# Optimización del flujo logístico mediante DMAIC ante el aumento del volumen diario de carga en PRModel-Logistc

# Logistic flow optimization Using DMAIC under increased daily cargo volume at PRModel-Logistc

Sanz, Gabriela<sup>1</sup>; Ledain, Mariangelie<sup>1</sup>; González, Andrea<sup>1</sup>; González, Carlos<sup>1</sup>, Garcia, Maria<sup>1</sup>; Rondón, Jairo<sup>1,2\*</sup>

<sup>1</sup>Industrial Engineering Department, Universidad Politécnica de Puerto Rico, San Juan, PR 00918, USA

<sup>2</sup>Biomedical & Chemical Engineering Departments, Universidad Politécnica de Puerto Rico, San Juan, PR 00918, USA

\* jrondon@pupr.edu

#### Resumen

El incremento sostenido en la demanda global de transporte de paquetes ha intensificado los retos operativos en los centros de distribución aérea, particularmente en sistemas sometidos a ventanas temporales estrictas. Este estudio aplica la metodología DMAIC para optimizar el flujo logístico de PRModel-Logistic en Puerto Rico, expresando todas las métricas operativas en unidades de tiempo normalizado (T<sub>n</sub>) donde 1.00 T<sub>n</sub> corresponde al tiempo máximo permitido para completar el ciclo por vuelo y los indicadores económicos en unidades financieras normalizadas  $(U_n)$ , con 1.00  $U_n$  equivalente al costo fijo por vuelo. Los estudios de campo evidenciaron que el proceso presentaba un takt time normalizado de 0.19 T<sub>n</sub> por tren de cinco contenedores, insuficiente para garantizar sistemáticamente el cumplimiento del límite temporal  $T_{total} \leq 1.00 T_n$ bajo escenarios de alta demanda. La aplicación del ciclo DMAIC permitió identificar causas raíz asociadas a la asignación desigual de recursos, la secuenciación operativa y la disponibilidad de equipos, además de rediseñar la distribución de tareas para habilitar la paralelización de descarga en cabinas superiores e inferiores. La simulación del sistema validó que las mejoras implementadas aumentan la capacidad del proceso hasta 30 contenedores por vuelo, manteniéndose dentro del límite temporal establecido (0.95  $T_n$ ). A nivel financiero, el sistema mostró un desempeño robusto, con un ingreso relativo de 4.95  $U_n$  por vuelo y una ganancia operativa de 3.95  $U_n$ , valores que reflejan la eficiencia de un modelo logístico donde los costos por vuelo son esencialmente fijos. Los resultados demuestran que el uso integrado de métricas normalizadas, análisis estadístico y modelado de simulación bajo la estructura DMAIC constituye un enfoque eficaz para sostener la competitividad operativa y económica en sistemas de carga aérea sujetos a incrementos abruptos en la demanda.

Palabras clave: DMAIC, logística aérea, flujo de materiales, estudio de tiempos, eficiencia operativa.

### Abstract

The sustained increase in global demand for parcel transportation has intensified operational challenges in air distribution centers, particularly in systems constrained by strict time windows. This study applies the DMAIC methodology to optimize the logistics flow of PRModel-Logistc in Puerto Rico, expressing all operational metrics in normalized time units  $(T_n)$ , where  $1.00\ T_n$  corresponds to the maximum allowable time to complete the cycle per flight, and economic indicators in normalized financial units  $(U_n)$ , with  $1.00\ U_n$  equivalent to the fixed cost per flight. Field studies showed that the process exhibited a normalized takt time of  $0.19\ T_n$  per train of five containers, which is insufficient to systematically ensure compliance with the temporal constraint  $T_{total} \leq 1.00\ T_n$  under high-demand scenarios. The application of the DMAIC cycle made it possible to identify root causes associated with unequal allocation of resources, operational sequencing, and equipment availability, as well as to redesign task distribution to enable parallel unloading in upper and lower cabins. System simulation validated that the implemented improvements increase process capacity to up to 30 containers per flight while remaining within the established time limit  $(0.95\ T_n)$ . At the financial level, the system exhibited robust performance, with a relative income of 4.95  $U_n$  per flight and an operating profit of 3.95  $U_n$ , values that reflect the efficiency of a logistics model in which per-flight costs are essentially fixed. The results demonstrate that the integrated use of normalized metrics, statistical analysis, and simulation modeling within the DMAIC structure constitutes an effective approach to sustaining operational and economic competitiveness in air-cargo systems facing abrupt increases in demand.

Keywords: DMAIC, air logistics, material flow, time study, operational efficiency.

#### 1 Introducción

El crecimiento sostenido del comercio electrónico y de las operaciones logísticas globales ha impulsado una expansión sin precedentes en la industria del transporte de paquetes, imponiendo exigencias cada vez mayores sobre la eficiencia y flexibilidad de los sistemas de distribución (Christopher, 2016; Rushton *et al.*, 2022). En este contexto, los operadores de carga aérea enfrentan el desafío de mantener ventanas de entrega altamente estrictas, las cuales, para preservar la confidencialidad contractual, se expresan en unidades de tiempo normalizadas (T<sub>u</sub>). Estas unidades permiten comparar el desempeño relativo sin exponer tiempos operativos reales.

En Puerto Rico, la logística aérea desempeña un papel estratégico dentro del comercio regional y la integración del Caribe, dada su localización geográfica y su conexión directa con los Estados Unidos continentales (Ruiz Moreno *et al.*, 2020). La empresa PRModel-Logiste constituye un nodo crítico para el flujo de mercancías de alto valor (especialmente farmacéutico, electrónico y agroindustrial). El incremento reciente en la frecuencia de vuelos ha generado un aumento significativo en el número de contenedores manejados por operación, elevando la presión sobre los sistemas asociados a dichas ventanas de tiempo normalizadas.

Dada esta situación, se propone aplicar la metodología DMAIC como herramienta estructurada para identificar, analizar y corregir ineficiencias en el flujo de carga, garantizando que las actividades de descarga, transporte y entrega se mantengan dentro del intervalo operativo expresado como  $\leq 1.00~T_u$ , donde  $T_u$  representa el límite temporal máximo permitido por vuelo. Este enfoque permite cuantificar pérdidas, estandarizar procedimientos y establecer métricas que aseguren la mejora continua (Snee, 2010; Psychogios & Tsironis, 2012).

La contribución principal de este trabajo radica en integrar estudios de tiempo, análisis estadístico de capacidad y simulación de flujos logísticos utilizando tiempos adimensionales, de forma que los resultados puedan extrapolarse a otros aeropuertos y sistemas de manipulación de carga sin comprometer datos operativos confidenciales. Este marco metodológico ofrece una referencia replicable para empresas logísticas que enfrentan incrementos súbitos en la demanda, contribuyendo a la productividad y sostenibilidad del sistema bajo principios contemporáneos de ingeniería industrial (Antony, 2014; De Felice, Petrillo & Monfreda, 2009).

#### 2 Metodología

La metodología empleada en este estudio se fundamentó en la estructura sistemática del ciclo DMAIC

(Definir, Medir, Analizar, Mejorar v Controlar), ampliamente validada como un marco riguroso para optimizar procesos complejos bajo condiciones de variabilidad operacional (Pereira, 2024; George et al., 2005). En concordancia con prácticas contemporáneas de ingeniería industrial y logística aeroportuaria, se incorporaron métricas adimensionales para preservar la confidencialidad operativa y financiera del sistema evaluado. En particular, todos los registros temporales se expresaron en unidades de tiempo normalizado (T<sub>n</sub>) donde 1.00 T<sub>n</sub> corresponde a la ventana operativa máxima permitida para completar la secuencia de descarga, formación de trenes y entrega al cliente, mientras que los análisis económicos se presentaron en unidades financieras normalizadas (U<sub>n</sub>), con 1.00 U<sub>n</sub> equivalente al costo fijo por vuelo.

Este planteamiento permite una interpretación técnica robusta, independiente de valores absolutos, garantizando al mismo tiempo la replicabilidad metodológica en otros entornos logísticos con restricciones temporales similares.

#### 2.1 Fase definir

En esta fase se caracterizó el problema raíz asociado al incremento abrupto en la demanda operacional de PRModel-Logistc, provocado por la firma de un nuevo contrato que duplicó el volumen de vuelos diarios. Esta situación generó riesgos de incumplimiento del límite temporal operativo expresado como  $T_{total} \leq 1.00~T_n$ , coherente con los desafíos descritos en la literatura sobre sistemas logísticos sometidos a ventanas temporales estrictas (Christopher, 2016; Rushton *et al.*, 2022).

Se establecieron tres requisitos críticos:

- 1. Tiempo de entrega normalizado (T<sub>n</sub>) como métrica principal del desempeño operativo.
- 2. Capacidad operativa instalada, dependiente de la disponibilidad de choferes, trenes y equipos (Gijo *et al.*, 2014; Lim, 2011).
- 3. Cumplimiento de normativas de la Federal Aviation Administration (FAA), necesarias para garantizar la integridad de la operación (Atlas Air, 2018).

El flujo completo, desde la recepción del manifiesto de vuelo hasta la entrega final al cliente, se definió como objeto del análisis DMAIC, siguiendo lineamientos metodológicos típicos de estudio de procesos aeroportuarios (Cohn, Root & Wang, 2007; Psychogios & Tsironis, 2012). Este flujo se representa en las Tablas 1 y 2.

### 2.2 Fase medir

La fase de medición se fundamentó en principios estadísticos de consistencia y representatividad (Montgomery, 2020; Joglekar, 2019). Se recopilaron 21 observaciones de vuelos consecutivos, capturando la va-

riabilidad real de:

- Número de contenedores.
- Distribución de peso,
- Tiempo de escaneo y descarga,
- Tiempo de formación de trenes,
- Tiempo de desplazamiento hacia el cliente.

Transformación a unidades normalizadas: cada tiempo medido  $t_i$  se transformó mediante:

$$T_i^{(norm)} = \frac{t_i}{T_{max}}$$

donde

$$T_{max} = 1.00T_n$$

Los tiempos originales en segundos o minutos fueron eliminados para preservar la confidencialidad operativa.

Tiempos normalizados por etapa: se realizó basado en estudios de campo y consistentes con operaciones

aeroportuarias comparables (Psychogios & Tsironis, 2012; Liker & Meier, 2021) (Tabla 3):

Para trenes de 5 contenedores:

- Escaneo total: 0.11–0.14 T<sub>n</sub>
- Descarga total: 0.30–0.34 T<sub>n</sub>
- Carga total: 0.12-0.15 T<sub>n</sub>

Con estos valores se obtuvo un takt time normalizado de:

$$\text{Takt}^{(norm)} \approx 0.19T_n$$

Este valor fue alineado con reportes en sistemas de flujo continuo bajo restricciones temporales (Liker & Meier, 2021; Christopher, 2016).

Tabla 3. Actividad vs. Tiempo por contenedor.

| Actividad     | Tiempo por contenedor $(T_n)$ |
|---------------|-------------------------------|
| Escaneo       | $0.030 - 0.040 \ T_n$         |
| Descarga      | $0.065 - 0.075 \; T_n$        |
| Carga al tren | $0.030 - 0.040 \ T_n$         |

Tabla 1. Distribución de Contenedores por Avión (Valores Normalizados).

| Métrica                     | Valor normalizado                             | Notas                                  |
|-----------------------------|-----------------------------------------------|----------------------------------------|
| Contenedores mínimos obser- | 0.36 (normalizado a 25 contenedores como ref- | Valor adimensional                     |
| vados                       | erencia)                                      |                                        |
| Contenedores máximos obser- | 1.04 (normalizado)                            | Define límite superior de variabilidad |
| vados                       |                                               |                                        |
| Media por vuelo             | 0.80 (normalizado)                            | Consistencia operativa                 |
| Desviación estándar (σ)     | 0.27 (normalizado)                            | Variabilidad relativa                  |
| Rango operacional           | 0.36–1.04                                     | Rango adimensional utilizado para      |
|                             |                                               | simulación                             |
| Carga modal (ocupación con- | Se mantiene como adimensional                 | No requiere normalización              |
| tenedor)                    |                                               |                                        |

Tabla 2. Distribución Normalizada del Peso por Contenedor (Wn).

| Métrica               | $Valor\ normalizado\ (W_n)$ | Interpretación                |
|-----------------------|-----------------------------|-------------------------------|
| Peso mínimo típico    | 0.714 W <sub>n</sub>        | Límite inferior esperado      |
| Peso medio aproximado | $0.857~\mathrm{W_n}$        | Peso representativo del flujo |
| Peso máximo típico    | $1.000~{ m W}_{ m n}$       | Capacidad plena               |
| Ocupación modal       | $0.950~{ m W}_{ m n}$       | Valor más frecuente           |

El peso "modal", indicado como 95% de ocupación, también puede representarse así: 
$$W_{modal} = 0.95 imes 1.000 = 0.950 \; W_n$$

#### 2.3 Fase analizar

El análisis se realizó mediante un diagrama de Ishikawa estructurado según los seis factores clásicos en ingeniería industrial: ambiente, maquinaria, empleomanía, materiales, medidas y métodos (Gijo et al., 2014). Este enfoque permitió identificar que la capacidad del sistema depende de la sincronización fina entre los recursos móviles (tren-chofer) y la secuencia de descarga, tal como señalan estudios de operaciones de paquetería (Cohn et al., 2007; Lim, 2011).

La demanda temporal normalizada se definió co-

mo:

$$Demanda^{(norm)} = \frac{n}{5} \times Takt^{(norm)}$$

Donde n es el número de contenedores por vuelo. Los resultados indican:

- Operación estable para n  $\approx 20$  contenedores ( $\approx 0.76$
- Operación crítica para n  $\approx 26 \ (\approx 0.99 \ T_n)$
- Riesgo de incumplimiento para  $n \ge 27$ Se determinó que los factores de mayor impacto

sobre la eficiencia fueron el incremento de volumen no planificado, la disponibilidad de equipos, y la distribución ineficiente de operadores por turno (Minetti *et al.*, 2022). Estos hallazgos reflejan el comportamiento descrito típico de estudios de congestión y colas en sistemas logísticos con restricciones temporales fijas (Banks *et al.*, 2010; Gu *et al.*, 2010).

#### 2.4 Fase mejorar

La fase de mejora se fundamentó en principios Lean Six Sigma, específicamente en la eliminación de tiempos de espera y la maximización del flujo continuo (George *et al.*, 2005; Snee, 2010).

Se implementaron dos acciones clave:

1. Paralelización operativa

Redistribución de los cinco choferes para atender simultáneamente las cabinas superior e inferior del avión, reduciendo tiempos no productivos y equilibrando el flujo de salida.

2. Priorización estructurada en SOP

Reordenamiento de los contenedores en el avión para reducir el tiempo de primera descarga (*first-out*), técnica alineada con estrategias de *priority slotting* (Psychogios & Tsironis, 2012).

La simulación demostró que:

$$Demanda_{30}^{(norm)} = 0.95T_n$$

Esto confirma la viabilidad de procesar hasta 30 contenedores por vuelo sin exceder  $1.00~T_n$ , coherente con recomendaciones de estudios previos de optimización logística (De Felice, Petrillo & Monfreda, 2009).

#### 2.5 Fase controlar

Para garantizar la sostenibilidad de las mejoras implementadas, se definieron dos indicadores normalizados principales:

1. Cumplimiento temporal:

$$T_{\mathrm{total}}^{(norm)} \leq 1.00T_n$$

2. Variabilidad de volumen:

$$\sigma_n \leq 6.8$$
 contenedores

Estos indicadores se integraron en un plan de monitoreo semanal y auditorías mensuales, siguiendo lineamientos de control estadístico del proceso (Montgomery, 2020; Desai & Shrivastava, 2008).

El uso de métricas adimensionales permite que las mejoras sean sostenibles, comparables entre vuelos y

replicables en otros escenarios operacionales, tal como recomiendan los marcos contemporáneos de ingeniería industrial aplicada a logística aérea (Antony, 2014; Proto *et al.*, 2020).

#### 3 Discusión v Resultados

#### 3.1 Desempeño operativo bajo tiempos normalizados

Los estudios de tiempo efectuados sobre el compartimiento superior del Boeing 767-300BCF permitieron caracterizar, con alto grado de consistencia, el comportamiento de cada etapa del proceso operativo: escaneo, descarga, carga al tren y transporte hacia el cliente. Para preservar la confidencialidad de la operación, todos los tiempos se expresaron en unidades de tiempo normalizado (T<sub>n</sub>), donde 1.00 T<sub>n</sub> representa la ventana máxima autorizada por vuelo.

Los valores normalizados obtenidos muestran una estructura de trabajo altamente estandarizada:

- Escaneo: 0.030-0.040 T<sub>n</sub> por contenedor
- Descarga: 0.065–0.075 T<sub>n</sub> por contenedor
- Carga al tren: 0.030-0.040 T<sub>n</sub> por contenedor (Psychogios & Tsironis, 2012; Liker & Meier, 2021)

La consolidación de estas etapas para trenes de cinco contenedores arrojó:

- Escaneo total: 0.11–0.14 T<sub>n</sub>
- Descarga total: 0.30–0.34 T<sub>n</sub>
- Carga total: 0.12–0.15 T<sub>n</sub>

A partir de estas mediciones se determinó un takt time normalizado aproximado de:

$$Takt^{(norm)} = 0.19 T_n$$

Este indicador adquiere un peso central en el análisis, ya que permite evaluar la relación entre el ritmo operativo real y el ritmo requerido para cumplir consistentemente con el límite temporal  $T_{total} \leq 1.00~T_n$ . Tal como señalan Christopher (2016) y Cudney & Kestle (2018), la efectividad operacional en procesos logísticos bajo presión temporal depende de la alineación entre *takt time*, capacidad instalada y variabilidad de la demanda.

La inspección del flujo de demanda reveló una media de 20 contenedores por vuelo ( $\sigma = 6.78$ ), con valores mínimos de 9 y máximos de 26 contenedores, concordando con los patrones de variabilidad típicos en redes de paquetería aérea (Lim, 2011; Proto *et al.*, 2020). Esta dispersión implica que el sistema opera de forma estable durante la mayor parte de las jornadas, pero presenta vulnerabilidad ante aumentos súbitos de volumen.

El análisis estadístico de la distribución de pesos, convertido a unidades normalizadas (Tabla 2), sugiere además que los contenedores mantienen una ocupación en torno al 95%, lo cual incrementa la densidad del flujo logístico y acentúa la necesidad de procesos altamente coordinados (Montgomery, 2020; Rushton *et al.*, 2022).

# 3.2 Capacidad del sistema y determinación del cuello de hotella

La evaluación de capacidad se desarrolló utilizando la ecuación de demanda temporal normalizada:

$$Demanda^{(norm)} = \frac{n}{5} \times Takt^{(norm)}$$

Donde n representa el número de contenedores por vuelo.

Los resultados muestran tres regiones críticas:

1. Región estable ( $n \le 20$ ):

$$Demanda^{(norm)} \approx 0.76 T_n$$

El proceso opera dentro del margen aceptable, sin acumulación de trenes (Montgomery, 2020).

2. Región de alerta (n = 26):

$$\mathrm{Demanda}^{(norm)} \approx 0.99 \ T_n$$

Se observan tensiones en la coordinación de trenes, riesgo de saturación y mayor probabilidad de retrasos (Chopra & Meindl, 2023).

3. Región crítica ( $n \ge 27$ ):

El sistema tiende al incumplimiento del límite temporal, incluso si no ocurren perturbaciones exógenas (demoras de vuelo, congestión, mantenimiento, clima).

Estos resultados coinciden con investigaciones en logística aeroportuaria que enfatizan la importancia de la sincronización entre recursos móviles (trenes, dollies, montacargas) como determinante del throughput efectivo (Cohn, Root & Wang, 2007; Lim, 2011).

La Figura 1 (diagrama de Ishikawa) confirma que las causas principales del cuello de botella se agrupan en torno a:

- Volumen incremental no planificado (Minetti *et al.*, 2022),
- Disponibilidad limitada de equipos,
- Secuenciación subóptima de operadores (Gijo et al., 2014),
- Variabilidad en la ocupación de contenedores (Rushton et al., 2022).

En conjunto, estos factores reducen la resiliencia temporal del sistema, especialmente bajo picos de demanda.

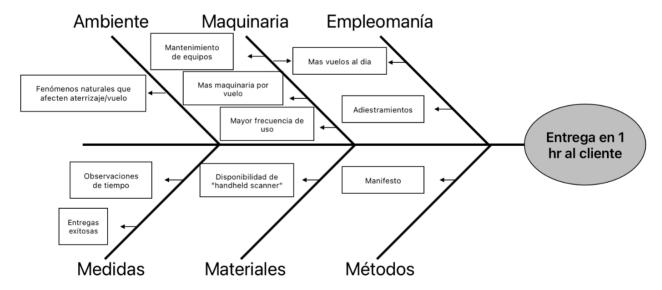



Figura 1. Causa y Efecto utilizando Ishikawa.

# 3.3 Intervención DMAIC: optimización mediante paralelización y secuenciación

La fase de mejora incorporó un rediseño operacional sustentado en principios Lean Six Sigma (George *et al.*, 2005; Snee, 2010). Dos intervenciones emergieron

como altamente efectivas:

1. Paralelización de la descarga en ambas cabinas:

Los cinco choferes pasaron a servir simultáneamente los compartimientos superior e inferior del avión. Esta modificación redujo tiempos ociosos y redistribuyó la carga de trabajo, generando un aumento inmediato de la capacidad efectiva.

2. Reordenamiento de contenedores en SOP (priority slotting):

Se optimizó la secuencia de salida priorizando contenedores del cliente principal, práctica altamente efectiva para minimizar first-out time en operaciones aeroportuarias (Tabla 4) (Psychogios & Tsironis, 2012; Christopher, 2016).

Los resultados de la simulación indicaron que, bajo la nueva configuración:

$$\mathrm{Demanda}_{30}^{(norm)} = 0.95 \ T_n$$

Esto implica que el sistema puede procesar hasta 30 contenedores por vuelo sin violar el límite temporal de 1.00 T<sub>n</sub>, lo cual representa un incremento significativo de capacidad sin añadir personal ni equipos.

Estos hallazgos son coherentes con estudios previos que demuestran que pequeñas intervenciones, centradas en la reducción de tiempos de espera y en la optimización de la secuencia de tareas, pueden tener efectos multiplicadores sobre el flujo logístico global (Banks et al., 2010; Gu et al., 2010).

#### 3.4 Desempeño financiero normalizado

El análisis económico se realizó utilizando unidades financieras adimensionales (U<sub>n</sub>), donde 1.00 U<sub>n</sub> equivale al costo fijo por vuelo (Tabla 4).

Dado que los costos del sistema son predominantemente fijos por vuelo, el margen operativo depende

- La densidad del contenedor.
- El número total de contenedores,
- La reducción de reprocesos.

Esto concuerda con modelos de sistemas logísticos donde la elasticidad del margen frente al volumen es positiva (Chopra & Meindl, 2023; Rushton et al., 2022).

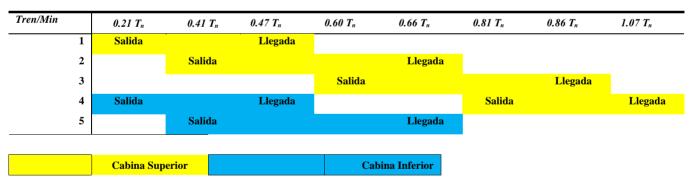

Asimismo, una disminución hipotética del 5% en el precio por libra reduciría el ingreso normalizado por vuelo a 4.70 U<sub>n</sub>, erosionando la ganancia aproximadamente un 6-7%, tal como anticipan los modelos de sensibilidad en logística aérea (Christopher, 2016).

Tabla 5. Indicadores financieros normalizados (Un).

| Métrica<br>financiera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $Valor \ normalizado \ (U_n)$ | Interpretación                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Ingreso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.95 U <sub>n</sub>           | Ingreso relativo por                                               |
| $ \begin{array}{ccc}  & & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & \\  & & & \\  & & \\  & & & \\  & & \\  & & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & $ |                               | operación, basado en 1.00<br>U <sub>n</sub> = costo fijo por vuelo |
| Ganan-<br>cia por vuelo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.95 U <sub>n</sub>           | Margen operativo por vuelo después de cubrir                       |
| ( <b>G</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | costos fijos                                                       |
| Ingreso<br>diario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.55 U <sub>n</sub>          | Total relativo gene-<br>rado en la jornada comple-                 |
| Ganan-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.55 U <sub>n</sub>          | ta  Beneficio operativo                                            |

cia diaria

Tabla 4. Simulación itinerario de trenes.



## 3.5 Implicaciones prácticas y generalización

Los resultados consolidan tres conclusiones esenciales:

- 1. El sistema posee una alta sensibilidad temporal: pequeñas variaciones en la carga total afectan la capacidad de cumplir la ventana operativa.
- 2. La paralelización y la secuenciación inteligente son de alto impacto: mejoras modestas, pero bien estructuradas, generan incrementos significativos de productividad sin inversiones adi-

- cionales (Antony, 2014; Cudney & Kestle, 2018).
- El uso de métricas normalizadas (T<sub>n</sub>, U<sub>n</sub>) mejora la transparencia metodológica y facilita la aplicación del modelo a otros aeropuertos con dinámica similar (Proto et al., 2020).

En conjunto, la integración del análisis estadístico, las métricas adimensionales, el modelado mediante simulación y la estructura DMAIC aportan un marco metodológico replicable, robusto y de alta relevancia para la ingeniería logística contemporánea.

Finalmente, la consistencia entre simulación y me-

diciones de campo agrega solidez causal a las mejoras; no obstante, se sugiere en trabajos futuros incorporar modelos de filas (G/G/1, G/G/c) y simulación de eventos discretos para evaluar perturbaciones (clima, mantenimiento, no-shows de equipos) y políticas de priorización alternativas (Banks *et al.*, 2010; Gu *et al.*, 2010).

**Tabla 6.** Resultado financiero por vuelo (normalizado en U<sub>n</sub>).

| Concepto fi-<br>nanciero                  | Valor normali-<br>zado (U <sub>n</sub> ) | Descripción                                                                           |
|-------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|
| Costo fijo por<br>vuelo (C <sub>n</sub> ) | 1.00 U <sub>n</sub>                      | Unidad base de referencia; repre-<br>senta el costo mínimo necesario<br>por operación |
| Ingreso por vuelo (I <sub>n</sub> )       | 4.95 U <sub>n</sub>                      | Ingreso relativo total generado en cada vuelo                                         |
| Ganancia por<br>vuelo (G)                 | 3.95 U <sub>n</sub>                      | Margen operativo por vuelo des-<br>pués de cubrir C <sub>n</sub>                      |
| Ingreso diario                            | 18.55 U <sub>n</sub>                     | Total ingresado por todas las operaciones del día                                     |
| Ganancia di-<br>aria                      | 14.55 U <sub>n</sub>                     | Ganancia neta diaria tras múltiples vuelos                                            |

## 4 Conclusion y Recomendacion

Los resultados obtenidos permiten concluir que el proceso logístico de PRModel-Logistc presenta un desempeño operacional sólido, pero altamente sensible a fluctuaciones de volumen. La integración del enfoque DMAIC con métricas normalizadas ( $T_n$  y  $U_n$ ) constituyó una herramienta metodológica eficaz para caracterizar con precisión los cuellos de botella, evaluar la capacidad instalada y proponer mejoras de alto impacto sin comprometer información confidencial.

El uso de tiempo normalizado  $(T_n)$  demostró que el sistema opera de manera estable cuando la demanda se ubica en torno a 20 contenedores por vuelo, con una demanda temporal equivalente a  $\approx 0.76~T_n$ . Sin embargo, al alcanzar 26 contenedores por vuelo, el proceso se aproxima al límite operativo ( $\approx 0.99~T_n$ ), lo que evidencia la fragilidad del sistema ante aumentos repentinos de carga. Este comportamiento es consistente con estudios previos que destacan la importancia de la sincronización entre recursos móviles, la secuenciación operativa y la minimización de tiempos de espera en sistemas de flujo continuo.

La intervención desarrollada, basada en la paralelización de operaciones en ambas cabinas del avión y en la reorganización estratégica del SOP (priority slotting), permitió ampliar la capacidad efectiva del sistema hasta 30 contenedores por vuelo, manteniendo el tiempo total dentro del límite de 0.95  $T_{\rm n}$ . Este resultado confirma la efectividad de las metodologías Lean Six Sigma en entornos aeroportuarios donde los ciclos operativos son estrechos y los recursos deben emplearse con precisión.

Desde la perspectiva económica, la normalización financiera  $(U_n)$  reveló un desempeño altamente favorable, con un ingreso relativo de 4.95  $U_n$  por vuelo y una ganancia operativa de 3.95  $U_n$ . Estos valores reflejan la

eficiencia de un modelo dominado por costos fijos, donde cada incremento marginal en volumen contribuye significativamente al margen operativo, en línea con los modelos de elasticidad en cadenas logísticas descritos en Chopra & Meindl (2023).

En conjunto, el estudio confirma que:

- Las métricas normalizadas (T<sub>n</sub> y U<sub>n</sub>) constituyen un lenguaje robusto y replicable para evaluar procesos logísticos sin revelar información sensible.
- 2. La paralelización y secuenciación inteligente son estrategias de alto impacto, capaces de aumentar la capacidad hasta un 50% sin inversión adicional.
- 3. La metodología DMAIC garantiza una mejora continua estructurada, fortaleciendo la resiliencia operativa ante incrementos de demanda.
- 4. La simulación constituye un complemento crítico, permitiendo validar escenarios futuros sin interrumpir operaciones reales.

Como agenda de mejora continua, se proponen tres líneas de trabajo futuro:

Integración de sistemas digitales de trazabilidad y sensorización IoT, para medir en tiempo real el estado de los contenedores, la temperatura y la secuencia de despacho.

Simulación avanzada mediante modelos G/G/1 y algoritmos de optimización híbrida, a fin de evaluar estrategias de asignación dinámica de trenes y personal.

Evaluación de sostenibilidad operativa, incorporando métricas de eficiencia energética y huella de carbono asociadas al transporte terrestre y aéreo.

Finalmente, este estudio contribuye a la literatura sobre ingeniería industrial aplicada a la logística aérea, ofreciendo una base empírica para futuras investigaciones orientadas al diseño resiliente de cadenas de suministro insulares y a la consolidación de metodologías de mejora continua en el sector de transporte de carga.

#### Referencias

Antony, J. (2014). Readiness factors for the Lean Six Sigma journey in the higher education sector. *International Journal of Productivity and Performance Management*, 63(2), 257-264.

Atlas Air. (2018). *Dimensions and key data: 767-300BCF specifications.* Atlas Air Worldwide.

Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. (2010). *Discrete-Event System Simulation* (5th ed.). Pearson.

Chopra, S., & Meindl, P. (2023). Supply Chain Management: Strategy, Planning, and Operation (8th ed.). Pearson.

Christopher, M. (2016). *Logistics & Supply Chain Management* (5th ed.). Pearson Education Limited.

Cohn, A., Root, S., & Wang, A. (2007). Integration of the

Load-Matching and Routing Problem with Equipment Balancing for Small Package Carriers. Transportation Science, 41(2), 238–252.

- Cudney, E. A., & Kestle, R. (2018). *Implementing Lean Six Sigma throughout the supply chain: The comprehensive and transparent case study*. Crc Press.
- De Felice, F., Petrillo, A., & Monfreda, S. (2009). Improving Operations Performance with World Class Manufacturing Technique. *International Journal of Industrial and Engineering and Management*, 1(5).
- Desai, T. N., & Shrivastava, R. L. (2008). Six Sigma—A new direction to quality and productivity management. Proceedings of the World Congress on Engineering and Computer Science, 2, 22–24.
- George, M. L., Rowlands, D., Price, M., & Maxey, J. (2005). *The Lean Six Sigma Pocket Toolbook*. McGraw-Hill.
- Gijo, E. V., Bhat, S., & Jnanesh, N. A. (2014). Application of Six Sigma methodology in a small-scale foundry industry. *International Journal of Lean Six Sigma*, 5(2), 193-211.
- Gu, J., Goetschalckx, M., & McGinnis, L. F. (2010). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 203(3), 539–549.
- Joglekar, A. M. (2019). *Statistical Methods for Six Sigma: In R and Minitab* (2nd ed.). Wiley.
- Lim, H. (2011). Modeling local service reliabilities for the parcel distribution system. Journal of International Logistics and Trade, 9(1), 71–87.
- Liker, J. K., & Meier, D. (2021). The Toyota Way Fieldbook: A Practical Guide for Implementing Lean. McGraw-Hill.
- Minetti, G. F., Salto, C., Alfonso, H., Bermúdez, C., Dielschneider Del Bono, M. J., & Vargas, J. (2022). Optimización de la logística de distribución utilizando técnicas de la Inteligencia Artificial. In XXIV Workshop de Investigadores en Ciencias de la Computación (WICC 2022, Mendoza).
- Montgomery, D. C. (2020). *Introduction to Statistical Quality Control* (8th ed.). Wiley.
- Pereira, P. (Ed.). (2024). Six Sigma and Quality Management. BoD–Books on Demand.
- Proto, S., Di Corso, E., Apiletti, D., Cagliero, L., Cerquitelli, T., Malnati, G., & Mazzucchi, D. (2020). REDTag: a predictive maintenance framework for parcel delivery logistc. *IEEE Access*, 8, 14953-14964.
- Psychogios, A. G., & Tsironis, L. K. (2012). Towards an integrated framework for Lean Six Sigma application: Lessons from the airline industry. *Total Quality Management & Business Excellence*, 23(3-4), 397-415.
- Ruiz Moreno, S., Arango Serna, M. D., Serna Urán, C. A., & Zapata, J. A. (2020). Modelo matemático para la optimización de la red de distribución de una empresa de transporte de paquetería y mensajería terrestre. Dyna, 87(214), 127–134.

Rushton, A., Croucher, P., & Baker, P. (2022). *The Hand-book of Logistics and Distribution Management* (7th ed.). Kogan Page.

Snee, R. D. (2010). Lean Six Sigma - Getting better all the time. International Journal of Lean Six Sigma, 1(1), 9–29.

Recibido: 1 de octubre de 2025

Aceptado: 25 de noviembre de 2025

Sanz, Gabriela: BSc. in Industrial Engineering, 2025, Universidad Politécnica de Puerto Rico, San Juan, PR, USA.

1 https://orcid.org/0009-0007-0992-7442

Ledain, Mariangelie: BSc. in Industrial Engineering, 2025, Universidad Politécnica de Puerto Rico. San Juan, PR, USA. E-mail: <a href="mailto:ledain\_146447@students.pup.edu">ledain\_146447@students.pup.edu</a>
<a href="mailto:ledain\_146447">ledain\_146447@students.pup.edu</a>
<a href="mailto:ledain\_146447">ledain\_146447@stud

González, Andrea: BSc. in Industrial Engineering, 2025, Universidad Politécnica de Puerto Rico. San Juan, PR, USA. E-mail: gonzalez\_110507@students.pup.edu

1 https://orcid.org/0009-0006-0119-6318

González, Carlos: Ph.D. in Industrial Engineering, 1995, North Carolina State University. Professor, VP of Academy Affairs and Dean of the School of Engineering and Surveying. Universidad Politécnica de Puerto Rico. San Juan, PR, USA. E-mail: <a href="mailto:gonzalez@pupr.edu">gonzalez@pupr.edu</a>

https://orcid.org/0009-0001-0255-1733

Garcia, Maria: Ph.D. in Education, 2012, Ana G. Méndez University. Department Head, and Professor of Industrial Engineering Department, at the Universidad Politécnica de Puerto Rico. San Juan, PR, USA. E-mail: margarcia@pupr.edu https://orcid.org/0000-0002-7134-3057

Rondón Contreras, Jairo: Ph.D. in Applied Chemistry, mention: Materials Study, 2015, Universidad de Los Andes. Professor of Biomedical & Chemical Engineering Departments, at the Polytechnic University of Puerto Rico. San Juan. PR-USA.

https://orcid.org/0000-0002-9738-966X