CARACTERIZACIÓN DE UNA MUTACIÓN nar Y SU EFECTO SOBRE LA EXPRESIÓN TRANSCRIPCIONAL DE UNA FUSIÓN moa::lac EN ESCHERICHIA COLI K12.

Mariemma Ortega de López y Juan Arturo Díaz Departamento de Biología. Facultad de Ciencias. Universidad de Los Andes Venezuela. Mérida

Resumen

Dos grupos de genes, *nar* (*GHJI*) y mol (*moa*, *mob*, *mod*, *moe*, *mog* y *molR*), codifican para los componentes estructurales de la enzima inducible Nitrato Reductasa Respiratoria A (NRA). En estudios previos, se observó que la mutación narC-8 bloqueaba la manifestación del carácter Lac⁺ conferido por la fusión transcripcional *moa::lac*. Para determinar el posible papel controlar del operón *narC*, se caracterizó otra mutación independiente y fue clasificada como narC-MM78. Cepas isogénicas mutantes, doble y simple, fueron construidas y se observó que la referida mutación parece ejercer el mismo efecto que narC-MM78. Cepas isogénicas mutantes, doble y simple, fueron construidas y se observó que la referida mutación parece ejercer el mismo efecto que *narC-8*. Las condiciones de cultivo que controlan la biosíntesis de la NRA, no lograron suprimirlo fenotípicamente aún adicionando concentraciones variables de nitrato, molibdato, nitrito, azida o clorato. Sin embargo, cuando la cepa de fusión era *narC*⁺, esas mismas condiciones modularon la manifestación del carácter Lac⁺. Los resultados obtenidos permiten proponer un papel controlador de *narC*⁺ activando la expresión de *moa*. Esa acción seria ejercida dentro de un sistema coordinado de circuitos de control fisiológico y genético, el cual mantendría un balance adecuado en la biosintesis de la NRA durante la respiración anaeróbica del nitrato, en *E. coli* K12. Palabras claves: Nit- pleiotrópicos; operón *nar*; regulación *moa*; regulación *nar-moa*; *E. coli*.

Abstract

Characterization of a nar mutation and its effect on the transcriptional expression of a moa::lac operon fusion in Escherichia coli K12

Two gene groups, narC (GHJI) and mol (moa, mob, moe, mog y molR), encode for the structural compenents of the respiratory nitrate reductase A (NRA) inductible enzyme. In previous studies it was observed that narC-8 mutation blocked the Lac⁺ character expression confered by the transcriptional moa::lac fusion. In order to determine the posible controler role of the narC operon, another independent mutation was characterized and was classified as narC-MM78. Double and simple mutant isogenic strains were constructed and it was observed that the mutation could have the same effect as narC-8. The culture conditions controlling the NRA biosynthesis did not suppress it phenotipically even when variable concentrations of nitrate, molybdate, nitrate, azide or clorate were added. However, the same conditions modulated the Lac⁺ character expression when the fusion strain was nar⁺. The results permit to propose a nar⁺ controler role by activating the moa expression. That action could be carried out in a coordinated system of physiological and genetic control circuits, that could keep an adequate balance in the NRA biosynthesis during the anaerobic nitrate respiration, in E. coli K12. Key words: Nit- pleiotropic; *nar* operon; *moa* regulafion; *nar-moa* regulafion; *E. coli*

INTRODUCCIÓN

La reducción del nitrato a nitrito es un proceso respiratorio inducible que juega un papel central en el metabolis mo anaeróbico de las bacterias entéricas y desempeña un control epigenético clave en la regulación de otras vías metabólicas de oxidorreducción inducibles (Ingledew and Poole 1984). La Nitrato Reductasa A (NRA) de *E. coli* es la enzima terminal de la cadena respiratoria y requiere de un molibdocofactor (MoCo) para su activación catalítica (Amy and Rajagopalan 1979, Giordano et al. 1990, Miller and Amy 1983; Ruíz-Herrera and DeMoss 1969, Stewart 1988, Stewart and MacGregor 1982, Wootton et al. 1991).

Los genes *nar* (anteriormente *chlC*) (Puig and Azoulay 1967, Stewart and MacGregor 1982) mapean en el minuto 27 sobre el cromosoma de *E. coli* (Bachmann 1990) y codifican para: i. la

apoNRA (operón narGHJI) (Bonnefoy-Orth et al. 1981, Edwards et al. 1983, Sodergren and DeMoss 1988); ii reguladores transcripcionales del operón narGHJI (operón narX, L) (Li et al. 1994, Walker and DeMoss 1993); iii. y una proteína que media la exportación de nitritos (gen nark) (Rowe et al. 1994). Otros genes renombrados mol (moa, mob, mod, moe, mog) (anteriores chlA, B, D, E y G) (Bachmann 1990, Shanmugan et al. 1992), además del moiR, participan en el metabolismo del MoCo (Amy and Rajagopalan 1979, Amy 1981, Jhonnson et al. 1984, Jhonson and Rajagopalan 1987a, 1987b; Lee et al. 1990, Miller and Amy 1983, Pitterle, Rajagopalan 1989, Rivers et al. 1993).

Las mutaciones en el operón *narGHJI* confieren el fenotipo Nit⁻ (defecto en la reducción del nitrato a nitrito), mientras que en los genes *mol* ocasiona la pérdida pleiotrópica en la actividad de

distintas molibdoenzimas (reductasas deshidrogenasas), por ejm. la NRA y la Formiato Deshidrogenasa del sistema Formiato Hidrógeno Liasa (fenotipo Nit Gas) (Puig, Azoulay 1967, Stewart 1988). Los primeros mutantes Nit fueron seleccionados por resistencia al clorato (Piéchaud et al. 1969), pero en su mayoría las mutaciones son pleiotrópicas (Ball, Ortega 1985, Casse 1970, Fiimmel and Haddock 1979, Miller and Amy 1983, Ortega de L. 1982, Puig and Azoulay 1967, Stewart and MacGregor 1982); no obstante, recientemente fue desarrollado un método nuevo referido como TNC que permite ampliar la variedad de genes mutados (Ortega de L., 1994).

En la biosíntesis de la apoNRA, el nitrato y la anaerobiosis, además de productos codificados por los genes reguladores narL, fnr, him y mol son requeridos para la expresión transcripcional máxima del operón naGHJI (Chippauz et al. 1981, Pascal and Chippaux 1982, Ruiz-Herrera and Salas Vargas 1976, Shroder and Darie 1993, Spiro and Guest 1990, Stewart 1883), la azida y el molibdato modulan los niveles de biosíntesis (Chippauz and Pichinotty 1970, Giordano et al. 1980). Por el contrario, se conoce muy poco sobre la regulación de la biosíntesis del MoCo y la expresión de los genes mol (Miller and Amy 1983, Miller et al. 1987, Pascal and Chippaux 1982, Stewart 1988). En estudios con fusiones traduccionales moa:lacZ, la expresión del operón moa (anteriormente chlA) (Bachmann 1990, Shanmugan et al. 1992) fue sensible al control negativo mediado por la aerobiosis y posiblemente por el MoCo. (Baker and Boxer 1991). Otros estudios realizados con una fusión trascripcional moa::lac (Ortega de L. 1989), la composición del medio y el estado fisiológico del cultivo actuaban como moduladores (Ortega de L. 1994), igualmente permitieron evidenciar por primera vez que la presencia de una mutación nar, la llamada chlC-8 (Puig et al. 1969b), bloqueaba totalmente la expresión de la fusión (fenotipo Lac-), detectado por incapacidad de crecer y fermentar la lactosa y ausencia de actividad enzimática βgalactosidasa (Ortega de L., resultados inéditos). El presente trabajo está dirigido a caracterizar una nueva mutación, clasificada preliminarmente como nar, la nar-MM78 (Ball 1986, Ball y Ortega de L. 1985), y estudiar su posible efecto sobre la expresión de la fusión transcripcional moa::lac, en células crecidas bajo diferentes tratamientos.

MATERIALES Y MÉTODOS

- 1. Cepas y condiciones de crecimiento. Las cepas bacterianas de *E. coli* y de fago se encuentran relacionadas en la tabla 1. Las bacterias se cultivaron a 300 C. Los cultivos aeróbicos fueron agitados en fiolas de 250 ml conteniendo 10 ml de medio; los anaeróbicos se prepararon por inoculación en tubos totalmente llenos con el medio y sin agitación; cuando fue necesario se incubó en anaerobiosis estricta bajo atmósfera de hidrógeno y bióxido de carbono, utilizando el sistema Gas-Pack.
- 2. Medios de cultivo. Las sales de medio mínimo contienen (por litro): 5.98g de KH₂PO₄; $10.18 \text{ g de } \text{K}_2\text{HPO}_4. 3\text{H}_2\text{O}; 1.12\text{g de } \text{Na}_3\text{H}_5\text{C}_6\text{O}_7.$ $2H_20$; 0.31g de MgSO₄. $6H_20$ y 2,0 g de (NH₄) 2SO₄. Los amino-ácidos se agregaron a 40 ug/l. Cuando se indicó, las sales fueron suplementadas con KNO3 (Nit), KNO2 (Nir), NaN3 (Azi), K2MO4 (Mob), KC1O₃ (Chl) a la concentración señalada en el texto. La composición de los medios ricos (LB, nutritivo y diferencial) fue reportada (Miller 1972). El medio agar MNT contiene (por litro): 40g de MacConkey base, 2.5g de KNO₃, 4g de glucosa y 10g de trimetil amina N-óxido (Stewart and MacGregor 982). El medio agar diferencial TNC contiene (por litro): sales de medio mínimo agarizadas suplementadas con 0,1g de cloruro de 2, 3, 5 trifenil tetrazolio (TTC), 2 g de KNO₃, 2g de casaminoácidos, 2 g de glucosa y vitamina B1 (Ortega de L. 1994); se adicionó triptófano según el requerimiento de la cepa bacteriana. Cuando fue necesario se utilizó (por mililitro: 30 µg de kanamicina (Kn), 15 μg de tetraciclina (Tc), 50 μg de ampicilina (Ap) y 40 µg de 5-bromo-4-cloro-3 indolil-β-D-galactósido (X-Gal). Como fuente de carbono en los medios sintéticos se utilizó la glucosa, galactosa y lactosa; g/1 y 1 g/l en los cultivos anaeróbicos y aeróbicos, respectivamente.
- 3. **Técnicas genéticas**. La transducción generalizada mediada por el fago P1 vir se realizó siguiendo el procedimiento de Lennox previamente descrito (Miller 1972). La mezcla de transducción se lavó por centrifugación y concentrada diez veces antes de sembraren superficie sobre los medios de aislamiento. Clones transductantes independientes fueron reaislados en el mismo medio y sometidos a los ensayos fenotípicos y fisiológicos para caracterizarlos. El grado de ligamiento de la mutación con el marcador de transductantes con respecto al total de los clones ensayados.

Tabla 1. Lista de cepas utilizadas. Todas las cepas son F- y 1-. Las que presentan el fenotipo TNC⁺ son además Nit⁻, y las TNC⁻ son Nit⁺ (ver materiales y métodos, ensayos fisiológicos). La mutación de la cepa RKS265 fue clasificada originalmente como una inserción narG:: Tn10 (Stewart and MacGregor, 1982) pero su origen es espontáneo (M-C. Pascal, comunicación personal). * Cortesía del Dr. M. Chippaux, Laboratoire de Chimie Bactérienne (CNRS, Marseille, France). OEG = Laboratorio Organización y Expresión del Gen.

Сера	Genotipo/Fenotipo relevantes	Referencia o procedencia
Escherichia coli K12:	F 7 = F 7	557 07 5556
PC90	Δ(lac-pro) Δ(his-gnd) gyrA Lac-His-NxR	Colección OEG
MM78	PC90 CH1R TNC+TcR	Ball, 1986
MA25	PC90 moa-MA25: :Mud1(lac,ampR) Ch1R Lac+ TNC+ GAS-	Ortega de L. 1982
LCB426	thi-1 leu-6 suc-10 galT-27 rpsl-129 ch1C-8 Ch1 ^R Nit-	Puig et al. 1969b
CAG18551	MG1655 zch-3117: : Tn10KnR	Singer et al.
RK5265	RK4353 (\Delta lacU169 araD139 rpsL gyrA mon) narG-202 Tn10 Nit TcR	Stewart*
RK5274	RK4353 narl: :Tn10 Nit-TcR	LCB*
RK5278	RK4353 narL-215: : Tn10 Nit- TcR	Stewart*
EE201	Prototrofa narH: :Tn5 Nit- KnR	LCB*
M101	pro ilv met his trp gal rpsl	Ortega de L.
Derivados de la M101:		
M120	M101 Δ lac	Ortega de L.
M128	M120 Φ (moa: :lac)MA25 Gal+ TNC+ Gas- Lac+	Ortega de L.
JMI	M120 nar-MM78 Trp+ TNC+	Este trabajo
ЈМ5	JM1 Φ (moa: :lac)MA25 nar MM78 Gal+ TNC+ Gas- Lac-	Este trabajo
JM15	M120 Φ (moa: :lac)JM5 Gal+ TNC+ Gas- Lac+	Este trabajo
JM21	MM78 Φ (zch-3117: :Tn10K ^R)CAG18551 TNC- Kn ^R	Este trabajo
Fagos		
P1vir		Colección OEG

4. Caracterización de las cepas bacterianas. **Ensayos** fenotípicos. Los requerimientos nutricionales, fermentación de azúcares y resistencia a drogas fueron ensayados según descrito (Miller, 1972). El método de Stewart y MacGregor (1982) se utilizó para distinguir entre grupos de mutaciones nar; el tamaño y color de las colonias evaluados por crecimiento en el medio MNT, bajo anaerobiosis estricta; la sensibilidad al clorato fue valorada por crecimiento con diferentes concentraciones de clorato utilizando el método de Piéchaud et al. (1969) modificado por Ortega de L. (1982).

5. Ensayos fisiológicos.5. 1. Reducción fisiológica del nitrato (Nit⁺), se valoró

espectrototompréticamente agregando reactivo de nitritos a cultivos crecidos anaeróbicamente con caldo nutritivo glucosado conteniendo nitrato (Piéchaud et al. 1969). También en medio sólido ensayando la producción de nitritos a partir de colonias previamente crecidas por rayado sobre agar nutritivo glucosado; un papel filtro impregnado con nitrato e colocó sobre los rayados y después de 20 seg. fue reemplazado por otro impregnado con reactivo de nitritos (Chippaux et 1981); 5.2 Reversión fenotipica molibdato, se verificó la acumulación de nitritos, como se indica en el punto anterior, pero el caldo fue suplementado con 10-3 M de molibdato (Glaser and DeMoss 1971), 5.3 Aparición de colonias rojas (TNC⁺), por crecimiento en superficie sobre

el medio diferencial TNC (tetrazolio, nitrato, casaminoácidos) (Ortega de L. 1994), 5.4 **Liberación de gas** (**Gas**⁺), se verificó la presencia de burbujas en tubos durham, después de una noche de crecimiento anaeróbico en caldo nutritivo glucosa (Puig et al. 1969.

6.Ensayos enzimáticos. 6.1 La actividad Bgalactosidasa (BGal), se estimó en células enteras previamente tratadas con cloramfenicol (50 µg/ml) y mantenidas en frío hasta el momento de realizar el ensayo; se siguió la hidrólisis del -nitro fenil-ß-D-galactopiranósido (ONPG), y los valores fueron expresados como Unidades Miller (Miller 1972). 6.2 La actividad específica NR, fue estimada en células enteras inducidas durante una noche; la reducción del nitrato a nitrito se valoró espectrofotompréticamente en cultivos crecidos anaeróbicamente una noche con glucosa y en una mezcla de reacción con formiato y bencil viológeno reducido (BVH), respectivamente (Ruiz-Herrera, DeMoss 1969); las proteínas fueron determinadas por el método de Lowry modificado por Markwell et al. (1978).

similar al reportado para una mutación narG

(Stewart and MacGregor 1982).

RESULTADOS

Caracterización de la mutación nar-MM78

Se determinó la actividad enzimática NR asociada con diferentes donadores de electrones (Tabla 2). Los valores obtenidos para la cepa MM78 se corresponden con la cepa mutante de referencia LCB426 que contiene la mutación *chl* C-8 (Puig et al. 1969b). Estos resultados muestran que el fenotipo Nit⁻ de la MM78 sé corresponde con la cepa mutante de referencia LCB426 que contiene la mutación chlC-8 (Puig et al. 1969b) que el fenotipo Nit⁻ de la MM78 es atribuible a una mutación nar y el factor de disminución en la actividad BV-NR,

MacGregor (1982) se utilizó para determinar

Stewart y

Tabla 2. Caracterización fenotípica de la mutación nar-MM78. Se aplicó el criterio de clasificación fenotípica para distinguir mutaciones entre varios genes nar; el asterisco indica los resultados esperados (Stewart and MacGregor, 1982). (a) La sensibilidad frente a diferentes concentraciones de clorato fue indicada como la incapacidad (+) o capacidad (-) de crecer, respectivamente.

Сера у	Descripción d	le la colonia			Creci	miento con clo	orato ^a
Mutación	Tamaño	Color			5m	10mM	25mM
JM1	Mediano	Rosado					
MM78		pálido			-	-	-
(nar-MM78)							
LCB426	Mediano	Fucsia			+	+	+
(chiC-8)							
RK5265	Mediano	Rosado					
(narG)		pálido					
RK5278	Mediano	Fucsia			+	+	+
CG18551, M120	Grande	Rojo Oscuro					
MA25,	Pequeño	Rosado			+	+	+
M128	requeno	Rosado			'	ı	'
(moa: :lac)							
na'G,*	Pequeño	Rosado			+	+	+
narH,*		pálido					
narf*	a .						
narK*	Grande	Crema			+	+	+
narL*	Mediano	Rojo			-	-	-
mol*	Diminuto	Rojo			-	-	-
silvestre*	Grande	Salmón			-	-	-
respecto a la	cepa parental	silvestre Pc90,	fue	El	método	desarrollado	por

MedULA, Revista de la Facultad de Medicina, Universidad de los Andes. Vol. 4 Nº 1-4. 1995. Mérida, Venezuela

preliminarmente la localización de la mutación dentro de la región *nar*, comparado su

comportamiento con distintas cepas control genéticamente caracterizadas (Tabla 1). Se

analizaron el tamaño y color de las colonias y la sensibilidad a diferentes concentraciones de clorato, pero en ninguno de los ensayos realizados los resultados obtenidos se correspondieron con lo esperado (Tabla 3).

Tabla 3. Actividad enzimática NR con diferentes donadores de electrones. a Los valores se expresaron como μ moles de NO $_2$ /min/mg proteínas. b Variación relativa de actividad específica MM78/PC90

	Factor de			
Donador	Pc90	MM78	LCB426	disminución b
1. Glucosa	3,0	0,01	0,01	300
2. Formiato	4,0	1,50	1,80	3
3.BVH	16,2	2,00	2,00	8

La localización cromosomal y el origen de la mutación *nar*-M778 (espontáneo o por inserción del transposón Tn 10).

Se realizaron experimentos de transducción mediados por el fago P¹_{vir} para determinar la localización y el origen de la mutación nar (espontáneo o por inserción del transposón Tn 10)y además construir cepas isogénicas simples y dobles mutantes conteniendo la fusión transcripcional *moa::lac.* La cepa MM78 se utilizó como donante del fenotipo TNC⁺ a la receptora M120 (Tabla 4, cruce 1) y se observó un 28% de contransducción con Trp⁺ como marcador de selección; todos los TNC⁺ fueron Nit⁻. Este valor cae dentro del rango esperado de 20 - 50% para mutaciones *nar* (Fimmel and Haddock 1979), Guest 1969, Puig et al. 1969b, Venables and Guest 1968), lo cual comprueba

la localización originalmente propuesta. Ninguno de los transductantes Trp + Nit analizados recibió el fenotipo TcR, indicando el origen espontáneo de la mutación nar-MM78, y descartando así la presencia de una inserción nar::Tn10, en cuyo caso el ligamiento esperado entre los fenotipos TNC+ y Tc^R debió ser del 100%. Ambos hechos fueron corroborados en un segundo cruce (Tabla 4, cruce 2) utilizando Kn^R como marcador de selección más proximal, conferido por un transposón híbrido insertado en la posición zch-31 17::Tn10Kn^R a los 27', 25" del cromosoma de la cepa de E. Coli CAG18551 (Singer et. al. 1989), entre la región nar (27') y el operón trp (28') (Bachmann 1990). La cepa MM78 fue utilizada como receptora y el 67% de los Kn^R fueron TNC y Nit+; además todos ellos conservaron el fenotipo TcR, contrario a los esperado en una inserción nar::Tnl0.

Tabla 4. Resultados de ligamiento. ^a Sólo se indicaron los genotipos y fenotipos considerados en cada cruce. Todos los clones TNC⁺ y TNC⁻ fueron Nit⁻ y Nit⁺, respectivamente.

Cn	ice a			
Donante	Receptora	Marcador de selección	Porcentaje de	contransducción
1. MM78 nar TNC+	M120 Trp-	Trp+	28	Trp+TNC+ (28/100)
2. CAG18551 KnR TNC	MM78 nar TNC+	KnR	67	KnR TNC- (67/100)
3. MA25 moa: :lac TNC+Gas- Lac+	JM1 nar-MM78 Gal-TNC+ Lac-	Gal+	20	Gal+ TNC+ Gas-Lac- (20/100)
4. JM5 nar moa: :lac TNC+Gas- Lac-	M120 Gal-	Gal+	20	Gal+TNC+ Gas-Lac+ (16/79)

Efecto de la mutación narMM78 sobre la manifestación del fenotipo *lac* positivo conferido

por la fusión moa::lac.

Cepas con la doble mutación moa-MA25::lac nar MM78 se construyeron utilizando como receptora a uno de los clones transductantes Trp⁺ TNC⁺ obtenidos en el primer cruce (Tabla 4, cruce 1), el denominado JM1, y la cepa MA25 como donante de la fusión (Tabla 4, cruce 3). El 20% de los transductantes aislados como Gal⁺ se hicieron Gas, debido al efecto pleiotrópico dominante de la mutación moa (Puig and Azoulay, 1967) y ninguno de ellos revirtió fenotípicamente al carácter Nit+ por crecimiento con molibdato (Glaser and DeMoss 1971). Este valor porcentual también se observó cuando esa misma fusión fue contransducida con Gal+ a la cepa nar+, obteniéndose la isogénica simple mutante M128 (Ortega de L. 1982). Por el contrario, todas las cepas con la doble mutación moa::lac nar-MM78 aquí obtenidas se comportaron como Lac⁻, siendo incapaces de crecer y fermentar la lactosa y dar colonias azules en el medio XGal, indistintamente de las condiciones de aeración. Por lo tanto, los resultados sugieren que la mutación nar-MM78 está afectando negativamente la expresión de los genes lac bajo el control del promotor pmoa, igual a lo observado previamente con la mutación chlC-8 (Ortega de L., resultados inéditos) donada por la cepa LcB426 (Puig et al. 1969b).

En un cruce siguiente se verificó genéticamente la presencia e integridad funcional de la fusión *moa::lac* (Tabla 3, cruce 4). Uno de los clones doble mutante (Tabla 4, cruce 3), denominado JM5,

fue utilizado como donante para contrasducir la fusión a la receptora isogénica M120 nar⁺. El 20% los transductantes Gal⁺ recibieron simultáneamente loS fenotipos TNC+ Nit Gas Lac+ conferidos por la fusión original moa-MA25::lac (el clón JM15 fue recuperado para estudios subsiguientes), descartándose posibilidad de que el fenotipo Lac⁻ de la cepa JM5 se hubiese originado por alteración en la integridad física del fragmento que contiene la fusión, ocurrida durante el proceso de transducción.

Influencia mediada por factores fisiológicos.

Era de interés investigar la posibilidad de revertir fenotípicamente el efecto de la mutación nar-MM78 sobre la expresión de la fusión. Los siguientes factores fisiológicos fieron evaluados individualmente, ensayando concentraciones graduales: i. El nitrato (Nit), molibdato (Mob) y asida (Azi) que controlan la biosíntesis de la NRA (Stewart, 1988); ii. el clorato (Chl), utilizado en la selección de mutantes Nit, y iii. el nitrito (Nir), por ser el producto resultante de la reducción del nitrato (Puig and Azoulay 1967).

El crecimiento anaeróbico de la cepa doble mutante JM5, a expensas de lactosa, fue cuantificado comparando con cepas isogénicas de referencia: dos con la simple mutación *moa::lac* (JM15, Ml 28) y una con la deleción *?lac* (M120) (Tabla 5). Ninguna de las condiciones ensayadas permitió el crecimiento detectable en la doble

Tabla 5. Expresión anaeróbica de la fusión *moa::lac*, ensayando el crecimiento a expensas de lactosas en cultivos sometidos a diferentes tratamientos. ^a La lactosa (Lac), glucosa (Glu) y galactosa (Gal) fueron adicionadas a una concentración final de 2 g/l. Otras concentraciones variables de Molibdato (Mob), Nitrito (nir), Azida(Azi), Nitrato (Nit) y Clorato (Chl) también fueron ensayadas (Ver leyenda de la Fig. 1), pero los resultados se mantuvieron invariables a las 24 y 48 hs. de incubación. Crecimiento celular (A 600)

Tratamiento ^a	JM5	JM1S	M128	M120
	moa: :lac	moa: :lac	moa: :lac	lac
	nar-MM78			
Lac	0.00	0.19	0.20	0.00
Lac				
Mob(1 mM)	0.02	0.22	0.21	0.02
Lac Nir(10-1 mM)	0.03	0.19	0.22	0.02
INII(10-1 IIIIVI)	0.03	0.19	0.22	0.02
Lac				
Azi(1 mM)	0.03	0.22	0.22	0.02
Lac	0.02	0.22	0.22	0.02
Nit (20 mM) Lac	0.03	0.23	0.23	0.02
Chl (16 mM)	0.03	0.20	0.22	0.02
,				
Glu	0.25	0.26	0.26	0.25
Gal	0.19	0.19	0.21	0.05

mutante, comportándose como el control que

presenta la delación ?lac, ni tampoco afectó el

crecimiento de las cepas simple mutantes. La incapacidad de utilizar la lactosa no está relacionada con alguna alteración en el metabolismo anaeróbico del piruvato, la cual es conferida por una mutación en el gen ana ligado al operón narGHJI (Bachman 1990, Pascal et al. 1981), ya que los valores alcanzados por la doble mutante son muy similares a los controles creciendo anaeróbicamente a expensas de glucosa (Tabla 5). La expresión anaeróbica de la fusión moa::lac también fue evaluada cuantificando la actividad enzimática BGal, pero tampoco se detectó actividad en la doble mutante, igual que el control con la delación ?lac. No obstante, en el caso de la simple mutante M128 factores ensayados los parcialmente sobre la expresión (Fig. 1); siendo favorecida el incremento las concentraciones de Mob. Nit Chl. V



Figura 1. El número de las barras indica las concentraciones ensayadas de Molibdato (Mob), Nitrito (Nir), Azida (azi), Nitrato (Nit) y Clorato (Chl), en el orden creciente (mM): 1(10⁻⁴), 2(10⁻²), 3(10⁻¹) y 4(1); 5(20), 6(30), 7(40) y 8(200); 9(4), 10(8), 11(12), 12(16) y 13(80). El aterisco indica la concentración utilizada como referencia. La actividad βGalse cuantificó a las 24 hs. de incubación

DISCUSIÓN

La Nitrato Reductasa A (NRA) de *E. coli* está constituida por una apoproteína y un molibocofactor (MoCo) requerido para su activación catalítica. Los genes nar y mol participan en la biosíntesis de la apoNR y del MoCo, respectivamente (Shanmugan et al. 1992, Stewart 1988).

En una investigación previa pudo observarse por primera vez que una mutación dentro de la región nar, identificada como ChlC-8 (Puig et al. 1969), fue capaz de bloquear totalmente la respectivamente, contrario al efecto ejercido por Nir y Azi.

Por último se estudió el efecto de la edad del cultivo sobre la expresión anaeróbica de la fusión a las 12 "24 h. de incubación (Fig. 2). La cepa doble mutante JM5 no presentó crecimiento ni actividad ßGal detectables. En el caso de la simple mutante JM15, que contiene la fusión donada por la doble mutante JM5 (Tabla 1), los valores de actividad permanecieron invariables a las 24 h. de incubación, y fueron comparables a los cuantificados en la cepa Ml 28. Estos resultados corroboraron que la doble mutante JM5 contiene una fusión potencialmente funcional y que el fenotipo Lac es atribuible al efecto negativo de la mutación *nar*-MM78 sobre la expresión del promotor *pmoa*.

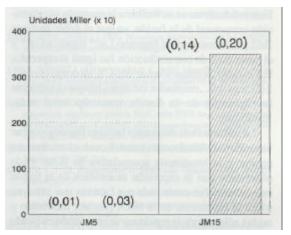


Figura 2. La actividad Gal (unidades Miller) se cuantifico a las 12 (\square) y 24 hs. (///) de incubación. El valor entre paréntesis indica el crecimiento celular (A600)

expresión de una fusión transcripcional *moa*-MA25::*lac* (Ortega de L. 1982). En el presente trabajo se escogió una mutación independiente clasificada fisiológicamente como nar-MM78 (TNC⁺ Nit⁻ Gas⁺) (Ball 1986, Ball y Ortega de L. 1985) para investigar su capacidad de ocasionar un efecto similar.

Se realizaron diferentes análisis para determinar la localización y el origen de la mutación nar-MM78. Se aplicó el método de Stewart y MacGregor (1982) para distinguir mutaciones entre grupos de genes nar, pero los resultados de los distintos ensayos siempre difirieron con lo esperado, y, por lo tanto, no se pudo obtener la información deseada. El factor de disminución de actividad especifica BV-NRA, con respecto a la cepa parental isogénica, fue similar al reportado

para mutaciones en el cistrón narG (Stewart and MacGregor 1982), descartando la posibilidad de una mutación en el gen *fnr*, en cuyo caso dicha actividad estaría totalmente ausente (Schroder and Darie 1993).

Los análisis genéticos por ligamiento confirmaron la localización de la mutación dentro de la región nar. Se trata de una mutación espontánea, descartando la posibilidad de una inserción nar:: Tn10. Cuando esa mutación estuvo presente en una cepa que se le contrasdujo la fusión transcripcional moa::lac (Lac⁺), los dobles mutantes obtenidos fueron fenotípicamente Lac-Este resultado no es atribuible a la ausencia y/o alteración estructural de la fusión, ya que el doble mutante JM5 podía transferir el fenotipo Lac+ ligado a Gal⁺ y el porcentaje de cotransducción fue igual al esperado. Por lo tanto, la mutación nar-MM78, tal como la chlC-8 (Ortega de L., resultados inéditos), bloquea totalmente la expresión de la fusión transcripcional moa-MA25::lac.

La influencia de diferentes factores fisiológicos fue valorada individualmente, cuantificando el crecimiento celular y la biosíntesis acumulativa de ßGal. Pudo observarse que la expresión anaeróbica de la fusión bajo estudio fue controlada por factores que influyen sobre la biosíntesis de la NRA (nitrato, molibdato y asida), sólo cuando la región nar se encontraba en estado silvestre, ya que no fueron capaces de antagonizar el efecto negativo ejercido por la mutación nar-MM78. Estos resultados sugieren la participación de un circuito de control fisiológico que regularía conjuntamente la biosíntesis de la apoNRA y del MoCo, balance adecuado en la manteniendo un concentración de NRA requerida por metabolismo celular. Los resultados confirmaron el posible papel del clorato como factor de control que modula la regulación anaeróbica del operón moa y en consecuencia afectaría indirectamente la biosíntesis de la NRA y el resto de molibdoenzimas que comparten el mismo MoCo; el papel modulador del clorato fue reportado previamente para la fusión bajo estudio moa-MA25::lac, en experimentos de cinética con cultivos creciendo aeróbicamente en medio sintético (Ortega de L. 1985).

El efecto fuertemente negativo de las mutaciones nar-MM78 y chlC-8, descarta la participación de la segunda Nitrato Reductasa, denominada NRZ (Barret and Rigs 1982; Blasco et al. 1992, Bonnefoy-Orth et al.1987, Iobbi el al.

1987), como factor de control genético sobre la expresión transcripcional de la fusión bajo estudio, además es un hallazgo difícil de explicar en una cepa simple mutante nar moa⁺. Productos codificados por los operones moa y moe participan en la biosíntesis de la molibdopterina (MPT), durante las primeras etapas en el metabolismo del MoCo (Jhonson and Rajagopalan 1987a, 1987b,, Wootton et al. 1991) por lo tanto, sería de esperar que las cepas mutantes Nar estuviesen afectadas pleiotrópicamente en la actividad de las distintas molib-doenzimas que requieren del MoCo, pero esto no sucede. En consecuencia, los resultados aquí obtenidos pudieran indicar la participación de un control autógeno positivo de moa::lac nar, este tipo de control fue reportado previamente en estudios con cepas de fusión traduccional moa::lac (Baker and Boxer 1991). Por lo tanto, como hipótesis de trabajo, puede considerarse la participación de productos Nar+ y Moa+ que actuarían, indistintamente y en fórma sinérgica; en este último caso se alcanzarian los niveles de expresión máxima del operón moa; diferentes niveles de expresión fueron reportados previamente para la fusión bajo estudio moa-MA25::lac, en experimentos de cinética con cultivos creciendo bajo diferentes condiciones de aeración (aeróbicas, anaeróbicas y de transición) (Ortega de L. 1985). Esta hipótesis considera la participación de un circuito de control genético que complementaría al fisiológico propuesto al inicio de la discusión, todo ello como un mecanismo que mantiene un balance adecuado en la concentración de NRA requerida por el metabolismo celular, durante la respiración anaeróbica del nitrato.

CONCLUSIONES

- 1.- La mutación no pleiotrópica nar-MM78 es de origen espontáneo y está localizada en el cistrón narGHJI.
- 2.-La presencia de la mutación nar-MM78 bloqueó la expresión de una fusión transcripcional *moa::lac*, indistintamente de las condiciones de aeración.
- 3.- Factores fisiológicos que controlan la expresión transcripcional del operón narGHJI no antagonizaron el efecto negativo de la mutación nar-MM78, en cultivos crecidos en medio sintético, por el contrario, controlaron la expresión de la fusión moa:lac en una cepa isogénica nar⁺. Este mismo comportamiento fue observado al ensayar los efectos individuales del clorato y nitrito.

4.- El efecto fuertemente negativo de las mutaciones nar-MM78 y chlC-8 en las cepas doble mutantes, permite sugerir que productos Nar⁺ y Mol⁺, individualmente y/o en forma sinérgica, pudieran controlan la expresión transcripcional del operón moa en *E. coli*K12.

AGRADECIMIENTOS

Se le agradece al Dr. Marck Chippaux (CNRS. LCB, Marsella, Francia) su amabilidad por las cepas bacterianas suministradas y los comentarios sobre este trabajo. Al Dr. John DeMoss (Universidad de Texas, Houston, USA) por su evaluación de los resultados experimentales. Nos complace reconocer el apoyo financiero aportado por el Consejo de Desarrollo Científico, Humanístico y Tecnológico de la Universidad de los Andes (CDCHT - ULA) para realizar la presente investigación.

REFERENCIAS

AMY N. 1981. Idenfication of the molybdenum cofactor in chlorate resistant mutants of *Escherichia coli*. J. Bacteriol. 148: 274-282.

AMYN., RAJAGOPALAN K 1979, Characterization of the molybdenum cofactor in *Escherichia coli. J.* Bacteriol. 140: 114-124

BACHMANN B. 1990. Linkage Map of *Escherichia coli* K-12. Edition 8. Microbiol. Rev. 54: 130:197.

BAKER K., BOXER D. 1991. Regulation of the chlA locus of *Escherichia coli* K12: Involvement of the molybdenum cofactor. Mol. Microbiol.

BALL M. 1986. Las mutaciones chl::Tnl0 y su contribución en el estudio de la organización genética y regulación del sistema nitratoreductasa

de *Escherichia coli* K-12. Tesis de Licenciatura (no publicada). U.L.A., Mérida, Venezuela.

BALL M. Y ORTEGA DEL M. 1985. Aislamiento y caracterización de mutantes de *Escherichia coli* K12 chl::Tn10(TetR). Suplemento de Acta Científica Venezolana 36(1): XXXV Convención Anual de AsoVAC, Venezuela.

BARRET E., RIGGS D. 1982. Evidence for a second nitrate reductase activity that is distinct from the respiratory enzyme in *Salmonella typhimurium*. J. Bacteriol. 150: 563-571.

BLASCO.F., NUNZI F., POMMIER, BRASSEUR R., CHIPPAUX M., GIORDANO G. 1992. Formation of active heterologous nitrate reductases between nitrate reductases A and Z of *Escherichia coli*. Mol. Microbiol. 6: 209-219.

BONNEFOY-ORTH V., BURINI J., GIORDANO G., PASCAL M.C., CHIPPAUX M. 1987. Presence in the "silent" terminus region of the

Escherichia coli chromosome of cryptic gene(s) encoding a new nitrate reductese. Mol. Microbiol. 1: 143-150.

BONNEFOY-ORTH V., LEPELLETIER M., PASCAL M.C., CHIPPAUX M. 1981. Nitrate reductase operon. Mol. Gen. Genet. 181: 535-540.

CASSE F. 1970. Mapping of the genes chlB controlling membranebound nitrate reductase and formic hydrogen lyase activities in *Escherichia coil* K12. Biochim. Biophys. Acta 39: 429-436

CHIPPAUX M., BONNEFOY-ORTH V., RATOUCHNIACK J., PASCAL M.-C. 1981. Operon fusions in the nitrate reductase operon and study of die control gene nir R in *Escherichia coli*. Mol. Gen. Genet. 182: 477-479.

CHIPPAUX M., PICHINOTTY F. 1970. Les nitrate-reductases

bactériennes. V Induction de la biosynthése de l'enzyme A par l'azoture. Arch. Microbiol. 71: 361-366.

DIAZ, J.A. 1988. Tesis de Licenciatura: Efecto de un a mutación narC sobre la expresión de chlA de *Escherichia coli* K12, en una cepa de fusión chlA::lac. Tesis de Licenciatura (no publicada). Universidad de Los Andes. Merida. Venezuela.

DIAZ J., ORTEGA DE L. M. 1989. Influencia del genotipo sobre la expresión de *chlA::lac*. Suplemento de Acta Científica Venezolana 40(1): XXXIX Convención Anual de AsoVAC, Venezuela

EDWARDS E., RONDEAU 5., DeMOSS J. (1983). *chlC (nar)* Operon of *Escherichia coli* includes structural genes for and subunits of nitrate reductase., J. Bacteriol 153: 1513-1520. FIMMEL A., HADDOCKB. 1979. Use of chlC-Lac fusions to determine regulation of gene *chlC* in *Escherichia coli* K-12. J.

Bacteriol. 138: 726-730. GIORDANO G. BOXER D., POMMIER J. 1990. Molydenum cofactor requirement for in vitro activation of apomolybdoenzymes of *Escherichia coli*. Mol. Microbiol. 4: 645-

GIORDANO G., HADDOCK B.,BOXER D. 1980. Molybdenum limited growth achieved either phenotypically or genotypically and its effects on the synthesis of formate dehydrogenase and nitrate reductase by *Escherichia coli* K12. FEMS Microbiol. Lett. 8: 229-235.

GLASER J., DEMOSS J. 1971. Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of *Escherichia coli*. J. Bacteriol. 108: 854-860.

GUEST J. 1969. Biochemical and genetic studies with nitrate reductase C-gene mutants of *Escherichia coli*. Mol. Gen. Genet. 105: 285-297.

INGLEDEW W., POOLER. 1984. The respiratory chains of *Escherichia coli*. Microbiol. Rev. 48: 222-271.

IOBBI C., SANTINI C., BONNEFORY-ORTH V., GIORDANO G. 1987. Biochemical and inmunological evidence for a second nitrate reductase en *Escherichia coli* K-12. Eur. J. Biochem 168: 451-459.

JHONSON J., HAINLINE B., RAJAGOPALAN K., ARISON B. 1984. The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivates. J. Biol. Chem. 259:

5414-5422.

JHONSON M., RAJAGOPALAN K. 1987a. In vitro system for molybdopterin synthesis. J. Bacteriol. 169: 110-116.

JHONSON M., ŘAJAGOPALAN K. 1987b. Involvement of *chlA*, *E*, *M*, *and N loci in Escherichía coli* molybdopterin synthesis. J. Bacteriol.169: 117-125.

LAMBDEN P., GUEST J. 1976. Mutants of *Escherichia coli* Kl2 unable to use fumerete as an anaerobic electron acceptor. J. Gen. Microbiol.

97: 145-160.

LEE J., WENDT J., SHANMUGAN K. 1990. Identification of a new. gene, *molR*, essential for utilization of molybdate by *Escherichia coli*. J. Bacteriol. 172: 2079-2087.

LI J., KUSTÚ S., STEWART V. 1994. *In vitro* interaction of nitrate responsive regulatory protein NarL with DNA target sequences in the *fdnG*, *narG*; *nark and frdA* operon control regions of *Escherichia coli* K-12. Y. Mol. Biol. 241: 15~153. MARKWELL M., HAAAS S., BIEBERL L,TOLBERT N. 1978. Anal. Biochem. 87: 206-210.

MILLER J. 1972. Experiments in Molecular Genetics. Cold Spring, Harbor, NY.

MILLER J., AMY N. 1983. Molybdenum cofactor in chlorate resistant and nitrate reductase-deficient insertion mutants of *Escherichia coli*. J. Bacteriol. 155: 793-801.

MILLER J. SCOTT, D. AMY N. 1987. Molybdenum-sensitive transcriptional regulation of the chlD locus of *Escherichia coli*. J.Bacteriol.

169:1853-1860

ORTEGA DE L M. 1982. Obtención y caracterización preliminar de clones transductantes de *Escherichia coli* K12 llevando fusiones *chl::Mud1*, seleccionados utilizando tres métodos diferentes. Tesis de Maestría (no publicada). Universidad de Los Andes. Mérida. Venezuela.

ORTEGA DE LÓPEZ M. 1985. Regulación fisiológica delos genes *chl* de *Escherichia coli* K12, llevando mutaciones espontáneas y de fusión *chl::lac*. Trabajo de Ascenso (no

publicado). Universidad de Los Andes. Mérida Venezuela. ORTEGA DEL. M. 1994. Control a nivel de trascripción de una fusión de operón *moa::lac* de *Escherichia coli* K12: Efectos de diferentes condiciones de cultivo y del operón *moa* Suplemento de Acta Científica Venezolana 45(1):XLIV Convención Anual de AsoVAC, Universidad Francisco de Miranda. Coro. Venezuela.

ORTEGA DE L M. 1994. Un método nuevo para aislar e identificar mutantes *Níf* en *Escherichia coli* K12. Jornadas de Microbiología, Universidad de Los Andes. Mérida. Venezuela. PASCAL M.-C., CHIPPAUX M. 1982. Involvement of a gene of the *chlE locus* in the regulation of the nitrate reductase operon Mol. Gen. Genet., 185: 334-338.

PASCAL M. C., CHIPPAUX M. ABOUD-JAOUNDE A, BLASCH-KOWSKI H. KNAPPEJ., 1981 Mutants of *Escherichia coli* Kl2 with

defects in anaerobic pyruvate metabolism. J.Gen. Microbiol.124:3542.

PIÉCHAUD M., PICHINOTY F. AZOULAY E. COUNCHOUND BEAUMONT P., GENDRE J. 1969. Recherches sur des mutants bactériens ayant perdu les activités catalytiques liées a la nitrate -reductase A. I. Description des méthodes d'isolement. Ann. Inst. Pasteur (Paris), 116: 276-287. PITIERLE D., RAJAGOPALAN K. 1989. Two proteins encoded at the *chlA locus* constitute the converting factor of *Escherichia coli chlA1*.

J. Bacteriol. 171: 3373-3378.

PUIG J., AZOULAY E., 1967. Etude génetique et biochimique des mutans resistant au *Chl03* (génes *chlA*, *chlB chlC*). C. R. Acad. Sri. (Paris). 264: 1916-1918.

PUIG J., AZOULAY E., GENDRE J., RICHARD E. 1969a. Etude génetique des mutans de la region *chlA chez 1 Escherichia coli* K-12. C. R. Acad. Sci. (Paris) 268:183-184. PUIG J., AZOULAY E., PICHINOTY F., GENDRE J. 1969b. Genetic mapping of the *chlC* gene of the nitrate reductase Asystem in *Escherichia coli* Kl2. Biochem. Biophys. Res. Comm. 35: 659-662.

RIVERS S., MCNAIRM E., BLASCO F., GIORDANO G., BOXER D. 1993. Molecular genetics analysis of the moa operon of *Escherichia coli* K-12 required for molybdenum cofactor biosynthesis. Mol. Microbiol. 8: 1071-1081.

ROWE J., UBBINK-KOK T., MOLENAARR D., KONINGS W., DRIESSEN J. 1994. Nar K is a nitrate-extrusion system involved in anaerobic nitrate respiration by *Escherichia coli* Mol. Microbiol. 12: 579-586.

RUIZ-HERRERA J., DeMOSS J. 1969. Nitrate reductase complex of *Escherichia coli* K12: Participation of specific Formate Dehydro- genase an Cytochome b components in nitrate reduction. J. Bacteriol.. 99: 720-729.

RUIZ-HERRERA J., SALAS-VARGAS 1.1976. Regulation of nitrate reductase at the transcriptional and traslational levels in *Escherichia coli*. Biochim. Biophys. Acta 425: 492-501.

SCHRODER 1., DARIE S.1993. Activation of the *Escherichia coli* nitrate reductase (narGHJI) operon by NarL and FNR requires integration host factor. J. Biol. Chem. 268: 771-774. SHANMUGAN K., BOXER D., COLE J., CHIPPAUX M., DEMOSS J., GIORDANO G., GUEST J., GUNSALUS R., LIN E.C.C., RAJAGOPALAN K.,STEWART V., 1992. Proposed nomenclature for the genes involved in molybdenum metabo lism in *Escherichia coli* and *Salmonella typhimurium* Mol. Microbiol 6: 3452-3454.

SINGER M., BAKER T., SCHNITZLER G., DEISCHEL S.,GOEL M.,DOVE W., JAACKS W, GROSSMAN A., ERICKSON J., GROSS C.1989. A collection of strains containing genetically linked

alternating antibiotic resistance elements for genetic mapping of *Escherichia coli* Microbiol. Rev. 53:1-24.

SODREGREN E., DEMOSS J., 1988. Nar I region of the *Escherichia coli* nitrate reductase (nar) Operon contains two genes. J. Bacteriol. 170: 1721-1729.

SPIRO S., GUEST J. 1990, FNR and its role in oxygen regulated gene expression in *Escherichia coli*. FEMS Microbiol. Rev. 75:399-428.

STEWART V. 1988. Nitrate respiration in relation to facultative metabolism in Enterobacteria. Microbiol. Rev., 52: 190-232. STEWART V. 1993. Nitrate regulation of anaerobic respiratory gene expression in *Escherichia coli* Mol. Microbiol. 9:425-434.

STEWART V. MacGREGOR C. 1982. Nitrate Reductase coli K 12: involvement of chlC, chlE and chlG loci. J. Bacteriol. 151: 788-799.

VENABLES W. 1972. Genetic studies with nitrate reductaseless mutants of *Escherichia coli*: I. Fine structure analysis of the narA, narB and narE loci. Mol. Gen. Genet. 14: 223-231. VENABLES W., GUEST J. 1969. Transduction of nitrate reductase loci of *Escherichia coli* by phones Pl and V. Mol Gen.

reductase loci of *Escherichia coli* by phages Pl and Y. Mol Gen. Genet, 103:127-140.

WALKER M., DEMOSS J. 1993. Phosphorylation and

WALKER M., DEMOSS J. 1993. Phosphorylation and desphosphorylation catalyzed in vitro by purified components of the nitrate sensing system, NarX and NarL. J Biol Chem., 268: 8391-8393.

WOOTTON, J. NICHOLSON, R. COCK, J. WALIERS, D. BURKE, J. DOYLE, W. BRAY, R. 1991. Enzymes depending on the pterin molybdenum cofactor: sequences families, spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochim Biophys. Acta. 1057: 157-185