A review on bioactive scaffolds in biomedical engineering: Functionalization with nanoparticles and biomolecules

Una revisión sobre andamios bioactivos en ingeniería biomédica: Funcionalización con nanopartículas y biomoléculas

Aponte, Nicole1*; Rondón, Jairo1,2; Gonzalez-Lizardo, Angel3; Lugo, Claudio4

Biomedical Engineering Department, Universidad Politécnica de Puerto Rico, San Juan, PR 00918, USA
 Chemical Engineering Department, Universidad Politécnica de Puerto Rico, San Juan, PR 00918, USA
 Department of Electrical and Computer Engineering & Computer Science, Universidad Politécnica de Puerto Rico, San Juan, PR 00918, USA

⁴ Laboratorio de Cinética y Catálisis, Universidad de Los Andes, Mérida, Venezuela. *aponte 140892@students.pupr.edu

Abstract

Bioactive scaffolds functionalized with nanoparticles and biomolecules represent a fundamental strategy in tissue engineering, as they provide structural, biochemical, and mechanobiological cues that promote tissue regeneration. These systems emulate essential functions of the extracellular matrix (ECM), modulating cell adhesion, proliferation, differentiation, and new matrix formation. This review integrates the main categories of biomaterials and evaluates how functionalization strategies enhance their mechanical performance, bioactivity, and biological responsiveness. Nanoparticles offer unique advantages, such as antimicrobial properties, controlled release of therapeutic agents, mechanical reinforcement, and improved osteogenic or angiogenic potential. In contrast, biomolecules—including peptides, growth factors, and ECM proteins—strengthen cell-material interactions. Applications in bone, cartilage, and cardiovascular regeneration demonstrate the potential of these systems to overcome the limitations of conventional scaffolds. However, challenges remain regarding vascularization, immunomodulation, degradation control, reproducibility, and regulatory processes. Emerging trends such as 4D bioprinting, stimuli-responsive materials, gene-activated scaffolds, bioelectronic interfaces, and artificial intelligence—assisted design offer new opportunities to develop personalized and clinically viable regenerative platforms.

Keywords: scaffolds, bioactive scaffolds, biomolecules, bioactive nanoparticles, tissue engineering.

Resumen

Los andamios bioactivos funcionalizados con nanopartículas y biomoléculas representan una estrategia fundamental en la ingeniería de tejidos, al proporcionar señales estructurales, bioquímicas y mecanobiológicas que favorecen la regeneración tisular. Estos sistemas emulan funciones esenciales de la matriz extracelular (MEC), modulando la adhesión, proliferación, diferenciación y la formación de nueva matriz. Esta revisión integra las principales categorías de biomateriales y evalúa cómo las estrategias de funcionalización mejoran su desempeño mecánico, bioactividad y capacidad de respuesta biológica. Las nanopartículas aportan ventajas únicas, como propiedades antimicrobianas, liberación controlada de agentes terapéuticos, refuerzo mecánico y mayor potencial osteogénico o angiogénico; mientras que las biomoléculas, incluidas péptidos, factores de crecimiento y proteínas de la MEC, fortalecen las interacciones célula-material. Las aplicaciones en la regeneración ósea, cartilaginosa y cardiovascular demuestran el potencial de estos sistemas para superar las limitaciones de los andamios convencionales. No obstante, persisten retos relacionados con la vascularización, la modulación inmunológica, el control de la degradación, la reproducibilidad y los procesos regulatorios. Las tendencias emergentes, como la bioimpresión 4D, los materiales sensibles a estímulos, los andamios activados por genes, las interfaces bioelectrónicas y el diseño asistido por inteligencia artificial, ofrecen nuevas oportunidades para desarrollar plataformas regenerativas personalizadas y clínicamente viables.

Palabras clave: andamios, andamios bioactivos, biomoléculas, nanopartículas bioactivas, ingeniería de tejidos.

1 Introducción

The development of biomaterials and scaffolds for tissue engineering has transformed regenerative medicine by enabling the design of three-dimensional (3D) structures that partially reproduce the architecture, composition, and function of native tissues. In the classical tissue engineering paradigm, cells are harvested, expanded in vitro, and seeded onto a scaffold that acts as a temporary extracellular matrix (ECM), providing mechanical support, topographical cues, and biochemical signals to guide tissue repair after implantation (Krishani *et al.*, 2023; Lutzweiler *et al.*, 2020; Rondón *et al.*, 2025). To fulfill this role, scaffolds must exhibit interconnected porosity, adequate mechanical strength, controlled degradability, and a high degree of biocompatibility and bioactivity, while also minimizing immune rejection and toxicity (Eltom *et al.*, 2019; Williams, 2022).

Within this context, bioactive scaffolds represent an evolution from purely structural supports toward dynamically instructive biomaterials. Rather than acting as passive frameworks, bioactive scaffolds are engineered to modulate cell adhesion, proliferation, differentiation, and ECM deposition through tailored surface chemistry, nano-/microarchitecture, and controlled presentation of biochemical signals (Krishani *et al.*, 2023; Zielińska *et al.*, 2023).

Recent reviews have highlighted how such scaffolds can be designed from natural and synthetic polymers, ceramics, and composite systems, with increasing attention to the interplay between material composition, degradation behavior, and the host response (Eldeeb *et al.*, 2022; Kim *et al.*, 2024; Wong *et al.*, 2023). In this scenario, the work of Rondón, Vázquez, and Lugo has contributed to consolidating the conceptual and technological basis for scaffold design in tissue engineering, especially in Latin-American contexts (Rondón *et al.*, 2023)

A key strategy to enhance scaffold performance is functionalization, which involves the deliberate modification of the scaffold's bulk or surface to introduce specific physicochemical, biological, or topographical features that promote a desired cellular response (Zielińska et al., 2023; Todd et al., 2024). Functionalization can be achieved by incorporating nanoparticles (NPs) (metallic, ceramic, polymeric, or carbon-based) or by immobilizing biomolecules such as growth factors, peptides, polysaccharides, and proteins. Nanoparticles provide a high surface-to-volume ratio and tunable physicochemical properties, enabling controlled drug release, antimicrobial activity, imaging contrast, or mechanical reinforcement (Delfi et al., 2020; Eker et al., 2024; Anusiya & Jaiganesh, 2022). In parallel, biomolecules offer specific biological recognition motifs that can enhance cell adhesion, promote lineage-specific differentiation, and regulate angiogenesis and immunomodulation (Eldeeb et al., 2022; Lutzweiler et al., 2020).

The choice of biomaterial is equally critical. Natural polymers such as collagen, gelatin, chitosan, alginate, and

hvaluronic acid are attractive due to their structural similarity to native ECM, intrinsic bioactivity, and degradability (Chen et al., 2022; Dovedytis et al., 2020; Ressler, 2022; Lauritano et al., 2024). However, they often suffer from batch-to-batch variability and limited mechanical strength, especially in load-bearing applications (Wong et al., 2023; Ramos-Zúñiga et al., 2022). Synthetic polymers (including polylactic acid (PLA), polycaprolactone (PCL), and polyethylene glycol (PEG)) as well as bioactive ceramics such as hydroxyapatite and zirconia, allow precise control over mechanical properties, degradation kinetics, and processing routes, but usually require surface modification or blending to reach an adequate level of bioactivity (Bolívar-Monsalve et al., 2021; Bal et al., 2020; Ma et al., 2021; Ghosh & Webster, 2021). Hybrid scaffolds that combine natural and synthetic components, frequently processed by electrospinning, 3D printing, or foaming techniques, seek to integrate the biological advantages of natural matrices with the robustness and reproducibility of synthetic systems (Anusiya & Jaiganesh, 2022; Fermani et al., 2021; Wulf et al.,

At the cellular level, cell-scaffold interactions (particularly adhesion, proliferation, and differentiation) mediate the success of any tissue engineering strategy (Wang et al., 2023). Adhesion processes, governed by integrin-mediated recognition of ligands and ECM-mimetic motifs, regulate cytoskeletal organization, mechanotransduction, downstream signaling pathways (Khalili & Ahmad, 2015; Shams et al., 2025). Cell proliferation ensures adequate cell density and homogeneous colonization of the scaffold, while differentiation drives the acquisition of tissue-specific phenotypes, often controlled by tightly regulated gene networks and epigenetic mechanisms (Liu et al., 2024; Wu & Yue, 2024). Functionalized scaffolds aspire to orchestrate these events by combining biochemical, mechanical, and topographical cues in a spatiotemporally controlled manner. From an application standpoint, bioactive and functionalized scaffolds have shown particular promise in bone and cartilage regeneration, where mechanical demands, vascularization constraints, and complex defect geometries remain challenging (Bal et al., 2020; Xue et al., 2022; Rawojć et al., 2025; Trebunova et al., 2025). Likewise, in cardiovascular tissue engineering, hybrid scaffolds integrating natural matrices, synthetic polymers, and conductive nanomaterials are being explored to restore contractile function, electrical conduction, and vascular integrity in damaged myocardium and vascular grafts (Razavi et al., 2024; Rayat Pisheh et al., 2024). Despite these advances, many systems remain at preclinical stages due to hurdles related to reproducibility, large-scale manufacturing, regulatory classification, and long-term safety (Jeraj & Zameer, 2025; Ramos-Zúñiga et al., 2021).

In this framework, there is a need for integrative reviews that connect the chemical and structural design of functionalized bioactive scaffolds with their cellular mechanisms of action and their translation into specific biomedi-

cal applications. Therefore, the objective of this work is to provide a critical and up-to-date overview of bioactive scaffolds functionalized with nanoparticles and biomolecules. The review analyzes their composition, functionalization strategies, and biological mechanisms. It discusses their applications in bone, cartilage, and cardiovascular tissue engineering, as well as the main challenges and future perspectives for their clinical translation.

2 Methodology

The methodology used in this research will be documentary-exploratory, based on:

a. Data search and compilation: Databases such as PubMed, ACS Publications, ScienceDirect, SCOPUS, IEEE, SCI-ELO, RedALyC, and Google Scholar will be used. Search keywords will include: "Functionalized bioactive scaffolds," "Nanoparticles in tissue engineering," "Biomolecules in tissue regeneration." The search will be limited to the period from 2011 to 2025.

b. Information selection and refinement: Mendeley will be used as a bibliographic manager to organize the information into five databases: composition, types, properties, mechanisms of action, and biomedical use. Relevant research articles and reviews will be prioritized.

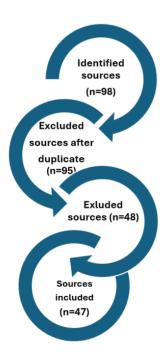


Figure 1. Study selection methodology flowchart for the research.

c. Subtopic selection: The collected information will be structured to identify recent trends and advances in the field.

d. Analysis of results: A critical analysis of the collected data will be performed, organizing the information into a structured review and discussing its implications for tissue engineering.

3 Results and Discussions

3.1 Bioactive scaffolds: concept and functional role

Bioactive scaffolds constitute a central pillar in contemporary tissue engineering because they provide a structural and biochemical microenvironment that emulates the natural extracellular matrix (ECM). From a regenerative perspective, the scaffold must support cell adhesion, proliferation, differentiation, and ECM deposition - functions tightly linked to its surface chemistry, mechanical properties, and architecture (Krishani *et al.*, 2023; Lutzweiler *et al.*, 2020). Traditional scaffolds were initially conceived as inert physical supports; however, their evolution into bioactive and instructive systems reflects a paradigm shift toward materials capable of modulating biological signaling pathways and influencing cellular phenotype.

Key properties such as porosity, pore interconnectivity, biodegradability, and mechanical stability determine the success of scaffold-mediated tissue regeneration (Satchanska *et al.*, 2024). Biocompatibility ensures the safe integration of materials without provoking cytotoxicity or inflammatory reactions (Sindhi *et al.*, 2025), while bioactivity enables active interactions with cells through ligand presentation, the release of chemical cues, or the direct modulation of cell behavior (Krishani *et al.*, 2023). The synergistic interplay between these variables ultimately dictates scaffold performance in vivo.

3.1.1 Types and properties of bioactive scaffolds

Bioactive scaffolds can be fabricated from natural polymers, synthetic polymers, ceramics, and hybrid composites, each offering distinct advantages and limitations, depending on the target tissue. Natural polymers (such as collagen, gelatin, chitosan, alginate, and hyaluronic acid) exhibit excellent biocompatibility and intrinsic bioactivity, features that replicate many ECM-like characteristics (Chen et al., 2022; Eldeeb et al., 2022). Their main limitations include batch-to-batch variability, rapid degradation, and insufficient mechanical strength for load-bearing tissues (Wong et al., 2023; Ramos-Zúñiga et al., 2022).

Synthetic polymers (PLA, PCL, PEG) allow precise control over mechanical properties and degradation kinetics and can be produced at scale with high reproducibility (Bolívar-Monsalve *et al.*, 2021). However, they typically require surface modification or blending with natural polymers to enhance bioactivity (Anusiya & Jaiganesh, 2022).

Ceramics such as hydroxyapatite (HAp) and tricalcium phosphate (TCP) exhibit osteoconductive properties and are widely used in bone tissue engineering (Ma *et al.*, 2021).

Hybrid composites that combine polymers and ceramics address mechanical limitations while improving cell response (Ghosh & Webster, 2021).

3.2 Functionalization strategies: nanoparticles and biomolecules

Functionalization refers to the intentional design of scaffold surfaces or bulk phases with chemical groups, nanomaterials, or biomolecules that elicit specific biological responses (Zielińska *et al.*, 2023; Todd *et al.*, 2024). This strategy transforms scaffolds from passive physical supports into biologically instructive systems.

3.2.1 Nanoparticle functionalization

Nanoparticles (NPs) (metallic, inorganic, carbon-based, polymeric, lipid-based) possess distinctive physico-chemical properties attributable to their nanoscale dimensions and high surface-area-to-volume ratio (Yameny *et al.*, 2024; Eker *et al.*, 2024). Their incorporation into scaffolds enables:

- Controlled release of growth factors and therapeutic agents
- Antimicrobial activity, especially with AgNPs, ZnO-NPs, and CuNPs (Khursheed et al., 2022; Yang et al., 2021)
- Mechanical reinforcement, improving rigidity or flexibility
- Enhanced osteoinduction or angiogenesis, as observed with TiO₂ and HAp nanoparticles (Delfi et al., 2020)
- Diagnostic imaging enhancement, such as Fe₃O₄ NPs for MRI contrast

Metal nanoparticles such as AuNPs exhibit unique optical and surface plasmon resonance properties, enabling sensing, bioimaging, and targeted therapy. Ceramic nanoparticles enhance osteogenic potential, while carbon-based nanomaterials impart electrical conductivity useful for cardiac or neural tissue engineering.

3.2.2 Biomolecule functionalization

Biomolecules (including growth factors, short peptides, ECM proteins, and polysaccharides) provide biological recognition motifs that regulate cell adhesion, proliferation, and lineage commitment (Eldeeb *et al.*, 2022; Lutzweiler *et al.*, 2020).

Examples include:

- RGD peptides that promote integrin-mediated adhesion
- BMP-2 or VEGF for osteogenesis and angiogenesis
- Hyaluronic acid to enhance hydration and viscoelasticity

Fibrin or collagen to promote ECM deposition and wound healing

The immobilization of biomolecules enables the spatial and temporal modulation of cell behavior, thereby mimicking tissue-specific microenvironments.

3.3 Biomaterials employed in functionalized scaffolds

3.3.1 Natural biomaterials

Natural biomaterials exhibit structural similarity to human ECM, facilitating cell—material interactions. Collagen and gelatin support osteogenesis and chondrogenesis; chitosan provides antibacterial and hemostatic properties; alginate allows gentle in situ gelation; hyaluronic acid improves tissue hydration and signals cellular migration (Kamatar *et al.*, 2020; Dovedytis *et al.*, 2020; Wu *et al.*, 2024; Lukin *et al.*, 2022). Their disadvantages (poor mechanical behavior and rapid degradation) require reinforcement through crosslinking or blending with synthetic materials (Ressler, 2022).

3.3.2 Synthetic biomaterials

Synthetic biomaterials such as PLA, PCL, and PEG offer predictability and tunability (Carbajal-De la Torre *et al.*, 2021). Ceramics and composites, including hydroxyapatite (HAp) and zirconia, provide stiffness suitable for bone regeneration but lack intrinsic bioactivity unless they are functionalized (Ma *et al.*, 2021). To overcome these limitations, polymers and ceramics are combined through electrospinning, 3D printing, and solvent casting to achieve improved mechanical and biological performance (Anusiya & Jaiganesh, 2022; Fermani *et al.*, 2021).

3.4 Cellular mechanisms: interaction between scaffolds and cells

The biological response to scaffolds is orchestrated by three core mechanisms: adhesion, proliferation, and differentiation.

3.4.1 Proliferation

Proliferation ensures adequate cell density and colonization throughout the scaffold. Its regulation depends on scaffold porosity, nutrient transport, stiffness, and biochemical signaling (Wang *et al.*, 2023).

3.4.2 Differentiation

Cell differentiation involves the transition of progenitor or stem cells into specialized lineages, regulated through gene expression programs, epigenetic signals, and scaffold-induced mechanotransduction (Liu *et al.*, 2024; Wu & Yue,

2024). Growth factor-functionalized scaffolds enhance lineage-specific outcomes such as osteogenesis or chondrogenesis.

3.4.3 Adhesion

Integrins and ECM-mimetic ligands mediate cell adhesion, controlling cytoskeletal organization, migration, and viability (Khalili & Ahmad, 2015). Scaffolds functionalized with peptides or proteins improve adhesion strength and stability (Shams *et al.*, 2025).

3.5 Biomedical applications

3.5.1 Bone and cartilage regeneration

Hydroxyapatite-based systems remain the gold standard for bone tissue engineering due to their chemical similarity to native bone (Bal *et al.*, 2020). However, their brittleness necessitates the use of composite reinforcement. Functionalized scaffolds incorporating nanoparticles or osteogenic biomolecules have demonstrated improved angiogenesis and mineralization (Xue *et al.*, 2022; Ye *et al.*, 2025). Clinical strategies such as bone grafting or PEMF therapies complement material-based interventions.

3.5.2 Cardiovascular tissue engineering

Cardiovascular scaffolds must emulate the anisotropic mechanical and electrical characteristics of myocardial tissue (Razavi *et al.*, 2024). Hybrid scaffolds combining collagen, fibrin, PLA, or PCL with conductive nanomaterials (graphene, carbon nanotubes) improve contractility and signal propagation (Rayat Pisheh *et al.*, 2024). Challenges include poor vascularization and an immature cardiomyocyte phenotype, which are partially addressed using induced pluripotent stem cells (iPSCs) and electrical stimulation (Hosseini *et al.*, 2021).

4 Challenges and Future Perspectives

The rapid evolution of bioactive scaffolds functionalized with nanoparticles and biomolecules has significantly advanced the field of tissue engineering; however, several scientific, technological, and regulatory challenges continue to limit their clinical translation. Understanding these limitations is crucial for guiding the development of the next generation of instructive, multifunctional, and patient-specific scaffolds.

4.1 Structural and material challenges

A central barrier lies in the difficulty of developing scaffolds that simultaneously satisfy mechanical robustness, biomimetic architecture, and biological performance. In load-bearing tissues such as bone and cartilage, the need for high porosity to support vascularization conflicts with the mechanical stability required to withstand physiological loads (Rawojć *et al.*, 2025). For soft tissues, the challenge involves achieving elasticity, viscoelasticity, and degradation behaviors that recapitulate the native ECM without generating cytotoxic byproducts (Trebunova *et al.*, 2025).

Control over degradation kinetics remains a significant limitation. Many biodegradable polymers produce acidic or alkaline degradation products that perturb pH balance, negatively impacting cell viability and inflammatory responses (Ma *et al.*, 2021; Patel *et al.*, 2011). Similarly, natural polymers exhibit unpredictable degradation profiles due to batch variability, affecting reproducibility and long-term performance (Wong *et al.*, 2023).

Functionalization itself introduces complexity. While nanoparticles and biomolecules impart instructive cues, they may also alter mechanical behavior, influence degradation, or change hydrophilicity in unintended ways. Achieving precise, uniform, and reproducible incorporation of functional moieties (without compromising scaffold integrity) remains an unresolved challenge in engineering (Delfi *et al.*, 2020).

4.2 Biological and cellular barriers

The interaction between scaffolds and living tissues is intrinsically dynamic and highly dependent on the local biochemical and mechanical microenvironment. Significant biological challenges include:

4.2.1 Limited vascularization

A lack of prompt and robust vascularization is a primary cause of scaffold failure in vivo. Without an adequate blood supply, the inner regions of the scaffold become hypoxic, resulting in insufficient nutrient diffusion and compromised tissue formation (Xue *et al.*, 2022; Devillard & Marquette, 2021). This is especially critical in significant bone defects, engineered myocardium, and dense cartilage constructs.

4.2.2 Immune response and inflammation

Even biocompatible materials may elicit foreign body reactions, macrophage activation, or fibrous encapsulation. Nanoparticles, in particular, can modulate immune pathways in unpredictable ways depending on size, morphology, and surface chemistry (Yang *et al.*, 2021). Understanding and controlling immunomodulatory behavior is therefore essential.

4.2.3 Controlled release limitations

Biomolecule-functionalized scaffolds often struggle to maintain sustained, localized, and bioactive release of

growth factors or peptides. Uncontrolled release can lead to dosage inefficiency, off-target effects, or premature depletion of therapeutics (Zielińska *et al.*, 2023).

4.2.4 Cell source and maturation

Stem cell-based systems face inherent variability, risks of undesired differentiation, and difficulties in achieving full maturation. For example, cardiomyocytes derived from iPSCs often retain immature phenotypes that limit their functional integration (Hosseini *et al.*, 2021).

4.3 Manufacturing, standardization, and regulatory challenges

Translating scaffold systems from laboratory prototypes to clinically approved products requires overcoming formidable technological and regulatory hurdles.

4.3.1 Reproducibility and scale-up

Many laboratory-scale fabrication techniques, such as electrospinning, freeze-casting, and solvent-based printing, lack the precision and scalability required for industrial production. Variations in fabrication conditions can significantly modify pore size, mechanical strength, and functionalization efficiency (Rawojć *et al.*, 2025).

4.3.2 Quality control and standardized protocols

The absence of unified standards for mechanical testing, degradation evaluation, nanoparticle incorporation, and biomolecule immobilization limits comparability across studies and complicates the regulatory approval process.

4.3.3 Complex regulatory pathways

Functionalized scaffolds occupy a regulatory "grey zone" between medical devices, combination products, and advanced therapeutic medicinal products. Consequently, they often require extensive documentation, long-term safety data, and stringent biocompatibility testing under ISO 10993 guidelines (Ramos-Zúñiga *et al.*, 2021).

4.4 Emerging trends and strategic future directions

Despite these challenges, several technological innovations promise to redefine the field:

4.4.1 Smart and stimuli-responsive scaffolds

Advances in materials chemistry are enabling scaffolds that respond to pH, enzymes, mechanical load, or electrical signals, thereby enhancing control over drug release, cell behavior, and tissue integration (Trebunova *et al.*, 2025).

4.4.2 3D and 4D bioprinting

Hybrid bioprinting enables spatial control over scaffold architecture, cell placement, and biomolecular distribution. 4D bioprinting introduces time-dependent transformations triggered by environmental changes, providing dynamic control over tissue maturation (Aftab *et al.*, 2025).

4.4.3 Gene-activated and bioelectronic scaffolds

Gene-loaded constructs provide prolonged expression of therapeutic factors, while conductive polymers and nanomaterials enable the electrical stimulation of cardiac or neural tissues, thereby accelerating functional integration.

4.4.4 AI-assisted design and computational modeling

Artificial intelligence and machine learning can optimize scaffold architecture, predict degradation patterns, and reduce the need for animal experimentation. Data-driven platforms accelerate the discovery of novel biomaterial combinations and predict biological response based on physicochemical descriptors (Rawojć *et al.*, 2025).

4.4.5 Personalized and regenerative platforms

The integration of patient-specific imaging, iPSC-derived cells, and custom-printed scaffolds opens avenues toward personalized regenerative therapies. Tailoring scaffold geometry and biofunctionality to individual anatomical and biological needs may significantly enhance clinical outcomes.

4.5 Outlook

Overall, the future of bioactive, functionalized scaffolds rests on achieving a cohesive integration of material science, biology, engineering, and computational design. Overcoming current limitations will require interdisciplinary collaboration, advanced processing technologies, and rigorous preclinical and clinical validation. If these obstacles are addressed, functionalized scaffolds hold strong potential to transition from experimental constructs into reliable regenerative platforms capable of addressing complex clinical conditions in bone, cartilage, cardiovascular, and soft tissue repair.

5 Conclusion

Bioactive scaffolds functionalized with nanoparticles and biomolecules represent one of the most promising technological fronts in contemporary tissue engineering. Their ability to emulate key functions of the extracellular matrix, modulate cell behavior, and provide targeted therapeutic activity has significantly expanded the potential of regen-

erative medicine. As shown throughout this review, the structural design of scaffolds (whether derived from natural polymers, synthetic materials, ceramics, or hybrid composites) plays a critical role in determining their mechanical performance, degradation behavior, and biological compatibility. Functionalization further enhances these properties by enabling controlled release mechanisms, improving cell adhesion, and selectively stimulating proliferative and differentiation pathways.

Applications in bone, cartilage, and cardiovascular tissue engineering demonstrate that functionalized scaffolds can overcome several limitations of traditional biomaterials. Osteoconductive nanoparticle-reinforced composites improve mineralization; peptide-functionalized hydrogels enhance chondrogenesis; and hybrid, conductive scaffolds show potential in restoring cardiac electrical functionality. However, these advances remain constrained by challenges related to vascularization, immune response modulation, standardization of manufacturing processes, and long-term safety. Additionally, the integration of complex biochemical signals and nanostructured components requires precise control of scaffold architecture and physicochemical interactions, which often complicates reproducibility and regulatory approval.

Looking forward, next-generation regenerative platforms will increasingly rely on emerging technologies such as 4D bioprinting, gene-activated scaffolds, bioelectronic interfaces, and AI-guided material design. These innovations promise to deliver more dynamic, adaptive, and patient-specific constructs that can respond to physiological stimuli and promote robust functional tissue regeneration. To accelerate clinical translation, interdisciplinary efforts between materials scientists, biomedical engineers, clinicians, and regulatory experts will be critical.

Referencias

- Aftab, M., Ikram, S., Ullah, M., Khan, S. U., Wahab, A., & Naeem, M. (2025). Advancement of 3D Bioprinting Towards 4D Bioprinting for Sustained Drug Delivery and Tissue Engineering from Biopolymers. *Journal of Manufacturing and Materials*Processing, 9(8), 285. https://doi.org/10.3390/jmmp9080285
- Anusiya, G., & Jaiganesh, R. (2022). A review on fabrication methods of nanofibers and a special focus on the application of cellulose nanofibers. *Carbohydrate Polymer Technologies and Applications*, 4, 100262. https://doi.org/10.1016/j.carpta.2022.100262
- Bal, Z., Kaito, T., Korkusuz, F., & Yoshikawa, H. (2020). Bone regeneration with hydroxyapatite-based biomaterials. *Emergent Materials*, *3*(4), 521-544. https://doi.org/10.1007/s42247-019-00063-3
- Bolívar-Monsalve, E. J., Alvarez, M. M., Hosseini, S., Espinosa-Hernandez, M. A., Ceballos-González,

- C. F., Sanchez-Dominguez, M., ... & Trujillo-de Santiago, G. (2021). Engineering bioactive synthetic polymers for biomedical applications: A review with emphasis on tissue engineering and controlled release. *Materials Advances*, 2(14), 4447-4478. https://doi.org/10.1039/D1MA00092F
- Carbajal-De la Torre, G., Zurita-Méndez, N. N., Ballesteros-Almanza, M. L., Mendoza, K., Espinosa-Medina, M. A., & Ortiz-Ortiz, J. (2021). Synthesis and characterization of polylactic/polycaprolactone/hydroxyapatite(PLA/PCL/HA p) scaffolds. *MRS Advances*, 6(39), 903-906. https://doi.org/10.1557/s43580-021-00145-7
- Chen, M., Jiang, R., Deng, N., Zhao, X., Li, X., & Guo, C. (2022). Natural polymer-based scaffolds for soft tissue repair. *Frontiers in Bioengineering and Biotechnology*, 10. https://doi.org/10.3389/fbioe.2022.954699
- Delfi, M., Ghomi, M., Zarrabi, A., Mohammadinejad, R., Taraghdari, Z. B., Ashrafizadeh, M., Zare, E. N., Agarwal, T., Padil, V. V., Mokhtari, B., Rossi, F., Perale, G., Sillanpaa, M., Borzacchiello, A., Kumar Maiti, T., & Makvandi, P. (2020). Functionalization of polymers and nanomaterials for biomedical applications: Antimicrobial platforms and drug carriers. *Prosthesis*, 2(2), 117–139. https://doi.org/10.3390/prosthesis2020012
- Dovedytis, M., Liu, Z. J., & Bartlett, S. (2020). Hyaluronic acid and its biomedical applications: A review. *Engineered Regeneration*, 1, 102–113. https://doi.org/10.1016/j.engreg.2020.10.001
- Devillard, C. D., & Marquette, C. A. (2021). Vascular tissue engineering: Challenges and requirements for an ideal large-scale blood vessel. *Frontiers in Bioengineering and Biotechnology*, 9. https://doi.org/10.3389/fbioe.2021.721843
- Eker, F., Duman, H., Akdaşçi, E., Bolat, E., Sarıtaş, S., Karav, S., & Witkowska, A. M. (2024). A comprehensive review of nanoparticles: from classification to application and toxicity. *Molecules*, 29(15), 3482. https://doi.org/10.3390/molecules29153482
- Eldeeb, A. E., Salah, S., & Elkasabgy, N. A. (2022). Biomaterials for tissue engineering applications and current updates in the field: A comprehensive review. *AAPS PharmSciTech*, 23(7). https://doi.org/10.1208/s12249-022-02419-1
- Eltom, A., Zhong, G., & Muhammad, A. (2019). Scaffold techniques and designs in tissue engineering functions and purposes: A review. *Advances in Materials Science and Engineering*, 2019, 1–13. https://doi.org/10.1155/2019/3429527
- Fermani, M., Platania, V., Kavasi, R.-M., Karavasili, C., Zgouro, P., Fatouros, D., Chatzinikolaidou, M., & Bouropoulos, N. (2021). 3D-printed scaffolds from alginate/methyl cellulose/trimethyl chitosan/silicate glasses for bone tissue engineering.

Applied Sciences, 11(18), 8677. https://doi.org/10.3390/app11188677

- Ghosh, S., & Webster, T. J. (2021). Metallic nanoscaffolds as osteogenic promoters: Advances, challenges and scope. *Metals*, *11*(9), 1356. https://doi.org/10.3390/met11091356
- Hosseini, M., & Shafiee, A. (2021). Engineering bioactive scaffolds for skin regeneration. *Small*, *17*(41). https://doi.org/10.1002/smll.202101384
- Jeraj, A. R., & Zameer, Z. (2025). AI-Enhanced Bioactive 3D-Printed Scaffolds for Tissue Regeneration: Innovations in Healing and Functional Additives. *Journal of Computing & Biomedical Informatics*, 8(02).

https://jcbi.org/index.php/Main/article/view/863

- Kamatar, A., Gunay, G., & Acar, H. (2020). Natural and synthetic biomaterials for engineering multicellular tumor spheroids. *Polymers*, *12*(11), 2506. https://doi.org/10.3390/polym12112506
- Khalili, A., & Ahmad, M. (2015). A review of cell adhesion studies for biomedical and biological applications. *International Journal of Molecular Sciences*, 16(8), 18149–18184. https://doi.org/10.3390/ijms160818149
- Khursheed, R., Dua, K., Vishwas, S., Gulati, M., Jha, N. K., Aldhafeeri, G. M., ... & Singh, S. K. (2022). Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. *Biomedicine & pharmacotherapy*, 150, 112951.

https://doi.org/10.1016/j.biopha.2022.112951

- Kim, Y. H., Vijayavenkataraman, S., & Cidonio, G. (2024). Biomaterials and scaffolds for tissue engineering and regenerative medicine. *BMC Methods*, *I*(1), 2. https://doi.org/10.1186/s44330-024-00002-7
- Krishani, M., Shin, W. Y., Suhaimi, H., & Sambudi, N. S. (2023). Development of scaffolds from biobased natural materials for tissue regeneration applications: a review. *Gels*, 9(2), 100. https://doi.org/10.3390/gels9020100
- Lauritano, D., Limongelli, L., Moreo, G., Favia, G., & Carinci, F. (2020). Nanomaterials for periodontal tissue engineering: Chitosan-based scaffolds. A systematic review. *Nanomaterials*, 10(4), 605. https://doi.org/10.3390/nano10040605
- Liu, J., Castillo-Hair, S. M., Du, L. Y., Wang, Y., Carte, A. N., Colomer-Rosell, M., ... & Schier, A. F. (2024). Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis. *BioRxiv*. https://doi.org/10.1101/2024.08.27.609971
- Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., ... & Orive, G. (2022). Progress in gelatin as biomaterial for tissue engineering. *Pharmaceutics*, 14(6), 1177.

https://doi.org/10.3390/pharmaceutics14061177

- Lutzweiler, G., Ndreu Halili, A., & Engin Vrana, N. (2020). The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. *Pharmaceutics*, 12(7), 602. https://doi.org/10.3390/pharmaceutics12070602
- Ma, Z., Wang, Q., Xie, W., Ye, W., Zhong, L., Huge, J., & Wang, Y. (2021). Performance of 3D printed PCL/PLGA/HA biological bone tissue engineering scaffold. *Polymer Composites*, 42(7), 3593-3602. https://doi.org/10.1002/pc.26061
- Patel, H., Bonde, M., & Srinivasan, G. (2011). Biodegradable polymer scaffold for tissue engineering. *Trends in Biomaterials and Artificial Organs*, 25(1), 20–29.
- Ramos-Zúñiga, R., Segura-Duran, I., González-Castañeda, R. E., & Rios, J. G. (2022). The challenges of the bioactive scaffolds in nervous system: from their molecular conformation to their therapeutic efficiency. *Neurology Perspectives*, 2, S3-S18.

https://doi.org/10.1016/j.neurop.2021.07.007

- Rawojć, K., Tadeusiewicz, R., & Zych-Stodolak, E. (2025). Advancements in Chitosan-Based Scaffolds for Chondrogenic Differentiation and Knee Cartilage Regeneration: Current Trends and Future Perspectives. *Bioengineering*, 12(7), 740. https://doi.org/10.3390/bioengineering12070740
- Rayat Pisheh, H., Nojabaei, F. S., Darvishi, A., Rayat Pisheh, A., & Sani, M. (2024). Cardiac tissue engineering: an emerging approach to the treatment of heart failure. *Frontiers in Bioengineering and Biotechnology*, 12, 1441933. https://doi.org/10.3389/fbioe.2024.1441933
- Razavi, Z. S., Soltani, M., Mahmoudvand, G., Farokhi, S., Karimi-Rouzbahani, A., Farasati-Far, B., ... & Afkhami, H. (2024). Advancements in tissue engineering for cardiovascular health: a biomedical engineering perspective. *Frontiers in Bioengineering and Biotechnology*, 12, 1385124. https://doi.org/10.3389/fbioe.2024.1385124
- Ressler, A. (2022). Chitosan-based biomaterials for bone tissue engineering applications: A short review. *Polymers*, 14(16), 3430. https://doi.org/10.3390/polym14163430
- Rondón, J.; Sánchez Martínez, V.; Lugo, C.; González-Lizardo, A. (2025). Tissue engineering: Advancements, challenges and future perspectives. *Ciencia e Ingeniería*, 46 (1), 19–28. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/20607.
- Rondón, J., Vázquez, J., & Lugo, C. (2023). Biomaterials used in tissue engineering for the manufacture of scaffolds. *Ciencia e Ingeniería*, 44(3), 297–308. http://erevistas.saber.ula.ve/index.php/cienciaeinge

nieria/article/view/19221

- Satchanska, G., Davidova, S., & Petrov, P. D. (2024). Natural and synthetic polymers for biomedical and environmental applications. *Polymers*, *16*(8), 1159. https://doi.org/10.3390/polym16081159
- Shams, F., Jamshidian, M., Shaygani, H., Maleki, S., Soltani, M., & Shamloo, A. (2025). A study on the cellular adhesion properties of a hybrid scaffold for vascular tissue engineering through molecular dynamics simulation. *Scientific Reports*, *15*(1), 16433. https://doi.org/10.1038/s41598-025-01545-7
- Sindhi, K., Pingili, R. B., Beldar, V., Bhattacharya, S., Rahaman, J., & Mukherjee, D. (2025). The role of biomaterials-based scaffolds in advancing skin tissue construct. *Journal of Tissue Viability*, 100858. https://doi.org/10.1016/j.jtv.2025.100858
- Todd, E. A., Mirsky, N. A., Silva, B. L. G., Shinde, A. R., Arakelians, A. R., Nayak, V. V., ... & Coelho, P. G. (2024). Functional scaffolds for bone tissue regeneration: a comprehensive review of materials, methods, and future directions. *Journal of Functional Biomaterials*, 15(10), 280. https://doi.org/10.3390/jfb15100280
- Trebunova, M., Cajkova, J., & Bacenkova, D. (2025). Hydrogels as bioactive scaffolds in biomedical engineering. *Acta Tecnología*, 11(2), 75–79. https://doi.org/10.22306/atec.v11i2.272
- Wang, F., Cai, X., Shen, Y., & Meng, L. (2023). Cell-scaffold interactions in tissue engineering for oral and craniofacial reconstruction. *Bioactive Materials*, 23, 16-44. https://doi.org/10.1016/j.bioactmat.2022.10.029
- Williams, D. F. (2022). Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. *Bioactive Materials*, 10, 306–322. https://doi.org/10.1016/j.bioactmat.2021.08.014
- Wong, S. K., Yee, M. M., Chin, K.-Y., & Ima-Nirwana, S. (2023). A review of the application of natural and synthetic scaffolds in bone regeneration. *Journal of Functional Biomaterials*, 14(5), 286. https://doi.org/10.3390/jfb14050286
- Wu, E., Huang, L., Shen, Y., Wei, Z., Li, Y., Wang, J., & Chen, Z. (2024). Application of gelatin-based composites in bone tissue engineering. *Heliyon*, 10(16). https://doi.org/10.1016/j.heliyon.2024.e36258
- Wu, J., & Yue, B. (2024). Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. *Biomedicine & Pharmacotherapy*, 174, 116563. https://doi.org/10.1016/j.biopha.2024.116563
- Wulf, A., Mendgaziev, R. I., Fakhrullin, R., Vinokurov, V., Volodkin, D., & Vikulina, A. S. (2022). Porous alginate scaffolds designed by calcium carbonate leaching technique. *Advanced Functional Materi*

- *als*, *32*(14), 2109824. https://doi.org/10.1002/adfm.202109824
- Xue, N., Ding, X., Huang, R., Jiang, R., Huang, H., Pan, X., ... & Wang, Y. (2022). Bone tissue engineering in the treatment of bone defects. *Pharmaceuticals*, 15(7), 879. https://doi.org/10.3390/ph15070879
- Yameny, A. A. (2024). A Comprehensive Review on Nanoparticles: Definition, Preparation, Characterization, Types, and Medical Applications. *Journal of Medical and Life Science*, 6(4), 663-672. https://doi.org/10.21608/jmals.2024.419629
- Yang, X., Chung, E., Johnston, I., Ren, G., & Cheong, Y. K. (2021). Exploitation of antimicrobial nanoparticles and their applications in biomedical engineering. *Applied Sciences*, 11(10), 4520. https://doi.org/10.3390/app11104520
- Ye, J., Miao, B., Xiong, Y., Guan, Y., Lu, Y., Jia, Z., Wu, Y., Sun, X., Guan, C., He, R., Xiong, X., Jia, H., Jiang, H., Liu, Z., Zhang, Y., Wei, Y., Lin, W., Wang, A., Wang, Y., ... Peng, J. (2025). 3D printed porous magnesium metal scaffolds with bioactive coating for bone defect repair: enhancing angiogenesis and osteogenesis. *Journal of Nanobiotechnology*, 23(1). https://doi.org/10.1186/s12951-025-03222-3
- Zhang, G., Zhen, C., Yang, J., Wang, J., Wang, S., Fang, Y., & Shang, P. (2024). Recent advances of nanoparticles on bone tissue engineering and bone cells. *Nanoscale Advances*, 6(8), 1957-1973. https://doi.org/10.1039/D3NA00851G
- Zielińska, A., Karczewski, J., Eder, P., Kolanowski, T., Szalata, M., Wielgus, K., ... & Souto, E. B. (2023). Scaffolds for drug delivery and tissue engineering: The role of genetics. *Journal of Controlled Release*, 359, 207-223. https://doi.org/10.1016/j.jconrel.2023.05.042

Received: August 13th, 2025

Accepted: November 1st, 2025

Aponte Lopez, Nicole: BSc. in Biomedical Engineering, 2027, Polytechnic University of Puerto Rico. San Juan, PR-USA. https://orcid.org/0009-0008-6182-9708

Rondón Contreras, Jairo: Ph.D. in Applied Chemistry, mention: Materials Study, 2015, Universidad de Los Andes. Professor of Biomedical & Chemical Engineering Departments, at the Polytechnic University of Puerto Rico. San Juan, PR-USA. Email: jrondon@pupr.edu

https://orcid.org/0000-0002-9738-966X

Gonzalez-Lizardo, Angel: Ph.D. Engineering, 2003, University of Dayton, Dayton, OH. Professor; Director, Plasma Engineering Laboratory and Sponsored Research Office at the Polytechnic University of Puerto Rico, San Juan, Puerto Rico, USA. Email: agonzalez@pupr.edu
https://orcid.org/0000-0002-0722-1426

Lugo Claudio, Doctor in Chemistry in Applied Chemistry, Materials Study, 2017. (ULA). Professor at the University of the Andes, Faculty of Sciences, Kinetics and Catalysis Laboratory. Email: claudiolugo@ula.ve
a https://orcid.org/0000-0001-8003-0354

D 1 C C 1 L 1 C II I C II C I