POPULATION STRUCTURE, DENSITY, AND HABITAT OF CROCODYLUS ACUTUS CUVIER 1807 IN THE VIA PARQUE ISLA DE SALAMANCA, MAGDALENA DEPARTMENT, COLOMBIA

SERGIO A. BALAGUERA-REINA1 AND JOSE F. GONZALEZ-MAYA1,2

1Proyecto de Conservación de Aguas y Tierras, ProCAT Colombia, Calle 127B # 45–76, Bogotá, Colombia.

Abstract: Information about population structure and density is key part of conservation planning for crocodiles, yet little is known about Crocodylus acutus within its area of distribution and in the country in general. Population structure, density and habitat of this species were studied between September and December of 2006 in the Vía Parque Isla de Salamanca (VIPIS), Magdalena Department, Colombia. A total of 14 individuals were sighted in one creek and one lagoon complex out of the 14 marshes, 10 creeks, and one lagoon complex surveyed that comprise 8% of total of flooded and aquatic habitats in the VIPIS. An estimated density of 7.78 ind/km was calculated for creeks and 2.56 ind/ha for lagoons. The population structure was eight individuals (61.54%) for Class I, one individual (7.69%) for Class II, four (23.08%) for Class III, none for Class IV, and one (7.69%) for Class V. The size distribution found is considered unbalanced due to the low number of individuals sighted and their restricted distribution.

Key Words: Crocodylus acutus, Population structure, density, habitat, Vía Parque Isla de Salamanca.

INTRODUCTION

Information about population structure and density is necessary for conservation planning about crocodilians (Velasco and Ayarzagüena 1995, Ulloa-Delgado and Sierra-Diaz 2002). Colombia and Brazil represent the countries with the richest diversity of crocodilian species in the world; however, historical and continued use of these species in Colombia threatens their populations across the country, making it crucial to consider the impact of over-exploitation and extraction in designing conservation strategies (Medem 1981, Rodriguez 2000, Ulloa-Delgado and Sierra-Diaz 2002). Protected areas that include these species have shown continued use by local communities, representing an important economic resource (Ulloa-Delgado and Sierra-Diaz 2002). In addition, information regarding species such as Crocodylus acutus (Fig. 1) is scarce, resulting in poorly developed conservation plans for these species (Rodriguez 2002). Via Parque Isla de Salamanca (VIPIS) is an important protected area on the Caribbean coast of Colombia. It represents one of the most important habitats for crocodilians, and particularly for Crocodylus acutus (Sánchez-Páez et al. 2004). However, the current status of this species in the area is still unknown. The present study represents the first systematic approach to evaluate the C. acutus population in VIPIS, and one of the first for the Caribbean coast of Colombia.

MATERIALS AND METHODS

Study Area

Parque Nacional Natural Vía Parque Isla de Salamanca is located in the Magdalena department, in the Caribbean coast of Colombia. The park occupies approximately 56200 ha, and is composed of a complex of lagoons and creeks that covers approximately 75% of the entire park. The protected area is located between 11°07'19"-10°53'07"N and 74°20'34"-74°51'00"W, approximately 15 km from Barranquilla, capital of...
Atlántico department. Regionally, the VIPIS is part of the Ciénaga Grande de Santa Marta eco-region and is protected under the Ramsar Convention (Moreno-Bejarano and Álvarez-León 2003).

Methods
Between September and December 2006, a total of 20 systematic night spotlight-surveys were conducted inside the VIPIS, following five established routes during each sampling night. The samplings were done by boat with an out-board engine at a maximum speed of 7 km/h (Ulloa-Delgado and Sierra-Díaz 2002) in creeks, and by foot in one lagoon; in both cases using a 200000 candels flashlight. All the surveys were conducted between 19:00 and 02:00 h, excluding full moon nights, which diminish the probability of observation for C. acutus (Medem 1981, Cerrato 1991) although it does not appear to have an effect on other crocodilians (Da-Silveira et al. 2008). Every sighted animal was hand-captured or approached as close as possible, a maximum of two meters away, in order to determine its size (Chabreck 1966; Salas 1985, INDERENA 1994, Medem 1981). Size classification for all the individuals was based on Seijas (1988) that proposed ranges according to the total length (TL) as follows: Class I (TL < 60 cm), Class II (TL = 61-120 cm), Class III (TL = 121-180 cm), Class IV (TL = 181-240 cm), and Class V (TL > 241). This classification system was selected because the similarity between the two survey areas, and because other systems do not necessarily represent the status of the present population (Platt et al. 2004). No statistical analyses were performed due to the small size of the sample. An unbalanced structure of the population, following the proposition by Velazo and Ayarzagüena (1995) for Caiman crocodilus crocodilus in the Venezuelan savannas, can be determined where the frequencies histogram show a pyramidal distribution (more numbers of subadults in relation to adults and young) showing a demographic structure altered by anthropic or stochastic events.

Abundance was calculated as number of individuals/km for each creek and density as number of individuals/ha for each lagoon, when presence of the species was confirmed. Calculations of areas and lengths were made using ArcView 3.3 (ESRI, Inc., Redlands, CA) software, based on the Ciénaga Grande Santa Marta Geographical Database provided by Instituto de Investigaciones Marinas y Costeras “Jose Benito de Andries”, INVEMAR. Habitat classification was done according to vegetation composition and dominance, and a Chi-square test was used to test the relationship between crocodile abundances and habitat.

RESULTS
A total of 119.02 km were surveyed in the area, covering approximately 2394 ha for lagoons and a total distance of 23.62 km for creeks. A total of 14 individuals were observed in one creek (Caño Clarín Viejo) and one lagoon complex (Los Cocos) out of the 14 marshes, 10 creeks, and one lagoon complex surveyed, representing 8% of the total flooded and aquatic environments at the VIPIS. Class distribution was unbalanced (following Ulloa-Delgado 1998), with eight individuals (61.54%) for Class I, one individual (7.69%) for Class II, four (23.08%) for Class III, none for Class IV and one (7.69%) for Class V. Population structure was different for creeks and lagoons (Fig. 2). An estimated abundance of 7.78 ind/km was calculated for creeks and a density of 2.56 ind/ha for lagoons (Table 1), which is considerable higher than those found for Caiman crocodilus fuscus in the same area (1.00-2.73 ind/km for creeks and 0.1691-0.0035 ind/ha in lagoons; Balaguera-Reina and Gonzalez-Maya unpub. data).

Three habitat types were determined: 1) forest-like habitats: composed of live mangrove trees and floating macrophytes, dominated by Avicennia germinans, Rhizophora mangle and Laguncularia racemosa; 2) low vegetation habitats: composed mainly of small plants and floating species, dominated by Mayaca fluviatilis, Eichornia crassipes, Typha domingensis, Lemna sp. and Echinocloa polyotachya; and 3) open water habitats: habitats with no associated vegetation.

There were no significant differences among the distribution of sightings across the habitat types (p=0.17). However, there were differential observation frequencies within the types: forest-like habitats (61.5%), low vegetation habitats (30.76%), and open water habitats (7.69%).

DISCUSSION
The results indicate a restricted distribution of the population in the VIPIS and an unbalanced population structure. The density found in this study is considered low, compared to previous reports from sites near the study area where heavy human exploitation has been recorded (Bahía de Cispatá; Ulloa-Delgado and Sierra-Díaz 2002). However, this study found similar densities to those reported in the Ermitaño river (middle
basin of Magdalena River) by Barrera (2004) and Barahona et al. (1996) which are higher than population studies from other countries (Escobedo and Mejía 2003, Platt et al. 2004, Carvajal et al. 2005). The representativeness of the current results indicates that populations across the Caribbean coast of Colombia are unevenly distributed across the area. This differential occurrence is probably related to human pressure and isolation of populations; although it seems that human pressure is not as high as in other countries (e.g. Ecuador and Peru) (Carvajal et al. 2005).

FIG. 2. Class distribution frequencies within creeks and lagoons, compared with total. *Distribución de frecuencias por clases entre caños y lagunas, comparado con totales.*

TABLE 1. Distribution and densities of *Crocodylus acutus* for the surveyed creeks and lagoons. *TABLA 1. Distribución y densidades de Crocodylus acutus para caños y lagunas muestreadas.*
While no significant difference in habitat preference was found, unequal usage patterns are similar to those previously reported for the species in Colombia and South America. These differences are probably related to the high availability of resources in these ecosystems, and the use of these areas for refuge and foraging (Chirivi 1973, Medem 1981, Barahona et al. 1996, Sánchez-Páez et al. 2004, Carvajal et al. 2005).

The distribution of sightings followed previous reports related to hierarchy of sizes and ages (Sánchez-Páez et al. 2004, Ulloa-Delgado et al. 2005). The population distribution among size classes is not considered ideal for population growth, and probably it is the result of extraction of high size classes and habitat loss in the area (Sánchez-Páez and Álvarez-León 1997, Sánchez-Páez et al. 2004).

The species has not been reported in the VIPIS previously until this year (Balaguera-Reina and González-Maya 2008), but it has been reported in the eco-region (Barahona et al. 1996, Rodríguez 2002); therefore, we consider it is another worrying signal of the population status within and around the VIPIS. Even when \textit{C. acutus} populations are considered to be isolated (Rodríguez 2000), sampling methodology should be also considered, since this species has shown to be elusive under heavy human pressure which could alter the results of surveys.

CONCLUSIONS
The results indicate that the population of \textit{Crocodylus acutus} in VIPIS may be under severe pressure from local communities where pollution, hunting, and human-wildlife conflict are common. Despite the relatively high densities reported here, the patchy distribution, unbalanced population structure and low absolute population of \textit{C. acutus} make it vulnerable to human exploitation and habitat loss. Therefore, urgent action is needed to ensure the survival of these populations in the park. Expanding surveys in the area will provide a better understanding of the current status and the impacts of human pressures on the species, allowing the development and implementation of strategic conservation plans. Legal farming or ranching and sustainable extraction could be encouraged by authorities to reduce exploitation of wild populations, and stronger policies should be enforced against illegal hunting to maintain healthy populations of this top predator in these important habitats of Colombia.

ACKNOWLEDGMENTS
We would like to thank the Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales Caribe, and especially the VIPIS personnel for all their personal, logistical, and financial support. Thanks to INVEMAR for their data and help on the analysis. Also, we would like to thank Giovanni Ulloa and Arturo Acero for all their help in the development of this project, and Sarah Wyatt, Armando Escobedo, Mauricio González and Diego Zarrate for their comments and suggestions. We especially are grateful to two anonymous reviewers for their insightful suggestions and comments.

REFERENCES

Platt, S., T. Rainwater and S. Nichols. 2004. A recent population...

