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Abstract—Analytical modeling can be used to predict per-
formance, detect unexpected behavior and evaluate strate-
gies in order to improve systems. In the context of mod-
eling computational environments, a multitude of analytical
structured modeling formalisms, such as Stochastic Automata
Networks (SAN), is becoming popular since they provide
high level abstractions and modularity. Indeed, in order to
obtain performance estimations of a given SAN model, it is
necessary to perform multiple matrix-vector multiplications.
In structured formalisms, such as SAN, the matrix-vector
multiplication is not presented in the usual format xA, since
matrix A is replaced by an algebraic expression Q (called
Markovian Descriptor or just descriptor, for short) due to
modularity. The original multiplication is then replaced by a
vector-descriptor multiplication (VDM), letting some space for
algebraic improvements. Mainly, there are two algorithms that
implement the VDM: shuffle and slice. In previous works, a
parallel version of shuffle was proposed. It presented good
results in terms of memory allocation but tasks are hard to
split and hence compromises its scalability. The slice algorithm
is based on an algebraic property that can, since its name says,
split the VDM in many independent operations. The goal of
this work is to underline a high performance version of the
slice to check the scalability of this algorithm.

Keywords-Parallel Applications, Kronecker/Markovian De-
scriptor, Structured Analytical Formalisms, Stochastic Au-
tomata Networks

I. INTRODUCTION

Performance prediction has proven to be useful in a
myriad of situations: to predict the performance of parallel
applications [1], [2], establish constrains in algorithms de-
sign [1], evaluate the efficiency of fault-tolerant systems [3],
among others.

Our focus throughout this paper is to propose a parallel
version of the resolution of a set of formalisms employed in
the stochastic analysis. Those formalisms are called Ana-
lytical Structured Formalisms (ASF) because they offer
a structured and modular approach to represent Markov
Chains. For the final user, the structure imposed by such
formalism bring more understanding when modeling com-
plex phenomena. In such formalism an equivalent but more
efficient numerical treatment may be used in order to manage
the time-memory trade-off.

All structured formalisms are based on the multiplication
of an algebraic expression by a vector, Qx. This alge-
braic operation replaces the Markov Chain matrix-vector

multiplication, Ax. Since the algebraic expression Q is
called Markovian descriptor (throughout this paper we use
just descriptor for the sake of brevity) it is called vector-
descriptor multiplication (VDM). One of the advantages of
using VDM is a more rational use of memory which limits
most Markov Chain models. Although, the response time
to achieve performance estimations is still unacceptable in
many cases [1], [2], [3].

To fill that gap, one can find mainly two algorithms to
compute the VDM. Firstly, the Shuffle [4], [5], [6] algorithm
proposes an on-the-fly mapping of non-zero elements from
the descriptor to the equivalent Markov Chain matrix. This
approach significantly reduces the use of memory making
the solution bounded by makespan. Secondly, the Slice [5]
algorithm provides the opposite trade-off where mapping is
performed in grouped data reducing the response time but
increasing memory usage.

The use of high performance computing environments to
improve the VDM has already been explored before in [4]
for the Shuffle algorithm. To harness the computational and
memory power of many machines is an alternative to CPU
and memory bounded applications [7], [8], [9]. Although,
the memory management of the algebraic structures in
shuffle make it hard to exploit many processors, since the
number of tasks depend on problem characteristics. In this
context Slice can split the VDM operation in many small
tasks. This implies more memory usage but we believe the
scalability should be suitable to exploit a high performance
computing environment. Although, a parallel Slice version is
not yet existent. The objective of this paper is to underline a
parallel version of the Slice algorithm hence extending the
understanding CPU and memory limitations when solving
such formalisms.

In Section II we state the VDM problem where the Slice
algorithm is presented. Following, in Section III, we under-
line the parallel strategy. We present performance results in
comparison with a sequential version in Section IV. Finally,
in Section V, we state conclusions and directives for future
work.

II. THE MARKOVIAN DESCRIPTOR

Analytical structured formalisms (ASF) emerged in the
last decade as an alternative to Markov Chain models. The



main motivation of using them is due to the lower storage
cost. Avoiding the combination of elements which would
result in zero (not affecting the calculation) is the key to
reduce memory usage. Besides that, ASFs provide higher
level abstraction because, in those formalisms, a system can
be modeled in subsystems. In those cases the interaction
among subsystem may be specified using synchronizing
primitives [10], [11], [12].

To illustrate how the structured formalisms make life
easier, the Markov Chain seen in Fig. 1 is a possible model
to design a mutual exclusion problem of two process sharing
a resource. Using an analytical structured formalism one can
split the model in subsystems. As can be seen in Fig. 2 which
shows a SAN approach modeling the same situation, each
entity of the system (processor and resource) is modeled as a
separate subsystem. The main lack of abstraction in Markov
Chain when compared to structured formalisms is due to
the fact that each state must be thought as a combination of
two or more states in each entity. When the system being
modeled is intrinsic divided in subsystems the use of an ASF
is straight forward.
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Figure 2. A SAN model that models the same problem of Fig. 1.

The automata are algebraic represented as a set of matri-
ces. For instance, in Fig. 2, each automaton in that model has
a matrix representing their state transitions. The equivalence
of an ASF with Markov Chains is proven providing a way
to map the specific matrices into a Infinitesimal Generator
(IG). This Infinitesimal Generator is the unique algebraic
structure in a Markov Chain model, which has the rates
associated to all states transitions. The set of structures and
the algebraic operation involved in the construction of the
IG is called Markovian Descriptor, or descriptor for short.
A descriptor is also called Kronecker Descriptor once that
the algebraic operations and properties used to map then into
a Markov Chain are known as Kronecker algebra [12].

There is a variety of formalisms that are based on the
Markovian descriptor, such as: Stochastic Automata Net-
works [10] (SAN), Stochastic Petri Nets (SPN) [13],
Performance Evaluation Process Algebra (PEPA) [14].
Those formalisms have in common the use of Kronecker
operations to combine a set of matrices into a Markov
Chain. Although, those formalisms are similar they differ
in the rates associated and in the manner that transitions are
tackled.

T∑
k=1

N⊗
i=1

Q
(k)
i (1)

The format of a Markovian Descriptor is generalized as
in (1). Although this expression summarize the core of
structured analytical formalisms, they are rarely presented
in that shape when the focus is to prove their equivalence
to Markov Chains. For instance, in [15] a SPN descriptor
is proposed as (2). Another example could be the SAN
descriptor seen in (3), where E is the total amount of
synchronizing events and N the number of automata. Both
descriptors given by (2) and (3) are presented in terms
of how to combine the matrices in order to prove their
equivalence to classic Markov Chains. Once this paper aim
is not to prove such equivalence, a more generic shape of
the Markovian Descriptor, given by (1), is adopted.
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The resolution of structured analytical models is made,
analogue to a Markov Chain model, solving a linear equation
system. Such as in Markov Chain models, this resolution is
based on iterative processes which are based on a vector-
matrix multiplication at each iteration (4).

xA (4)

However, when using a structured analytical formalism
the coefficient matrix A is replaced by the Markovian
Descriptor, (5). Hence some complexity is added, once the
user deals with the manipulation of a greater amount of
matrices whose elements must be combined and mapped
into a matrix equation. This process of combining and
mapping elements is made using the Kronecker operations
defined over matrices: Kronecker product (denoted by ⊗)
and Kronecker sum (denoted by ⊕).

xQ = x

(
T∑
k=1

N⊗
i=1

Q
(k)
i

)
(5)

Numerical iterative methods are suitable to solve struc-
tured analytical models [10]. The iterative method used
may vary: Power method, Arnoldi method, and so on.
Nevertheless, all iterative methods are based on the same
basic operation [16]: the vector-descriptor multiplication.
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Figure 1. Markov Chain modeling the mutual exclusion problem with two process and one resource.

A. Slice Algorithm

The parallel Slice algorithm presented here is focused in
one single multiplication. Slice algorithm is based on the
additive unitary normal factor decomposition property. This
property holds that given a series of Kronecker products,
the left side (6), it can be factorized in a sum of scalar
multiplications (7). To maintain the position, i and j, where
each scalar will be placed in the resulting equation matrix
we combine the i and j information of each scalar. The
formalization of this property is presented below.

Q(1) ⊗ · · · ⊗Q(N) = (6)
n1∑
i1=1

· · ·
nN∑
iN=1

n1∑
j1=1

· · ·
nN∑
jN=1

(
q̂1
(i1j1)

⊗ · · · ⊗ q̂N(iN jN )

)
(7)

Applying this properties in the N − 1 leftmost Kronecker
product is the core idea of slice. We call the scalars resulting
form the N−1 first matrices Additive Unitary Normal Fac-
tors (AUNF or factor for short), because they are actually
not just scalars but a triple of one scalar and its i, j position
in the resulting matrix. Since slice generates a significant
number of AUNFS this implies in more memory usage when
compared to Shuffle.

III. PARALLEL MULTIPLICATION

The approach used to execute an iteration in parallel
is presented in Fig. 3. In this communication scheme the
processor with lowest rank is responsible to send the vector
of the current iteration, xk, to all processors starting an
iteration step. Once a processor gets xk it starts the VDM
multiplication concerning the AUNFs (tasks) previously as-
signed. Afterward, each processor returns a partial vector of
the next iteration, xk+1

p (where p denotes the processor id).
Finally, the partial vector are summed resulting in the next
iteration vector xk+1 finishing one step of the parallel VDM.

This procedure is executed several times until a solution is
reached.
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Figure 3. A high level overview of the parallel vector-product multipli-
cation.

Our aim with this parallel approach is to verify its
scalability. To do so, we propose two granularities: (i) coarse
grain, map each model automaton in one task, this approach
is the same as presented in [4] for parallel Shuffle; (ii) fine
grain, where each AUNF is one task, this approach should
improve scalability.

A. Coarse Grain

The Markovian Descriptor adopted in (1) is a sum.
A coarse granularity approach is then obtained using the
distributive property over the sum as given by (8). In this
strategy the maximum amount of tasks is the total number
of algebraic terms (T ). This approach is similar to the one
used in previous works for the parallel shuffle [12].

T∑
k=1

(
x

(
N⊗
i=1

Q
(k)
i

))
(8)

Both algorithms, shuffle and slice, can benefit from this
method of distributing computation. Once this approach



Table I
TEST CASES PARAMETERS IN DETAIL.

Test Case # of Coarse # of Fine Density Sequential Time (s)
Label Grains Grains

MUTEX 32 9469952 46.25 % 13.68
MIXED 16 3280080 19.88 % 5.95
DENSE (A) 16 10649600 22.13 % 13.14
DENSE (B) 16 48771072 27.52 % 64.45
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Figure 4. Speedup for the mutex (a) and mixed (b) test cases.

is based on distributing the multiplication directly in the
Markovian Descriptor level, which is the same structure for
both algorithms.

In order to balance the amount of computation given to
each process a static scheduling approach based in the cost
of each task is used. This strategy is based on computing
each task computational cost before execution. Next, the
smallest task will be assigned to the processor with less load.
The number of steps taken depends on the total amount of
tasks (or terms, T ) and the number of processing units P .

One advantage of using coarse granularity is that the
computation of AUNFs can be done in parallel, since there
is no interdependence between each term. Although, the
scalability problem can not be tackled without the use of
some algebraic property, which leads us to the fine grain
approach.

B. Fine Grain

Using each AUNF as an independent task is hence ex-
plored as an alternative. AUNFs are homogeneous in terms
of computational cost. Moreover, AUNFs are dependent of
problem complexity and do not rely on problem character-
istics as before. For these reasons, the fine grain approach
seems to be suitable to increase scalability.

One drawback of fine grain is that the AUNF generation
step can not be distributed. This step can be distributed when
using coarse grain because a term is always entirely assigned

to a processor. However, using fine grain, tasks have to be
computed in a preconditioning step.

The preconditioning step represent a significant comput-
ing effort. Even though, the time taken by this step is slightly
greater than one iteration. Once it is needed a significant
amount of iterations to solve a model, typically 1000 up to
10000, this cost is attenuated in the final execution time (less
than 1 % of overall makespan).

IV. PERFORMANCE EVALUATION

Tests were carried out in Grid5000 using machines from
the i-cluster2 located in Montbonnot, France inside the
INRIA Rhône-Alpes facility. Each of the 104 nodes of i-
cluster2 features two Itanium-2 64 bits processors at 900
MHz, 3 Gigabytes of memory and 72 gigabytes of local
disk. The nodes are interconnected through Gigabit ethernet
switch. In order to evaluate the algorithm using different
test cases we choose four Markovian Descriptors detailed in
Tab. I.

Aiming to test how this version would behave using
classic models, the test cases mutex and mixed are two real
algebraic representation of SAN models. The first, named
mutex, was extracted from a SAN model that implements
the problem of 16 processors sharing 4 resources in a race
condition. The second, called mixed, is a hypothetical SAN
model that stress different parameters of this formalism such
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Figure 5. Speedup for the dense (a) and (b) test cases.

as: number of states per automata; number of synchronizing
events; among others [10].

The other two tests, dense (a) and (b), were obtained
inflating the number of non-null elements from the mixed
test case. The overall mean of non-null elements is obtained
using the equation (9). In (9), T means the total amount
of terms and N means the total number of matrices that
compound each term. The variable nz and n are respectively
the number of non-null elements and the order of each
matrix i from a given term k.

∑T
k=1

∑N
i=1

nz
(k)
i

n
(k)
i ×n

(k)
i

N × T

× 100 (9)

The speedup achieved are presented in Figs. 4 and 5 for
both grains, fine and coarse. Test cases mutex, mixed, dense
(a) and dense (b) are presented respectively in Figs. 4-a,
4-b, 5-a and 5-b. The results were obtained through a real
experiment running the application 10 times and in each one
executing 100 iterations. The mean of one iteration execution
time was computed discarding the higher and the lowest
values obtained. Even though, the standard deviation was
observed to avoid intrusiveness such as other applications
running at the same time or cache effects.

In the two real test cases, mutex (Fig. 4-a) and mixed
(Fig. 4-b), the behavior of both proposed grains are similar.
One can observe that the speedup is distant from the ideal
and that the finer grain approach is always better because it
can scale further, for those test cases. The test case mutex
has 32 maximum tasks with coarse grain approach due to
the problem characteristics which is limited to 32 terms, the
other tests are 16 terms each.

Observing, Figs. 5-a and 5-b, one can see that the solution
can scale better maintaining speedup factor closer to optimal
for more computational intensive test cases. Note that the

coarse grain is limited to 16 tasks in Dense-A/B because of
their amount of terms, as showed in Tab. I.

Figs. 5-a and 5-b highlight coarse grain scalability issue.
The presence of some constant speedup is due to task
heterogeneous characteristics, hence one task becomes the
makespan bottleneck. The coarse grain approach, originally
inspired by the successful parallel implementation of shuf-
fle [4], is not suitable for slice algorithm.

V. CONCLUSIONS

The main goal of this work was the parallel implemen-
tation of the Slice algorithm to provide a effective scalable
parallel vector-descriptor multiplication (VDM). This oper-
ation is used by a multitude of structured formalism based
on Markovian Chains.

Table II
BEST RESULTS ACHIEVED.

Test case Best results Sequential time

Fine grain Coarse grain

MUTEX 1.199684 2.030804 13.688620
MIXED 0.963382 1.881302 5.953364
DENSE (A) 1.241858 1.668218 13.014060
DENSE (B) 2.941724 5.664326 80.211800

The results presented show a significant gain of perfor-
mance summarized in Tab. II. In all test cases the fine grain
has presented better results than the coarse grain approach.
Graphs show that fine grain has also better scalability.
However, it is still an open point when to use shuffle or
slice. Since both have different characteristics. A scalability
vs preconditioning and time-memory trade-off analysis will
be done in future work.
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Otimizado da Multiplicação Vetor-Descritor,” Dissertação de
Mestrado, Porto Alegre, Brasil, 2003.

[7] L. G. Fernandes, E. Bezerra, F. Oliveira, M. Raeder, P. Velho,
and L. Amaral, “Probe Effect Mitigation in the Software Test-
ing of Parallel Systems,” in Latin-American Test Workshop
LATW, Buenos Aires, 2006, pp. 153–158.

[8] M. Kolberg, L. Baldo, P. Velho, L. G. Fernandes, and D. M.
Claudio, “Optimizing a Parallel Self-verified Method for
Solving Linear Systems,” in Workshop on State-of-the-Art in
Scientific and Parallel Computing - PARA, Umea, 2006, pp.
1–10.

[9] P. Velho, L. G. Fernandes, M. Raeder, M. Castro, and
L. Baldo, “A Parallel Version for the Propagation Algorithm,”
in 8th International Conference on Parallel Computing Tech-
nologies - PaCT, vol. (LNCS 3606), Kranoyarsk, 2005, pp.
403–412.

[10] P. Fernandes, “Methodes Numériques pour la Solution de
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