. Harbin 

Eng. Univ, vol. 27, pp. 404-407. 

Yuce, A. (2023). Analytical design of PI controller for first 

order transfer function plus time delay: stability 

triangle approach, IEEE Access, vol. 11, pp. 70377-

70386. 

Zhang, M., Wang, J., and Li, D. (2010). Simulation analysis 

of PID control system based on desired dynamic 

equation, Proc. 8th World Congress on Intelligent 

Control and Automation, IEEE, pp. 3638-3644. 

Zhang, X., Han, Q., Seuret, A., Gouaisbaut, F.,  and He, Y. 

(2019). Overview of recent advances in the stability 

of linear systems with time‐varying delays, IET 

Control Theory & Applications, vol. 13, no. 1, pp. 1-

16. 

Zhang, X., Han, Q., and Ge, X. (2022). The construction of 

augmented Lyapunov-Krasovskii functionals and the 

estimation of their derivatives in stability analysis of 

time-delay systems: A survey, International Journal 

of Systems Science, vol. 53, no. 12, pp. 2480-2495. 

Zhu, X. (2009). Practical PID controller implementation and 

the theory behind it, Proc. Second International 

Conference on Intelligent Networks and Intelligent 

Systems (pp. 58-61). IEEE. 

 

 

            Received: september 5, 2025 

                  Accepted: november 28, 2025 

 

Pedro Teppa-Garrán received the B.S. degree in Electrical 

Engineering in 1990 at the Universidad Metropolitana 

(UNIMET) in Caracas, Venezuela, the Master degree in 

Electronic Engineering in 1994 and the Master degree in 

Mathematics in 1998; both of them, from the Universidad 

Simón Bolívar (USB), Caracas, Venezuela. He also received 

the Ph.D. in Control Systems in 2003 at Université Paul 

Sabatier in Toulouse, France and completed a Postdoctoral 

Research in LAAS-CNRS during 2012-2013 in Toulouse, 

France. He is currently a full professor of UNIMET  

 https://orcid.org/ 0000-0001-6384-3185 

 

Luis Caraballo: Electrical Engineer from UNIMET. 

c.luis@correo.unimet.edu.ve 

 https://orcid.org/0009-0004-5507-272X 



40                                                                                                                                                               Teppa-Garran et al. 

Revista Ciencia e Ingeniería. Vol. 47, No. 1, diciembre-marzo, 2026 

 

Germain Garcia received his diploma in engineering from 

the Institut National des Sciencies Apliquées (INSA), 

Toulouse, France, in 1984. He also received his Ph.D. 

degree in Automatic Control from the INSA in 1988 and the 

Habilitation à Diriger des Recherches (HDR) in 1997 from 

the same university. He is currently working at the 

Laboratoire d’Architecture des Systèmes of the Centre 

National pour la Recherche Scientifique (LAAS-CNRS), 

Toulouse, France as full professor of INSA. 

garcia@laas.fr 

 https://orcid.org/0000-0002-7147-5105  
 

 

 

 

 

 

 

https://orcid.org/0009-0004-5507-272X
https://orcid.org/0009-0004-5507-272X

