
Grid5000: An Experimental Grid platform for Computer Science

Yiannis Georgiou and Olivier Richard

MESCAL, Laboratoire Informatique et Distribution (ID)-IMAG
ZIRST 51, avenue Jean Kuntzmann 38330 Montbonnot Saint Martin - FRANCE,

{Yiannis.Georgiou|Olivier.Richard}@imag.fr

Abstract

Research upon Computer Science, especially in large
scale distributed systems like Grids, P2P systems and
High Performance Computing (HPC) areas, has to
deal with issues related to increasingly complex sys-
tems. Theoretical analysis, simulation and even em-
ulation seem not adequate enough for a complete study
of these systems. Hence the need for new generation
of scientific instruments capable for the observation of
complex distributed systems running at real scale and
under reproducible experimental conditions has arisen.
Grid5000 has been designed to answer to this need. It
provides a real-life experimental research tool for com-
puter scientists. In this paper we discuss the impor-
tance of an experimental grid platform dedicated to
Computer Science research. We present the design
choices of Grid5000 architecture and we analyze the
key components of the platform which is OAR Resource
and Job Management System, Kadeploy reconfigura-
tion toolkit along with all the monitoring and experi-
ments steering tools.

1 Introduction and Motivations

Research in Grids, P2P systems and High Perfor-
mance Computing is based on a variety of methodolo-
gies and tools. When Grid5000 [1, 2] was designed,
most of the research conducted in Grids and P2P sys-
tems was performed using simulators, emulators or pro-
duction platforms. However, all these tools present
limitations making the study of new algorithms and
optimizations difficult. Simulators focus on a specific
behavior or mechanism of the distributed system and
abstract the rest of the system. Hence not all factors
and conditions that influence the distributed system
can be fully experimented. On the other side, emu-
lators provide a tool capable for executing the actual
software of the distributed system, in its whole com-

plexity. Nevertheless, they fail to capture all the dy-
namic, variety and complexity of real life conditions.
Production platforms could provide a good solution for
real-life experimentation. However, the fact that spe-
cific experiments need specialized software which is of-
ten hard to install on production platforms along with
the big difficulty of experiment reproduction are some
important limitations.

Hence, the complexity of Grid and P2P systems
raise the need for real-scale experimental platforms
where computer scientists can run experiments, ob-
serve the distributed systems behavior at large scale
under real-life conditions and make precise measure-
ments.

As a matter of fact, the experiments upon complex
distributed systems span over all the layers of the soft-
ware stack between the user and the hardware (figure
1). The applications, programming environment, run-
time systems, middleware, operating systems and net-
working layers are subject to extensive studies seeking
to improve their performance, security, fairness, ro-
bustness and quality of service. Thus, a mechanism
that would facilitate the experimentation upon all dif-
ferent layers of the software stack became indispens-
able.

Grid5000 was designed to answer to the above needs.
It is a large-scale distributed platform that can be eas-
ily controlled, reconfigured and monitored. Especially
designed for computer science, it provides a real-life
experimental tool, ideal for research upon complex dis-
tributed systems.

Many institutes and international programs have de-
veloped various tools to foster large-scale distributed
systems research. Platforms like PlanetLab [3], Emu-
lab [4], GENI [5] and DAS [6] provide some significant
examples. The main difference of Grid5000 with all
these platforms is the degree of reconfigurability. This
functionality, allows researchers to deploy and install
the exact software environment they need for their ex-
periments, making the platform an ideal tool for real-



Figure 1. Grid5000 national grid.

life experimentation upon all layers of software stack.
In the remainder of this paper on section 2 we

present the Design Concepts and Architectural choices
of Grid5000. The various key components of Grid5000
are presented respectively on section 3,4 and 5. Section
3 analyzes OAR, the Resource and Job Management
System, section 4 describes Kadeploy reconfiguration
mechanism and section 5 presents the various moni-
toring and experiment steering tools Finally, section 6
gives some conclusions.

2 Grid5000 Design and Architecture

During the preparation of the project in 2003, de-
signers of Grid5000 conducted an analysis on the need
of a computer science Grid and the diversity of poten-
tial experiments. As described thoroughly on [7], the
analysis concluded the need for a large scale (several
thousands of CPUs), distributed (10 sites) computer
science Grid. Moreover, the experimentation should
cover all layers of the software stack, from the applica-
tion layer to the networking protocols. As the matter
of fact, researchers may need a specific experiment set-
ting, different from the other researchers. Researchers
involved in networking protocols, Operating Systems
and Grid middleware often require a specific OS or ker-
nel for their experiments. Their needs may be quite di-
verse in Grid Middleware: some require Globus, while
others need Unicore, Desktop Grid or P2P middleware.
As a consequence, Grid5000 should provide a deep re-
configuration mechanism allowing researchers to de-
ploy, install, boot and run their specific software envi-
ronments, possibly including all the layers of the soft-
ware stack. This reconfiguration capability led to the
experiment workflow followed by Grid5000 users: 1)re-
serve specific resources of Grid5000, 2)deploy a soft-

POP Renater

1Gb Link

2Gb Link
10Gb Link

Routeur 

Cluster

Server Grid5000 Local Site

Cluster 1

NFS, LDAP, DHCP...

Cluster3

Services

Cluster 2

Internet

Frontend

OAR, Kadeploy

Backbone
N e t w o r k

Grid’5000

External Access

Figure 2. Overview of Grid5000 architecture

ware environment on the reserved nodes, 3)run the ex-
periment and make precise measurements, and finally
4)collect results and relieve the machines.

Since researchers are able to boot and run their
specific software on Grid5000 sites and machines, the
need of security mechanisms arose. Hence we de-
cided to isolate Grid5000 from the rest of the Internet
but to let packets fly inside Grid5000 without limita-
tion. The first choice guarantees that Grid5000 will
resist to Internet hacker attacks and the second one
makes sure that communication performance will not
suffer from the overhead of an imposed security sys-
tem. Thus, Grid5000 is built as a large scale confined
cluster of clusters. Strong authentication and autho-
rization checks are done when users log in Grid5000.
Grid5000 is composed of 1/3 heterogeneous and 2/3
homogeneous resources, in order to facilitate all kind
of experiments.

As analyzed on [8] by Feitelson, the capability to
reproduce experimental conditions is fundamental in
computer science, especially when performance com-
parisons are conducted. To fulfill this strong require-
ment, we decided to use dedicated network links be-
tween sites, allow users to allocate dedicated nodes for
their experiments and let them install and run their
proper experimental condition injectors and measure-
ments software. Thus every user has full control of the
allocated Grid5000 partition.

Grid5000 initial goal was to provide 5000 CPUcores
distributed over 9 sites in France. Figure 1 shows a
map of the initial Grid5000 nation wide grid, while
figure 2 presents an overview of the platform’s archi-
tecture. Every site hosts a cluster and all sites are
connected between each other by high speed network
links (RENATER 4: 10 Gbps links).

Every user has a single account on Grid5000. Every
Grid5000 site manages its own user accounts and runs

2



Submission

Scheduler

Matching
of resource

Launching and 
control of execution

Client

Server Computing nodes

Users

Log, Accounting
Monitoring

SQL database
Perl

Figure 3. OAR architecture

an LDAP server. On a given site, the local administra-
tor can manage its user accounts. Once the account is
created, the user can access any of the Grid5000 sites
or services (monitoring tools, wiki, deployment, etc.).
User data are kept local to every site and distribution
to remote sites is done by the user through classical
file transfer tools (rsync, scp, sftp, etc.). Data trans-
fers from and to the outside of Grid5000 are restricted
to secure tools and done through gateway servers.

At cluster level, users submit their resource reser-
vations and experiment jobs using the OAR resource
and job management system. To reconfigure the soft-
ware stack on every reserved node, the users run the
Kadeploy toolkit deploying the user defined software
environment on a disk partition of selected nodes. Fi-
nally to monitor and control the experiments various
software tools have been developed by Grid5000 scien-
tists to facilitate different tasks of the experimentation
process. In the following sections we present a detailed
analysis of these key components used on Grid5000.

3 Cluster resource management and
job scheduling: OAR

OAR [9, 10] is an open source Resource Management
System for large clusters. Initially developed as a tool
for research upon the area of Resource Management
and Batch Scheduling, this software has evolved to-
wards a certain ’versatility’. It provides a robust solu-
tion, used as a production system in various platforms
like the regional grid infrastructure Ciment 1) used for
scientific computations in disciplines like environment,
chemistry, astrophysics, etc.

OAR is the Resource and Job Management System
selected to function on all Grid5000 sites. It is respon-
sible for resources allocation and reservation along with
the jobs execution.

OAR has been designed considering a modular ap-
proach with open architectural choices (figure 3). It is
based upon high level components: an SQL Database
and the Perl/Ruby Script Programming Languages. It

1https : //ciment.ujf − grenoble.fr/cigri

Figure 4. OAR example of usage

can be easily extensible to integrate new features and
adapt itself upon different environments.

All the most important functionalities, that exist on
commercial Resource Management Systems (like PB-
SPro or LSF), such as priorities on jobs, advance reser-
vations, resources matching and backfilling are imple-
mented. The priorities are managed through submis-
sion queues. All the jobs are submitted to a particular
queue which has its own admission rules, scheduling
policy and priority. Reservations are a special case in
which the user asks for a specific time slot. In this
case, as long as the job meet the admission rules and
the ressources are available during the requested time
slot, the schedule date of the job is definitively set.
In OAR, resources required by jobs are matched with
available ones. This matching is based on a hierarchi-
cal affinity of resources which gives the possibility to
allocate from a whole cluster until a specific CPUcore.
Moreover a user might need nodes with special prop-
erties (like single switch interconnection, or a manda-
tory quantity of RAM). OAR provides commands to
facilitate the allocation of resources. Figure 4 shows
an example of OAR jobs submission commands. OAR
scheduler also performs backfilling which is the use of
idle time slots when large parallel jobs are waiting for
execution. Furthermore it can handle Best Effort jobs
which are low-priority jobs (usually used for desktop
grid experiments) that can be cancelled by normal jobs
before the end of their allowed execution time.

OAR relies on a specialized parallel launching tool
named Taktuk [11, 12] to manage all large-scale oper-
ations like parallel tasks launching, nodes probing or
monitoring.

In order to be able to execute experiments on differ-
ent clusters of Grid5000, simultaneously, OARGRID
[13] software has been developed which is a wrapper
that enables the use of several OAR clusters for eas-
ier grid experimentation. It provides the possibility

3



Applications

OS(Linux, FreeBSD,...)

Environment
Middleware

Hardware Network

SpecifiableToolsDistro

Configurable

Figure 5. Software environment

of resources allocation and reservation on a grid level.
The individual job execution is effectuated by the local
OAR system.

4 Reconfiguration mechanism:
Kadeploy

In the context of high performance computing re-
search, scientists seem to need various software envi-
ronments in order to perform their experiments. A
software environment contains all the software layers
like the operating system, the libraries, the middle-
wares and the applications (figure 5 ). According to
their experiments nature and the software layer they
are investigating (protocols, OS, ..), they often require
specific OS. Hence, a tool with a deep reconfiguration
mechanism allowing researchers to deploy, install, boot
and run their specific software images, is needed.

Kadeploy [14, 15] is a software environment deploy-
ment tool designed to solve the above issues provid-
ing automated software installation and reconfigura-
tion mechanisms on all the layers of the software stack.
Using kadeploy, in a typical experiment sequence, a
researcher reserves a partition of the cluster or grid,
deploys its software image (figure 7), reboots all the
machines of the partition, runs the experiment, col-
lects results and finally relieves the machines. This re-
configuration capability allows researchers to run their
experiments in the software environment that perfectly
matches their needs and provides to users, a software
homogeneous grid.

This tool uses the traditional protocols for network
booting: PXE, TFTP, DHCP. As we can see on fig-
ure 6, architecture of Kadeploy is designed around a
database and a set of specialized operating compo-
nents. The database is used to store all necessary in-
formation for the deployment process, the computing
nodes and the environments. At the same time, the
code is written in Perl, which is perfectly suited for
system tasks. In addition uses a fast mechanism of en-
vironment diffusion which depends slightly on the num-
ber of nodes. This mechanism is based on a pipeline

Client

Scheduler

Users

Server

Diffusion
Mechanism

Database 

Batch
Environment 
Repository

Computing Nodes

Network booting protocols

Hardware reboot mechanism

Kadeploy2

Submision

Figure 6. Kadeploy architecture

approach (chain of TCP connections between nodes).
This enables operations of deployment on large clusters
(1000 nodes).

The deployment process will write a complete envi-
ronment, on a partition of the disk of each computing
node, which will be followed by a reboot on this par-
tition. The process ensures that the partition of the
disk where the reference environment of the node is
installed, remains intact during diffusion. To guaran-
tee a greater function reliability, Kadeploy tool directs
clusters to be coupled with remote mechanisms of hard-
ware reboot. Thus, if a particular problem occurs on
one or more nodes during a deployment, a restarting
on the reference partition is ordered automatically, on
defected nodes.

An environment is created very simply by making an
archive of the root partition in compressed tar format.
To ensure a high level of portability and to permit that
an environment is usable on various clusters of similar
processor architectures , the environment should not
contain information corresponding to the initial clus-
ter. That is possible because the majority of the ser-
vices have autoconfiguration mechanism (ex: protocol
DHCP for the network) and the majority of the operat-
ing systems have hardware autodetection mechanisms
making it possible to adapt to the minor differences
(network cards, disks...). For the services that lack
autoconfiguration procedure during the deployment, a
procedure known as post-installation process supple-
ments the parameter setting.

Grid5000 uses kadeploy environment deployment
tool for effective reconfiguration capabilities.

at the batch scheduler

New experiment

Environment creation

1 2 3 4

4)Work finishes, nodes return to 
the initial reference environment

3)Work on the environment 

2)Environment deployment

1)Submission of requested nodes

Figure 7. Typical sequence of an environment
deployment.

4



Figure 8. Monika

5 Monitoring and experiment steering
tools

In order to control and monitor the experiments var-
ious software tools have been developed and used upon
Grid5000 platform.

Concerning the initiation and experiment steering
tools the following tools are some of the most important
software used in the platform: Katapult [16] provides
a wrapper to kadeploy for automatic redeployment of
nodes in case of failures. Grudu [17] software provides
a tool for managing Grid5000 resources, reservations
and deployments through a user-friendly web interface.
Taktuk [11, 12] software is a tool for deploying parallel
remote executions of commands to a large set of remote
nodes. KAAPI [18] provides a C++ library that allows
to execute multithreaded computation with data flow
synchronization between threads.

The experiments and resources usage monitoring is a
valuable component of an experimental grid platform.
Numerous tools are used to provide detailed informa-
tion along and after the experimental process. Monika
(figure 8) and Gantt (which are parts of OAR software)
provide analytical information about the state of jobs
and resources of independent clusters or even the whole
grid.

Green-net framework [19] is composed by power
aware software tools for high performance data trans-
port and computing in large scale distributed systems
and it provides ways (web or command line interfaces)
to control and measure the energy consumption during
the experiments. The electric consumption of some
monitored nodes is available live on line, with some
graphs, as shown in figure 9.

Finally, Ganglia is used for a finer grain monitor-
ing and kaspied tool provides a set of statistical values
about the platform usage.

Figure 9. Electrical consumption Monitoring

6 Conclusion

In this article we presented Grid5000 experimental
grid platform dedicated for research in computer sci-
ence. Building a platform like Grid5000 is a full-fledged
research topic. The construction of such large scale in-
struments is new in computer science and the commu-
nity just starts to get used to deal with all the admin-
istrative, technical and scientific details related to the
design, construction, exploitation and maintenance of
such platforms. Other branches of science like Physics,
Astrophysics and Biology have a long history of in-
strument construction behind them. This is a precious
source of inspiration for computer scientists. Apart
being instrument to study distributed computing re-
search problems, Grid5000 offers resources opened and
shared by a large community of users. Computer scien-
tists find not only a sophisticated environment involv-
ing supporting engineers, specific software and dedi-
cated hardware to ease their experiments but also a
social context in which they can share their problems,
questions and solutions.

Furthermore a lot of international collaborations
have been initiated since the beginning of the project,
which imply a further opening of the platform in an
international scale. As a matter of fact, since July
2009 Grid5000 acquired a new site, in the pool of each
resources, situated in the university UFRGS of Porto
Alegre in Brazil. This collaboration, gave a new dimen-
sion of Grid5000 platform which is now leaning towards
an international computer science grid.

5



References

[1] Cappello, F., Desprez, F., Dayde, M., Jeannot,
E., Jegou, Y., Lanteri, S., Melab, N., Namyst,
R., Primet, P., Richard, O., Caron, E., Leduc,
J., Mornet, G.: Grid’5000: A large scale, recon-
figurable, controlable and monitorable grid plat-
form. In: Grid2005 6th IEEE/ACM International
Workshop on Grid Computing. (2005)

[2] Grid5000: Experimental grid platform. (http:
//grid5000.fr)

[3] PlanetLAB: (http://www.planet-lab.org/)

[4] emulab: (http://www.emulab.net/)

[5] GENI: Global environment for network innova-
tions. (http://www.geni.net/)

[6] DAS3: (http://www.cs.vu.nl/das3/)

[7] Cappello, F., Bal, H.: Toward an international
”computer science grid”. Cluster Computing and
the Grid, IEEE International Symposium on 0
(2007) 3–12

[8] Feitelson, D.G.: (Experimental computer science:
The need for a cultural change)

[9] Capit, N., Costa, G.D., Georgiou, Y., Huard, G.,
Martin, C., Mounié, G., Neyron, P., Richard, O.:
A batch scheduler with high level components. In:
5th Int. Symposium on Cluster Computing and
the Grid, Cardiff, UK, IEEE (2005) 776–783

[10] OAR: Resource and job management system.
(http://oar.imag.fr/)

[11] Claudel, B., Huard, G., Richard, O.: Taktuk,
adaptive deployment of remote executions. In:
HPDC ’09: Proceedings of the 18th ACM in-
ternational symposium on High performance dis-
tributed computing, New York, NY, USA, ACM
(2009) 91–100

[12] Taktuk: Adaptive execution deployment. (http:
//taktuk.gforge.inria.fr/)

[13] OARGRID: Oar wrapper for grid level allo-
cation. (http://gforge.inria.fr/projects/
oargrid/)

[14] Georgiou, Y., Leduc, J., Videau, B., Peyrard, J.,
Richard, O.: A tool for environment deployment
in clusters and light grids. In: Second Workshop
on System Management Tools for Large-Scale Par-
allel Systems (SMTPS’06), Rhodes Island, Greece
(2006)

[15] kadeploy: Environment deployment tool. (http:
//gforge.inria.fr/projects/kadeploy)

[16] katapult: automatic experiment deployment.
(http://www.loria.fr/~lnussbau/katapult.
html)

[17] GRUDU: Grid5000 reservation utility for deploy-
ment usage. (http://graal.ens-lyon.fr/DIET/
grudu.html)

[18] KAAPI: (library for ditributed computing)

[19] Green-Net: Power aware framework.
(http://www.ens-lyon.fr/LIP/RESO/
Projects/GREEN-NET/)

6


