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Abstract 

 

Bioactive scaffolds functionalized with nanoparticles and biomolecules represent a fundamental strategy in tissue engineer-

ing, as they provide structural, biochemical, and mechanobiological cues that promote tissue regeneration. These systems 

emulate essential functions of the extracellular matrix (ECM), modulating cell adhesion, proliferation, differentiation, and 

new matrix formation. This review integrates the main categories of biomaterials and evaluates how functionalization strat-

egies enhance their mechanical performance, bioactivity, and biological responsiveness. Nanoparticles offer unique ad-

vantages, such as antimicrobial properties, controlled release of therapeutic agents, mechanical reinforcement, and im-

proved osteogenic or angiogenic potential. In contrast, biomolecules—including peptides, growth factors, and ECM 

proteins—strengthen cell–material interactions. Applications in bone, cartilage, and cardiovascular regeneration demon-

strate the potential of these systems to overcome the limitations of conventional scaffolds. However, challenges remain re-

garding vascularization, immunomodulation, degradation control, reproducibility, and regulatory processes. Emerging 

trends such as 4D bioprinting, stimuli-responsive materials, gene-activated scaffolds, bioelectronic interfaces, and artificial 

intelligence–assisted design offer new opportunities to develop personalized and clinically viable regenerative platforms. 
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Resumen 

 

Los andamios bioactivos funcionalizados con nanopartículas y biomoléculas representan una estrategia fundamental en la 

ingeniería de tejidos, al proporcionar señales estructurales, bioquímicas y mecanobiológicas que favorecen la regenera-

ción tisular. Estos sistemas emulan funciones esenciales de la matriz extracelular (MEC), modulando la adhesión, prolife-

ración, diferenciación y la formación de nueva matriz. Esta revisión integra las principales categorías de biomateriales y 

evalúa cómo las estrategias de funcionalización mejoran su desempeño mecánico, bioactividad y capacidad de respuesta 

biológica. Las nanopartículas aportan ventajas únicas, como propiedades antimicrobianas, liberación controlada de agen-

tes terapéuticos, refuerzo mecánico y mayor potencial osteogénico o angiogénico; mientras que las biomoléculas, incluidas 

péptidos, factores de crecimiento y proteínas de la MEC, fortalecen las interacciones célula–material. Las aplicaciones en 

la regeneración ósea, cartilaginosa y cardiovascular demuestran el potencial de estos sistemas para superar las limitacio-

nes de los andamios convencionales. No obstante, persisten retos relacionados con la vascularización, la modulación in-

munológica, el control de la degradación, la reproducibilidad y los procesos regulatorios. Las tendencias emergentes, co-

mo la bioimpresión 4D, los materiales sensibles a estímulos, los andamios activados por genes, las interfaces 

bioelectrónicas y el diseño asistido por inteligencia artificial, ofrecen nuevas oportunidades para desarrollar plataformas 

regenerativas personalizadas y clínicamente viables.  

 

Palabras clave: andamios, andamios bioactivos, biomoléculas, nanopartículas bioactivas, ingeniería de tejidos. 
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1 Introducción 

The development of biomaterials and scaffolds for tis-

sue engineering has transformed regenerative medicine by 

enabling the design of three-dimensional (3D) structures 

that partially reproduce the architecture, composition, and 

function of native tissues. In the classical tissue engineering 

paradigm, cells are harvested, expanded in vitro, and seeded 

onto a scaffold that acts as a temporary extracellular matrix 

(ECM), providing mechanical support, topographical cues, 

and biochemical signals to guide tissue repair after implan-

tation (Krishani et al., 2023; Lutzweiler et al., 2020; Ron-

dón et al., 2025). To fulfill this role, scaffolds must exhibit 

interconnected porosity, adequate mechanical strength, con-

trolled degradability, and a high degree of biocompatibility 

and bioactivity, while also minimizing immune rejection 

and toxicity (Eltom et al., 2019; Williams, 2022). 

Within this context, bioactive scaffolds represent an 

evolution from purely structural supports toward dynami-

cally instructive biomaterials. Rather than acting as passive 

frameworks, bioactive scaffolds are engineered to modulate 

cell adhesion, proliferation, differentiation, and ECM depo-

sition through tailored surface chemistry, nano-/micro-

architecture, and controlled presentation of biochemical 

signals (Krishani et al., 2023; Zielińska et al., 2023).  

Recent reviews have highlighted how such scaffolds 

can be designed from natural and synthetic polymers, ce-

ramics, and composite systems, with increasing attention to 

the interplay between material composition, degradation 

behavior, and the host response (Eldeeb et al., 2022; Kim et 

al., 2024; Wong et al., 2023). In this scenario, the work of 

Rondón, Vázquez, and Lugo has contributed to consolidat-

ing the conceptual and technological basis for scaffold de-

sign in tissue engineering, especially in Latin-American 

contexts (Rondón et al., 2023) 

A key strategy to enhance scaffold performance is 

functionalization, which involves the deliberate modifica-

tion of the scaffold's bulk or surface to introduce specific 

physicochemical, biological, or topographical features that 

promote a desired cellular response (Zielińska et al., 2023; 

Todd et al., 2024). Functionalization can be achieved by 

incorporating nanoparticles (NPs) (metallic, ceramic, poly-

meric, or carbon-based) or by immobilizing biomolecules 

such as growth factors, peptides, polysaccharides, and pro-

teins. Nanoparticles provide a high surface-to-volume ratio 

and tunable physicochemical properties, enabling controlled 

drug release, antimicrobial activity, imaging contrast, or 

mechanical reinforcement (Delfi et al., 2020; Eker et al., 

2024; Anusiya & Jaiganesh, 2022). In parallel, biomolecu-

les offer specific biological recognition motifs that can en-

hance cell adhesion, promote lineage-specific differentia-

tion, and regulate angiogenesis and immunomodulation 

(Eldeeb et al., 2022; Lutzweiler et al., 2020). 

The choice of biomaterial is equally critical. Natural 

polymers such as collagen, gelatin, chitosan, alginate, and 

hyaluronic acid are attractive due to their structural similari-

ty to native ECM, intrinsic bioactivity, and degradability 

(Chen et al., 2022; Dovedytis et al., 2020; Ressler, 2022; 

Lauritano et al., 2024). However, they often suffer from 

batch-to-batch variability and limited mechanical strength, 

especially in load-bearing applications (Wong et al., 2023; 

Ramos-Zúñiga et al., 2022). Synthetic polymers (including 

polylactic acid (PLA), polycaprolactone (PCL), and poly-

ethylene glycol (PEG)) as well as bioactive ceramics such 

as hydroxyapatite and zirconia, allow precise control over 

mechanical properties, degradation kinetics, and processing 

routes, but usually require surface modification or blending 

to reach an adequate level of bioactivity (Bolívar-Monsalve 

et al., 2021; Bal et al., 2020; Ma et al., 2021; Ghosh & 

Webster, 2021). Hybrid scaffolds that combine natural and 

synthetic components, frequently processed by electrospin-

ning, 3D printing, or foaming techniques, seek to integrate 

the biological advantages of natural matrices with the ro-

bustness and reproducibility of synthetic systems (Anusiya 

& Jaiganesh, 2022; Fermani et al., 2021; Wulf et al., 

2022). 

At the cellular level, cell-scaffold interactions (particu-

larly adhesion, proliferation, and differentiation) mediate 

the success of any tissue engineering strategy (Wang et al., 

2023). Adhesion processes, governed by integrin-mediated 

recognition of ligands and ECM-mimetic motifs, regulate 

cytoskeletal organization, mechanotransduction, and 

downstream signaling pathways (Khalili & Ahmad, 2015; 

Shams et al., 2025). Cell proliferation ensures adequate cell 

density and homogeneous colonization of the scaffold, whi-

le differentiation drives the acquisition of tissue-specific 

phenotypes, often controlled by tightly regulated gene net-

works and epigenetic mechanisms (Liu et al., 2024; Wu & 

Yue, 2024). Functionalized scaffolds aspire to orchestrate 

these events by combining biochemical, mechanical, and 

topographical cues in a spatiotemporally controlled manner. 

From an application standpoint, bioactive and functional-

ized scaffolds have shown particular promise in bone and 

cartilage regeneration, where mechanical demands, vascu-

larization constraints, and complex defect geometries re-

main challenging (Bal et al., 2020; Xue et al., 2022; Rawojć 

et al., 2025; Trebunova et al., 2025). Likewise, in cardio-

vascular tissue engineering, hybrid scaffolds integrating na-

tural matrices, synthetic polymers, and conductive nanoma-

terials are being explored to restore contractile function, 

electrical conduction, and vascular integrity in damaged 

myocardium and vascular grafts (Razavi et al., 2024; Rayat 

Pisheh et al., 2024). Despite these advances, many systems 

remain at preclinical stages due to hurdles related to repro-

ducibility, large-scale manufacturing, regulatory classifica-

tion, and long-term safety (Jeraj & Zameer, 2025; Ramos-

Zúñiga et al., 2021). 

In this framework, there is a need for integrative re-

views that connect the chemical and structural design of 

functionalized bioactive scaffolds with their cellular mech-

anisms of action and their translation into specific biomedi-
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cal applications. Therefore, the objective of this work is to 

provide a critical and up-to-date overview of bioactive scaf-

folds functionalized with nanoparticles and biomolecules. 

The review analyzes their composition, functionalization 

strategies, and biological mechanisms. It discusses their ap-

plications in bone, cartilage, and cardiovascular tissue engi-

neering, as well as the main challenges and future perspec-

tives for their clinical translation. 

2   Methodology 

The methodology used in this research will be documen-

tary-exploratory, based on: 

a. Data search and compilation: Databases such as PubMed, 

ACS Publications, ScienceDirect, SCOPUS, IEEE, SCI-

ELO, RedALyC, and Google Scholar will be used. Search 

keywords will include: "Functionalized bioactive scaffolds," 

"Nanoparticles in tissue engineering," "Biomolecules in tis-

sue regeneration." The search will be limited to the period 

from 2011 to 2025. 

b. Information selection and refinement: Mendeley will be 

used as a bibliographic manager to organize the information 

into five databases: composition, types, properties, mecha-

nisms of action, and biomedical use. Relevant research arti-

cles and reviews will be prioritized. 

 
 

Figure 1. Study selection methodology flowchart for the research.  

 

c. Subtopic selection: The collected information will be 

structured to identify recent trends and advances in the 

field. 

d. Analysis of results: A critical analysis of the collected 

data will be performed, organizing the information into a 

structured review and discussing its implications for tissue 

engineering. 

3   Results and Discussions 

3.1 Bioactive scaffolds: concept and functional role 

Bioactive scaffolds constitute a central pillar in con-

temporary tissue engineering because they provide a struc-

tural and biochemical microenvironment that emulates the 

natural extracellular matrix (ECM). From a regenerative 

perspective, the scaffold must support cell adhesion, prolif-

eration, differentiation, and ECM deposition - functions 

tightly linked to its surface chemistry, mechanical proper-

ties, and architecture (Krishani et al., 2023; Lutzweiler et 

al., 2020). Traditional scaffolds were initially conceived as 

inert physical supports; however, their evolution into bioac-

tive and instructive systems reflects a paradigm shift toward 

materials capable of modulating biological signaling path-

ways and influencing cellular phenotype. 

Key properties such as porosity, pore interconnectivity, 

biodegradability, and mechanical stability determine the 

success of scaffold-mediated tissue regeneration (Satchan-

ska et al., 2024). Biocompatibility ensures the safe integra-

tion of materials without provoking cytotoxicity or inflam-

matory reactions (Sindhi et al., 2025), while bioactivity 

enables active interactions with cells through ligand presen-

tation, the release of chemical cues, or the direct modulation 

of cell behavior (Krishani et al., 2023). The synergistic in-

terplay between these variables ultimately dictates scaffold 

performance in vivo. 

3.1.1 Types and properties of bioactive scaffolds 

Bioactive scaffolds can be fabricated from natural pol-

ymers, synthetic polymers, ceramics, and hybrid compo-

sites, each offering distinct advantages and limitations, de-

pending on the target tissue. Natural polymers (such as 

collagen, gelatin, chitosan, alginate, and hyaluronic acid) 

exhibit excellent biocompatibility and intrinsic bioactivity, 

features that replicate many ECM-like characteristics (Chen 

et al., 2022; Eldeeb et al., 2022). Their main limitations in-

clude batch-to-batch variability, rapid degradation, and in-

sufficient mechanical strength for load-bearing tissues 

(Wong et al., 2023; Ramos-Zúñiga et al., 2022). 

Synthetic polymers (PLA, PCL, PEG) allow precise 

control over mechanical properties and degradation kinetics 

and can be produced at scale with high reproducibility (Bol-

ívar-Monsalve et al., 2021). However, they typically require 

surface modification or blending with natural polymers to 

enhance bioactivity (Anusiya & Jaiganesh, 2022). 

Ceramics such as hydroxyapatite (HAp) and tricalcium 

phosphate (TCP) exhibit osteoconductive properties and are 

widely used in bone tissue engineering (Ma et al., 2021). 
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Hybrid composites that combine polymers and ceramics ad-

dress mechanical limitations while improving cell response 

(Ghosh & Webster, 2021). 

3.2 Functionalization strategies: nanoparticles and biomol-

ecules 

Functionalization refers to the intentional design of 

scaffold surfaces or bulk phases with chemical groups, na-

nomaterials, or biomolecules that elicit specific biological 

responses (Zielińska et al., 2023; Todd et al., 2024). This 

strategy transforms scaffolds from passive physical supports 

into biologically instructive systems. 

3.2.1 Nanoparticle functionalization 

Nanoparticles (NPs) (metallic, inorganic, carbon-

based, polymeric, lipid-based) possess distinctive physico-

chemical properties attributable to their nanoscale dimen-

sions and high surface-area-to-volume ratio (Yameny et al., 

2024; Eker et al., 2024). Their incorporation into scaffolds 

enables: 

• Controlled release of growth factors and therapeu-

tic agents 

• Antimicrobial activity, especially with AgNPs, 

ZnO-NPs, and CuNPs (Khursheed et al., 2022; 

Yang et al., 2021) 

• Mechanical reinforcement, improving rigidity or 

flexibility 

• Enhanced osteoinduction or angiogenesis, as ob-

served with TiO₂ and HAp nanoparticles (Delfi et 

al., 2020) 

• Diagnostic imaging enhancement, such as Fe₃O₄ 

NPs for MRI contrast 

Metal nanoparticles such as AuNPs exhibit unique op-

tical and surface plasmon resonance properties, enabling 

sensing, bioimaging, and targeted therapy. Ceramic nano-

particles enhance osteogenic potential, while carbon-based 

nanomaterials impart electrical conductivity useful for car-

diac or neural tissue engineering. 

3.2.2 Biomolecule functionalization 

Biomolecules (including growth factors, short pep-

tides, ECM proteins, and polysaccharides) provide biologi-

cal recognition motifs that regulate cell adhesion, prolifera-

tion, and lineage commitment (Eldeeb et al., 2022; 

Lutzweiler et al., 2020). 

Examples include: 

• RGD peptides that promote integrin-mediated ad-

hesion 

• BMP-2 or VEGF for osteogenesis and angiogene-

sis 

• Hyaluronic acid to enhance hydration and viscoe-

lasticity 

• Fibrin or collagen to promote ECM deposition and 

wound healing 

The immobilization of biomolecules enables the spatial 

and temporal modulation of cell behavior, thereby mimick-

ing tissue-specific microenvironments. 

3.3 Biomaterials employed in functionalized scaffolds 

3.3.1 Natural biomaterials 

Natural biomaterials exhibit structural similarity to 

human ECM, facilitating cell–material interactions. Colla-

gen and gelatin support osteogenesis and chondrogenesis; 

chitosan provides antibacterial and hemostatic properties; 

alginate allows gentle in situ gelation; hyaluronic acid im-

proves tissue hydration and signals cellular migration (Ka-

matar et al., 2020; Dovedytis et al., 2020; Wu et al., 2024; 

Lukin et al., 2022). Their disadvantages (poor mechanical 

behavior and rapid degradation) require reinforcement 

through crosslinking or blending with synthetic materials 

(Ressler, 2022). 

3.3.2 Synthetic biomaterials 

Synthetic biomaterials such as PLA, PCL, and PEG of-

fer predictability and tunability (Carbajal-De la Torre et al., 

2021). Ceramics and composites, including hydroxyapatite 

(HAp) and zirconia, provide stiffness suitable for bone re-

generation but lack intrinsic bioactivity unless they are 

functionalized (Ma et al., 2021). To overcome these limita-

tions, polymers and ceramics are combined through electro-

spinning, 3D printing, and solvent casting to achieve im-

proved mechanical and biological performance (Anusiya & 

Jaiganesh, 2022; Fermani et al., 2021). 

3.4 Cellular mechanisms: interaction between scaffolds and 

cells 

The biological response to scaffolds is orchestrated by 

three core mechanisms: adhesion, proliferation, and differ-

entiation. 

3.4.1 Proliferation 

Proliferation ensures adequate cell density and coloni-

zation throughout the scaffold. Its regulation depends on 

scaffold porosity, nutrient transport, stiffness, and biochem-

ical signaling (Wang et al., 2023). 

3.4.2 Differentiation 

Cell differentiation involves the transition of progeni-

tor or stem cells into specialized lineages, regulated through 

gene expression programs, epigenetic signals, and scaffold-

induced mechanotransduction (Liu et al., 2024; Wu & Yue, 
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2024). Growth factor–functionalized scaffolds enhance lin-

eage-specific outcomes such as osteogenesis or chondro-

genesis. 

3.4.3 Adhesion 

Integrins and ECM-mimetic ligands mediate cell adhe-

sion, controlling cytoskeletal organization, migration, and 

viability (Khalili & Ahmad, 2015). Scaffolds functionalized 

with peptides or proteins improve adhesion strength and 

stability (Shams et al., 2025). 

3.5 Biomedical applications 

3.5.1 Bone and cartilage regeneration 

Hydroxyapatite-based systems remain the gold stand-

ard for bone tissue engineering due to their chemical simi-

larity to native bone (Bal et al., 2020). However, their brit-

tleness necessitates the use of composite reinforcement. 

Functionalized scaffolds incorporating nanoparticles or os-

teogenic biomolecules have demonstrated improved angio-

genesis and mineralization (Xue et al., 2022; Ye et al., 

2025). Clinical strategies such as bone grafting or PEMF 

therapies complement material-based interventions. 

3.5.2 Cardiovascular tissue engineering 

Cardiovascular scaffolds must emulate the anisotropic 

mechanical and electrical characteristics of myocardial tis-

sue (Razavi et al., 2024). Hybrid scaffolds combining colla-

gen, fibrin, PLA, or PCL with conductive nanomaterials 

(graphene, carbon nanotubes) improve contractility and sig-

nal propagation (Rayat Pisheh et al., 2024). Challenges in-

clude poor vascularization and an immature cardiomyocyte 

phenotype, which are partially addressed using induced plu-

ripotent stem cells (iPSCs) and electrical stimulation (Hos-

seini et al., 2021). 

4   Challenges and Future Perspectives 

The rapid evolution of bioactive scaffolds functional-

ized with nanoparticles and biomolecules has significantly 

advanced the field of tissue engineering; however, several 

scientific, technological, and regulatory challenges continue 

to limit their clinical translation. Understanding these limi-

tations is crucial for guiding the development of the next 

generation of instructive, multifunctional, and patient-

specific scaffolds. 

4.1 Structural and material challenges 

A central barrier lies in the difficulty of developing 

scaffolds that simultaneously satisfy mechanical robustness, 

biomimetic architecture, and biological performance. In 

load-bearing tissues such as bone and cartilage, the need for 

high porosity to support vascularization conflicts with the 

mechanical stability required to withstand physiological 

loads (Rawojć et al., 2025). For soft tissues, the challenge 

involves achieving elasticity, viscoelasticity, and degrada-

tion behaviors that recapitulate the native ECM without 

generating cytotoxic byproducts (Trebunova et al., 2025). 

Control over degradation kinetics remains a significant 

limitation. Many biodegradable polymers produce acidic or 

alkaline degradation products that perturb pH balance, 

negatively impacting cell viability and inflammatory re-

sponses (Ma et al., 2021; Patel et al., 2011). Similarly, natu-

ral polymers exhibit unpredictable degradation profiles due 

to batch variability, affecting reproducibility and long-term 

performance (Wong et al., 2023). 

Functionalization itself introduces complexity. While 

nanoparticles and biomolecules impart instructive cues, they 

may also alter mechanical behavior, influence degradation, 

or change hydrophilicity in unintended ways. Achieving 

precise, uniform, and reproducible incorporation of func-

tional moieties (without compromising scaffold integrity) 

remains an unresolved challenge in engineering (Delfi et 

al., 2020). 

4.2 Biological and cellular barriers 

The interaction between scaffolds and living tissues is 

intrinsically dynamic and highly dependent on the local bi-

ochemical and mechanical microenvironment. Significant 

biological challenges include: 

4.2.1 Limited vascularization 

A lack of prompt and robust vascularization is a prima-

ry cause of scaffold failure in vivo. Without an adequate 

blood supply, the inner regions of the scaffold become hy-

poxic, resulting in insufficient nutrient diffusion and com-

promised tissue formation (Xue et al., 2022; Devillard & 

Marquette, 2021). This is especially critical in significant 

bone defects, engineered myocardium, and dense cartilage 

constructs. 

4.2.2 Immune response and inflammation 

Even biocompatible materials may elicit foreign body 

reactions, macrophage activation, or fibrous encapsulation. 

Nanoparticles, in particular, can modulate immune path-

ways in unpredictable ways depending on size, morphology, 

and surface chemistry (Yang et al., 2021). Understanding 

and controlling immunomodulatory behavior is therefore 

essential. 

4.2.3 Controlled release limitations 

Biomolecule-functionalized scaffolds often struggle to 

maintain sustained, localized, and bioactive release of 
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growth factors or peptides. Uncontrolled release can lead to 

dosage inefficiency, off-target effects, or premature deple-

tion of therapeutics (Zielińska et al., 2023). 

4.2.4 Cell source and maturation 

Stem cell–based systems face inherent variability, risks 

of undesired differentiation, and difficulties in achieving 

full maturation. For example, cardiomyocytes derived from 

iPSCs often retain immature phenotypes that limit their 

functional integration (Hosseini et al., 2021). 

4.3 Manufacturing, standardization, and regulatory chal-

lenges 

Translating scaffold systems from laboratory proto-

types to clinically approved products requires overcoming 

formidable technological and regulatory hurdles. 

4.3.1 Reproducibility and scale-up 

Many laboratory-scale fabrication techniques, such as 

electrospinning, freeze-casting, and solvent-based printing, 

lack the precision and scalability required for industrial 

production. Variations in fabrication conditions can signifi-

cantly modify pore size, mechanical strength, and function-

alization efficiency (Rawojć et al., 2025). 

4.3.2 Quality control and standardized protocols 

The absence of unified standards for mechanical test-

ing, degradation evaluation, nanoparticle incorporation, and 

biomolecule immobilization limits comparability across 

studies and complicates the regulatory approval process. 

4.3.3 Complex regulatory pathways 

Functionalized scaffolds occupy a regulatory “grey 

zone” between medical devices, combination products, and 

advanced therapeutic medicinal products. Consequently, 

they often require extensive documentation, long-term safe-

ty data, and stringent biocompatibility testing under ISO 

10993 guidelines (Ramos-Zúñiga et al., 2021). 

4.4 Emerging trends and strategic future directions 

Despite these challenges, several technological innova-

tions promise to redefine the field: 

4.4.1 Smart and stimuli-responsive scaffolds 

Advances in materials chemistry are enabling scaffolds 

that respond to pH, enzymes, mechanical load, or electrical 

signals, thereby enhancing control over drug release, cell 

behavior, and tissue integration (Trebunova et al., 2025). 

4.4.2 3D and 4D bioprinting 

Hybrid bioprinting enables spatial control over scaffold 

architecture, cell placement, and biomolecular distribution. 

4D bioprinting introduces time-dependent transformations 

triggered by environmental changes, providing dynamic 

control over tissue maturation (Aftab et al., 2025). 

4.4.3 Gene-activated and bioelectronic scaffolds 

Gene-loaded constructs provide prolonged expression 

of therapeutic factors, while conductive polymers and na-

nomaterials enable the electrical stimulation of cardiac or 

neural tissues, thereby accelerating functional integration. 

4.4.4 AI-assisted design and computational modeling 

Artificial intelligence and machine learning can opti-

mize scaffold architecture, predict degradation patterns, and 

reduce the need for animal experimentation. Data-driven 

platforms accelerate the discovery of novel biomaterial 

combinations and predict biological response based on 

physicochemical descriptors (Rawojć et al., 2025). 

4.4.5 Personalized and regenerative platforms 

The integration of patient-specific imaging, iPSC-

derived cells, and custom-printed scaffolds opens avenues 

toward personalized regenerative therapies. Tailoring scaf-

fold geometry and biofunctionality to individual anatomical 

and biological needs may significantly enhance clinical out-

comes. 

4.5 Outlook 

Overall, the future of bioactive, functionalized scaf-

folds rests on achieving a cohesive integration of material 

science, biology, engineering, and computational design. 

Overcoming current limitations will require interdiscipli-

nary collaboration, advanced processing technologies, and 

rigorous preclinical and clinical validation. If these obsta-

cles are addressed, functionalized scaffolds hold strong po-

tential to transition from experimental constructs into relia-

ble regenerative platforms capable of addressing complex 

clinical conditions in bone, cartilage, cardiovascular, and 

soft tissue repair. 

5   Conclusion 

Bioactive scaffolds functionalized with nanoparticles 

and biomolecules represent one of the most promising tech-

nological fronts in contemporary tissue engineering. Their 

ability to emulate key functions of the extracellular matrix, 

modulate cell behavior, and provide targeted therapeutic 

activity has significantly expanded the potential of regen-
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erative medicine. As shown throughout this review, the 

structural design of scaffolds (whether derived from natural 

polymers, synthetic materials, ceramics, or hybrid compo-

sites) plays a critical role in determining their mechanical 

performance, degradation behavior, and biological compati-

bility. Functionalization further enhances these properties 

by enabling controlled release mechanisms, improving cell 

adhesion, and selectively stimulating proliferative and dif-

ferentiation pathways. 

Applications in bone, cartilage, and cardiovascular tis-

sue engineering demonstrate that functionalized scaffolds 

can overcome several limitations of traditional biomaterials. 

Osteoconductive nanoparticle-reinforced composites im-

prove mineralization; peptide-functionalized hydrogels en-

hance chondrogenesis; and hybrid, conductive scaffolds 

show potential in restoring cardiac electrical functionality. 

However, these advances remain constrained by challenges 

related to vascularization, immune response modulation, 

standardization of manufacturing processes, and long-term 

safety. Additionally, the integration of complex biochemical 

signals and nanostructured components requires precise 

control of scaffold architecture and physicochemical inter-

actions, which often complicates reproducibility and regula-

tory approval. 

Looking forward, next-generation regenerative plat-

forms will increasingly rely on emerging technologies such 

as 4D bioprinting, gene-activated scaffolds, bioelectronic 

interfaces, and AI-guided material design. These innova-

tions promise to deliver more dynamic, adaptive, and pa-

tient-specific constructs that can respond to physiological 

stimuli and promote robust functional tissue regeneration. 

To accelerate clinical translation, interdisciplinary efforts 

between materials scientists, biomedical engineers, clini-

cians, and regulatory experts will be critical. 
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