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Abstract

The stability of implicit self-tuning control has been proved, for the discrete-time linear case, by the use of a Lyapunov func-
tion. Latter on the algorithm was extended for a class of bilinear systems. However real world systems are mostly nonlinear
systems and it is of interest to extend the proposed algorithm to a more complex class of nonlinear models. In this research
a nonlinear class of systems is defined, and then a generalized minimum variance control for the defined nonlinear class is
developed. In addition, parameters of real world systems may change in time, and a good performance controller should be
able to keep the overall system stability in such a case; to deal with this issue an implicit self-tuning control for the defined
class of nonlinear systems is presented, the estimated parameters do not need to converge to their real values. The mathe-
matical results show that with this new algorithm the self-tuning controller is able to keep the closed-loop system global
stability for the defined class of nonlinear systems, and also the algorithm is a general case of the algorithms proposed in
the literature for the bilinear and linear systems cases.

Palabras clave: Generalized minimum variance, nonlinear systems, self-tuning control, sliding mode control.

Resumen

La estabilidad de los controladores auto-ajustables ha sido demostrada, en el caso lineal discreto, usando una funcién de
Lyapunov. Luego este algoritmo fue extendido a la clase de sistemas bilineales. Sin embargo, en el mundo real los sistemas
en su mayoria son del tipo no lineales, por lo que es de gran interés extender el algoritmo propuesto a una clase mas com-
pleja de modelos no lineales. En esta investigacion se define una clase de sistemas no lineales, y luego a esta clase se le
desarrolla un controlador de minima varianza generalizada. Ademas, en los sistemas reales los parametros pueden cam-
biar en el tiempo, y un buen controlador debe ser capaz de lograr un buen desempefio y mantener la estabilidad global del
sistema en lazo cerrado incluso en estos casos. Es por ello que se presenta un controlador auto-ajustable para tratar con
las incertidumbres en los parametros de la clase de sistemas no lineales ya definida, donde los parametros estimados no
necesariamente deben converger a los valores reales. Los resultados mateméaticos demuestran que con este nuevo algorit-
mo el controlador auto-ajustable es capaz de mantener la estabilidad global del sistema en lazo cerrado, y ademas este al-
goritmo es un caso general que abarca los algoritmos antes presentados en la literatura para el caso de sistemas bilineales
y lineales.

Palabras clave: Minima varianza generalizada, sistemas no lineales, controlador auto-ajustable, control por régimen desli-
zante.

for a large group of real process: linear or nonlinear, Single

1 Introduccion Input Single Output (SISO) or Multi Inputs Multi Outputs

(MIMO), time invariant or time variant, and so on. Howev-

One goal of control theory is to propose mathematical  er to find this type of controller is a hard work and is what

tools and algorithms to auto-regulate real process, given keeps most of the control theory researches continuously

some desired specifications. Also one of the goals of several ~ working on it. On the other hand, the close-loop stability of

control theory researches is to find a control law that works  controlled process is one of the most important issues to as-

Revista Ciencia e Ingenieria. Vol. 38, No. 2, abril-julio, 2017


mailto:apatete@ula.ve

132

Patete y col.

sure and prove when a new control algorithm is proposed.

The stability of implicit self-tuning control has been
proved, for the linear discrete-time case, by the use of a
Lyapunov function in (Patete y col., 2008a; 2008b), and for
those systems, it suffices to use linear functions of the data
to predict the system output response. The proposed algo-
rithm was extended to the case where the linear discrete-
time system is subject to white noise (Patete y col., 2008c),
i.e. ARX (AutoRegresive with eXternal input) model. Sev-
eral real systems have multi inputs multi outputs and, for
that type of systems the results given in (Patete y col.,
2008a; 2008b) were extended to the MIMO case in (Sugiki
y col., 2008) and (Furuta y col., 2011).

It has been shown under relatively mild conditions that
a large class of nonlinear systems can be approximated with
arbitrary precision using bilinear models with finite number
of coefficients. Bilinear systems are the simplest class of
nonlinear systems and can also be regarded as a practical
starting point for the study of other nonlinear systems. In
addition, many concepts associated with linear systems can
be extended to the bilinear case. A new algorithm was pro-
posed, based on the results in (Patete y col., 2008a; 2008b),
for the self-tuning control combining recursive parameters
estimation and generalized minimum variance criterion, for
a class of bilinear systems in (Patete y col., 2008d; 2011a),
and also for an extended and more relaxed class of bilinear
systems, where the control action could be presented only in
the bilinear term in (Patete y col., 2010; 2014). However
real world systems are mostly nonlinear systems and it is of
interest to extend the proposed algorithm to a more complex
class of nonlinear models. In general, it may be desirable, to
consider the use of nonlinear functions to get good predic-
tions and hence good control performance.

The paper is organized as follows: section 2 presents
the problem to be solved; in section 3, the nonlinear system
class to deal with is defined. Section 4 presents the general-
ized minimum variance criterion for the defined system
class and, in section 5 the recursive implicit self-tuning al-
gorithm based on the generalized minimum variance criteri-
on is studied and, the main results are given by the theorem
and proof which assure closed-loop system global stability.
Some remarks conclude the paper.

2 The problem

Consider the general, Single Input Single Output (SI-
S0), structure in the discrete-time case of a nonlinear sys-
tem model as in (1),

Az, Q)Y = B(z,Q)u,, @

where Y, is the output signal of the process, U, is the
input signal, Z denotes the time shift operator:
2%, =V,.4: Alz,q) and B(z,q) are polynomial of the
form:

A(z,q)=1+a,(q)z" +a,(q)z? +...+a (q)z",
B(z,9) =by(q) +b,(@)z™ +b,(q)z* +...+b ()2,

g in the general case is a function of the input and output
signal of the process as in (2),

a="h(y,,u,). @)
Let’s consider now the first order model general case,

Y () Y =b(q) Uy, ©)

withg=h(y,). If a(q) and b(q) are constant val-
ues independents from the output signal y, , i.e. a(q) = a,
and b(q) =b,, then the case is the same as for linear, first
order, systems considered in (Patete, 2008a). If a(q) = a,

and b(q) =b, +Dby, ., then the case is the same as for bi-

linear, first order, systems considered in (Patete y col.,
2008d; 2011a; 2010; 2014).

From the above explanation, the first step to deal with
this type of nonlinear systems structure is to define how to

choose function gq=h(y,) (or g=h(y,,u,) in the gen-

eral case), which is to said how to choose a(q) and b(q)

for the first order case (3).
For example, for the first order system (3), if

a(q) =a, +ayy, and b(q) =by, then (4),

Yia T &Y T Y Y :bo U,
Yia + 8 Yk T2 Yi = by U @)

Or the
b(q) =b, +b Y, then (5):

case when

a(q) =8, +a,y, and

Yia T3 Vi +ainf =Dbyu, +by, Uy, . (5

and for these cases, (4) and (5), no results have been
given.

3 Definition of the nonlinear class

Consider the general nonlinear system model structure
as in (1), and  is defined as in (2), where h(y,,u,) is
any function (linear or nonlinear).

In this paper, to define the nonlinear class to deal with,
the function h(y,,u,) is restricted to be a function depend-
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ing only of the output process data, i.e. h(y,),then q is as
follows:

q= h(yk) = hll + h12 Yiina T h13ylf+n—1
o1 . (6)
+...+ hlnykm.

When (6) is substituted in (1), a nonlinear model with
polynomial structure is obtained. For example consider a
nominal model of a first order SISO time invariant nonline-
ar system as in (7),

Yint & (q) Y = bo (q) Uy, )

where the functions a,(q) and b,(q) are polynomial

and depend only of the output process signal as shown in
(8) and (9):

8 (0) =2y + 2y Y, + i, ®)
by (@) = by +ByY, +1, ¥y ©
Using (8) and (9) in (7), (10) is obtained,
A +A (@)Y AL (Y)Y =7
(B +T,, @)y, +

T @YU,

(10)

where d =1 and:

A(zt)=1+a,7 7,
Ayf (Z_l) = alzz_l’
Ayg(z_l) = aisz_lv
B(Zil) = bo’
r,,(@"=h,
Fyfuk (zY) =h,

Note in (10) that the nonlinear terms are polynomial
(depend on yf, yf) and there are bilinear terms (depend on

2
Y U, and Y, U, ).
In general, the class of nonlinear systems is defined as
a SISO time invariant model (11) with the following struc-
ture:

Yien T (D) Yiona +35(A) Yino +---+23, (@) Y,

(11)
=b(q)u,,

with 9 asiin (6).

4 Generalized minimum variance control for the defined
nonlinear class

In this section a generalized minimum variance control
in (Astrémy col., 1989) (Chang y col., 1989), based on the
concept of discrete-time sliding mode control (Furuta, 1990;
1993, Slotine, Li, 1991), is proposed for the defined class of
nonlinear systems.

Consider de general nonlinear model (11), if:

a(q)=a;+a,Y ,qt...+a, yl?i]—l’

n-1
a, (Q) =y + 35 Yiino T T Yiino2s
: (12)

a'n (q) = an1 + anzyk + an3ylf +...t+ ann yl?il’
b () =y +byy, +b,yg +...+b, Y,
then, substituting (12) in (11), writing the equation in

the present time K and grouping terms, the following (13)
is obtained

A Y+ A ()Y +AL ()Y +
+A, @)y =27 (B2 )y, +
Y (13)
L, (27U, +T, (zhyu, +...

1S R IA)

where d =n and:

A(z')=1+a,z " +...+a,2 ",
Az =a,z  +a,27 +oFa,r
k

Ay(zh)=apz" +a,2”" +..+a,z "
k

-1 -1 -2
Aykn(z )=a,Z +8,Z +...+a,z ",
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B(z) =h,,
F)’kuk (Z_l) = bl,
Ly, @) =0,

r, (z%=b,

Assumptions 1;
1) There are no common factors in:

(A", BE).(AZ).AZ).....
(A@).A, () (AEZ).Ty, @)oo
(A@).T, @),

2) The order of the system (N, M) in (1) is known.

3) The time delay, d, is known.
4) To compute the nominal control law, the polynomi-
als

Az ), A, (@ H)...A,(271),B(Z).T, ().,

I' . (z") are assumed to be known.
YUk

The control objective of the control law is to minimize
the variance of the linear controlled sliding mode variable
Sy.q defined as (14):

Stoa =CZ M Vira —Nhea) +QE MUY, (14)

5

where polynomials C(z™) and Q(z™") are define as
in (15) and (16) respectively,

6
C(zY)=1+c,z'+c,z%+..+Cc 2", (15)
Qz ) =q,(-z"), (16)

Remark 1: Polynomial C(z™) is designed to be

Schur (i.e is designed by assigning all characteristic roots
inside the unit disk of the z-plane for discrete-time systems)

and polynomial Q(z™) must be designed as in (16) for the
reference tracking to be assured (Patete 2008a; 2008b).

Polynomials C(z™") and Q(z™") are to be designed,

so the error signal €, , defined as (17):

€ =%l (17)

where I, is the reference signal. The idea of proposing
(14) defining the error signal as in (17) is based on the dis-

crete-time sliding mode control (Furuta 1990; 1993).
To derive the nominal control law, general model (13)
is multiplied by E(z™), then:
E(Z)A@™)Y, +E@ )AL (7)Y +
E(z’l)Aya ZhY +...+ E(z’l)Ayn zYye
=z (E(z")B(z My, + EE I, @)y,
+ E(z’l)Fyzu @ Myu +...+

E(Z)T,, (2Y)yu,)

(18)

where E(z™) is a polynomial of the form:

E(z')=e,+e,2 " +...+e,,27%"

Using the Diophantine equation (Patete 2008a; 2008b)
(Chang y col., 1968):

C(zH=ACZMHE@EYHY+z'F(@™), (19)
where,

F(zY)=f+f,z +..+f 2",

equation (18) is rewritten as:

C(Z)Yiea =F@ )V +P (2 +
Pyg (Zil)ylird +...+ ny (Zil)ylld +
E(z")B(z )y, +P,, (Z)yu, +

-1 2 -1
Pe, (Z)YeUy +...+ P, (27U,

(20)

where:
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P (1) =-E(A, ("),
P.(21)=-E(z)A,(2),

P, () =-E@A, (),

P, (zh)= E(z‘l)l“ykuk (z'h)
P, (z71)= E(Zfl)ryzU (z7),
7 kYk

YicUk

P, (Z)=E@I, (7).

Combining (20) and (14), the variable S, is:

Sgig = F(Zil))’k + Pykz (Zil)yli—d +

-1 n -1
et Pykn (Z7) Y +G(z7)u, + -

P Z)Yu, +...+ P, (zh)yu,

- C(Z_l)rker !

where G(z 1) =E(zH)B(z ) +Q(z ™).

Then, the generalized minimum variance control input
required to vanish S, _, in (14) is given by:

U, =—
F(2)Y +P. ()Y +.. 4Py (7)Y ~CE R, 22
Gz ) +P, @)Y+t Py (2

5 Self-tuning control for the defined nonlinear system
class

As it is known, parameters of real world process may
not be accurately known or precise measured, or even worst

parameters may change in time, and a good performance
controller should be able to keep the overall system stability
in such a case. System (13) is considered as a system with
the same structure, however parametric uncertainties is tak-
ing into consideration in this section. For the implicit self-
tuning controller, the parameter of the nominal control law
(22) are estimated each sampled time, under the following
assumptions,

Assumptions 2;
1) The order of the system (13) is known.
2) The time delay, d, is known.

3) Polynomial C(z™*) is Schur.

4) Polynomial Q(z™") is designed as in (16).

5) The considered system with parametric uncertainties
is in the class of systems which can be stabilized by the

polynomials Q(z*) and C(z™*) designed for the nominal
system model (13) (Patete, 2008a; 2008b).
6) The reference signal I, is bounded, i.e. |rk| < ¢ for

all k, where § is a positive constant.

The closed-loop stability of self-tuning control for the
defined nonlinear systems class, based on generalized min-
imum variance criterion, is given by the following recursive
estimation equations:

0, =06, +
' 1ds -1 T (23)
—xLTkd ___Ts +C(z)r, —¢, .6, .1,
W e LR CR LR TN
And
r T
r.=r - k—1¢$—dﬁ<—d k-1 (24)
1+ﬂ<—drk—l¢k—d
where
B =ire o Vi Yer- s Yoondatr--
yl?""’y:—n—d+l’uk7"'7uk—d+l’ykuk7"'7 (25)

2 2
yk—d+luk—d+l7 ykuk AR} yk—d+luk—d+l’

n n
yk uk 1eoe ykfd+lukfd+1]
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is the vector containing measured output and control
signal data,

0" =[f,,..., f

1 "n-17

P P

ygo,..., y5n+d71,...,

PyQO’“" Pyknmd,l, Uor--19a1r Py or-- s (26)

Pykukdfl""' PyEukO""’ Pyknukd—l]

is the vector containing the controller parameters, and

e o .
0" =[foro frts PP g

A

PPt Gorr Gaa Py oo 27)
Pykukd—l Pyk"uko’ s PyEukd—l ]

is the estimate of 4.
The controller uses identified parameters as follows:

U, =-—
P 4P )Y+t Py (7)Y ~CE R (D)
Gz +PB,, @)Y, +...+ ﬁ’y;uk (zhyr

Theorem 1: Given a positive definite matrix 1, and

the initial parameters vector éo, if the estimate ¢, of the

controller (28) satisfies the recursive equations (23) and
(24), under the set of Assumptions 2, then the close-loop
system, combined by the self-tuning controller (28), (23)
and (24) for the class of nonlinear system (13) with para-
metric uncertainties is global stable.

Proof: S, is written as:

Sed = ¢|<T‘§k+d + 'f(zil))’k + Isykz (Zfl)yfm +...

+ If>ykn ()Y +GE MU +P,, 2y, (29)

+...+ If)y"u (Zil)yzuk _C(Zil)rk+d
where 6, =0—ék.

Using the control law (28), (29) is rewritten as:

Siid = ¢1<Ték-d . (30)

Consider the candidate Lyapunov function:

1 1 ix
V, = Esk2 +§9kT r,'0,. 31)
The time difference of (31) is:

AV, =V, -V, 4, (32)
AV, =288 =288+ O, L ()
1/~ ~ NT .~ ~ 1 ~

AV, = _E(ek - ek—l) rkil (ek _ek—1)+ EHkT
1 1 (34)
-(rEl + ril ) ék - E Slf—l + E Sf - él;rr;ilék—l'
1.~ ~ \T 4/~ ~
AV, =_E(0k - k—l) Fk—l(ek _0k71)+
1 _
st—=s2-=s?, —OIT.10,  + (35)
SO (T -T8) 8+ T
From (30), S, is:

Slf = éljﬂ(—dﬁj—d ék' (36)

Substituting (36) into (35), the following relation is de-
rived:

AV, = _%(ék _ék—l)T Fil (ék - ék—l)
_%55—1 +%ékT (F;l _ril _¢k—d ¢|<T—d )ék + (37)

ékTril (ék - ékfl +1 b ¢|<de ék )

The term:
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1. _ _ ~ 1 1/~ ~\T /5 =
EekT (Fkl_rkil_(ﬁkfdﬂld)ek Vl_Vo:_Esg_E(el _90) Fol( 1 o) (46)

in (37) can be made equal to zero as follows:

F;l _FEZ - ﬂ(—d d——d =0, (38)
L= (ril + e abia )71 , (39)
= - rk-l@—d ¢jl<T—d (Fk—l + @—d ¢5I<T—d )71 ) (40)

that yields (24) by the matrix inversion lemma (Astrém
y col., 1989).

The term:
ékT ril (ék - ék_l +T L8 @T—d ék )

in (37) also can be made equal to zero as described be-
low:

ék _ék—l +Fk—1¢k—d¢l;r—d9~k =0, (41)
ék +Fk-1ﬂ<—dd-dék :ék-v (42)
(I +rk-1§4<—d¢kT—d )ék =

( | + rk—l¢k—d¢kT—d )ék—l _rk—l¢k—d¢kT—d ék—l’ (43)

r " (0-4
G ittt ( : k_l)_ o

(14 oTiath o)

From (21):

S = a0-C(z7)r,, (45)

thus (23) is derived.

Using the recursive equations (23) and (24) in (37), for
k =1, the following relation is obtained:

Initially (91 —éo #0, then V, -V, <0 which gives
that V, <V, in (46). For k =2,

1 1/~ ~\T_ 4/~ =
V2+§sf+§(6’2 -6,) 116, -6, )=V, <V,. @D

For k=3

1 1/ ~\T _ 4/~ =
V3+§s§+§( ,—6,) T,1(6,-6,)=V,, (49

using (47) and (48), the following is obtained:

1 2 1 2 1 ~ ~ T -1 ~ ~
Vo+=s;+=s +=|6,-6,) I',;7|6, -0, |+

2 1 2( ) ( ) (49)

1

Then, for k = N, where N is large, the following re-
lation is derived:

v, +%§[ssl+<ék ~00a) T8 -0 g,

V, <V,

Vi +%sz2[55—1 +(0~k _ék—l)T ril(ék _ék—l)]

V, <.

<
(51)

For any k=N (k >2), inequality (51) holds. Equa-
tion (51) implies that s, and (éN _éN_l) vanishas N ap-
proaches infinity, thus AV, is negative semi-definite for all

k and the generalized minimum variance is minimized,
which proves the overall closed-loop system stability.

As a result from the above proof, ¢ is bounded. This
means that:
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Y <0, Y <O Yippa <0

2 2
Yo <Oy YVicndi <0,

n n
Yo <oy Yionogn <9,

U <oo,Uy; <0,y Uy gig <
YiU <Oy Vi (a-nyUk—c@a-1) < %

2 2
YU <90,y Yicegialli-asa <%

n n
YU <0,y YicgaUign <%

are bounded for all
s, —>0 and (g, -6, ,)—0, which means that §, goes to

k. Furthermore as k — oo,

a constant value (not necessary the real value @).

The actual value y, is shown to be bounded as fol-
lows:
Multiplying (14) by B(z?),

B(z™)S.q =Bz ™)C(Z )Y —

(52)
B(zH)C(zH)r, ., +B(z™MQ(z Y)u,,
B(Z_l)sk = B(Z_l)c(z_l)yk - (53)
B(z")C(zMr, +z "Bz H)Q(z M)y,,
and using (13):
B(z™)s, =B(z")C(z ")y, -B(z")C(zY)r, +
Az ™)y, +A, (ZHQ(zh)y; +...
+A, (ZHQz )Yy - (54)

Z_dl—‘ykuk (Z_l)Q(Z_l) YU —--.
—27°T ,, ()R ) yiuy).

Yy = B(Zj) S+ B(Z_l)c,:l(z_l) he—
T(z7) T(z7)
AENQEY , ALERETY |
@) T 1@y
r,., @9
+
T(zY)
. (ZQE YL,
Tz

(55)

YicqgUgg t---F

Yi—alk-q>

where T(z™) is defined as:

T(zH=C(z"B(zM)+AZz™MQ(z™M). (56)

The signal S, was proved to go to zero as kK —oo.
The signal I, is assumed to be bounded for all k and the
Yi-aUk-g
boundeness of vector 4. From the set of Assumptions 2,

number 5 means that the closed-loop characteristic polyno-
mial, considering the described plant with parametric uncer-

tainties, in (1), T(z™), is Schur. Thus, y, in closed-loop is
proved to be bounded. Furthermore, the error e, =y, —r, is
bounded.

To reinforce this proof, we use the proof proposed in

(Ohata y col., 2014), as follows:
Intime k,

signal was proved to be bounded from the

Sed = ¢|<Ték + lf(zil))’k + Fsyf (Zfl)YIid +...

+ If’ykn Yoo +GE M +P,, Yy, 67
+...+ If’y"u (Zil)yzuk - C(Zil)rk+d :
Equation (57) is rewritten as in (54), where
6, =6-6,,
S = 0—C(Z7)N g (58)

Defining S, as:

S =S¢ +C(Z_1)rk _¢1<deék :ﬂj—dék'
(59)

Using the new Lyapunov function:
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~ ~ Using (28) in (65), then,
V, :%gku%egr;lak. (60) 9(@8)in (69
The time difference of (60) is: |§k _5k| = ‘@T_d (ék -0, )‘, (66)
AV, =V, -V, 6D [5-s.|<|ora (4 -G )‘+
T (6 -8 67)
T/~ = T~ Bo(Or=0,)|+..+ (
AV, Z_E(ek _‘9k71) rkil(ek _ek—l) . B
.
1 1 hq (ek—d —0 4 )‘1
=2 AT (-1 -1 T \p
_Esk—l+50k (rk Il W )Hk (62) B S~ ~
> 2 o 18 =il <o | )0 s =i} (68)
+6, rk—l(gk —0 1+ B aPab ) =0
Thus, th tput hes the ref
If the terms: us, the output y, approaches the reference r, as
k — oo because C(z*) is Schur. The global stability of
r;l _r;fl _@_dﬁ_d =0, the considered closed-loop system using the implicit self-
tuning controller is proved. o
and This algorithm represent a more general implicit (or al-
so called direct) self-tuning control, based on the nominal
~ o~ TR generalized minimum variance control, using the discrete-
O =01+ b b o6 =0, time sliding mode control concept. The algorithm may be
applied to linear SISO system model defined as in (Patete y
are satisfied, then: col., 2008a; 2008b), bilinear and a more relaxed class of bi-
linear systems models given by (Patete y col., 2008d;
1, ~ ~NT s 5 2011a; 2010; 2014), and for the defined nonlinear system
AV, = ——(9k —9k_1) F;_l(ﬁk —Hk_l) class exposed in this paper.
2 (63) The algorithm presented in this work may be also ex-
B 1§2 <0 tended to linear ARX SISO system model presented in
E k-1 = (Patete y col., 2008c), time-variant systems model given in

This means that §, converge to zero and g, —, ,
converge to zero as k —» oo, which implies that ||.9k || and

|[S,|| are bounded. Then §, approaches zero because of the
following relation.

|§k _Sk| = ﬁ—dék _ﬁ—dék—d _ﬂr—dék +C(Zil)rk" (64)
S =] =|éa (ék ~0, 4 )_ F(zh)y, -

ISyE (Z_l)yk2+d T ISyE (Z_l)yl?+d -
G2y =Ry, ()Yl —. -
If)y{(‘uk (z M)y, +C(z ), ‘

(65)

(Patete y col., 2007; 2011b), and MIMO system model as in
(Sugiki y col., 2008) (Furuta y col., 2011), combining the
proof given in this paper and the proof given in each refer-
ence, respectively.

8 Conclusions

A more general implicit self-tuning control algorithm,
based on the nominal generalized minimum variance con-
trol, using the discrete-time sliding mode control concept
was presented. The algorithm may be applied to linear SISO
system models, bilinear models, and for the defined nonlin-
ear system class defined in this paper. The proposed self-
tuning approach enables controller parameters to be esti-
mated. The closed-loop global stability of the proposed im-
plicit self-tuning control for the defined class of nonlinear
systems was proved. Control stability and reference track-
ing are shown to be assured. The given algorithm is based
on the idea of the discrete-time sliding mode control con-
cept. As a future work, the proposed algorithm is to be ap-
plied to some nonlinear process model to show its perfor-
mance.
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