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Geo Big Data and Sentinel-2 have been extensively employed to map rice paddies and general 

land use/land cover. Focusing on the environmental value and relevance of rice production in 

Cuenca de la Laguna Merín in Uruguay, the research aimed to 1) map rice paddies and other 

land use/land cover classes, 2) compare the capabilities of Random Forest and Support Vector 

Machine for classifying two different Sentinel-2 time series stacks, and 3) identify the most 

important features according to Random Forest. In addition to quoted imagery and classifiers, 

the materials include Google Earth Engine, GEEMAP, and Python's Scikit-learn GridSearchCV. 

The main methods comprised hyperparameter tuning, supervised classification, and accuracy 

assessment. Quoted assessment revealed that the four maps performed well. The feature 

importance analysis highlighted the Near-Infrared and Shortwave Infrared as the most relevant 

features. Future research should focus on integrating diverse data sources and comparing 

different time series than those employed here. 

KEYWORDS: Uruguay; laguna Merín; Land use/Land Cover; rice paddies.  

 

 

Geo Big Data y Sentinel-2 son eficientes para cartografiar arrozales y otras categorías de uso y 

cobertura del suelo. Dada la relevancia ambiental de la cuenca de la Laguna Merín y su rol en la 

producción arrocera del Uruguay, con este trabajo se pretendió: 1) mapear los arrozales y clases 

generales de uso y cobertura del suelo; 2) comparar el desempeño de Random Forest y Support 

Vector Machine para clasificar dos juegos temporales Sentinel-2, y 3) identificar las bandas más 

importantes según Random Forest.  Los materiales incluyen las imágenes y clasificadores 

mencionados, Google Earth Engine, GEEMAP, y GridSearchCV de Python. Como métodos, 

destacan el ajuste de hiperparámetros, la clasificación supervisada, y el cálculo de métricas de 

precisión. Estas últimas sugieren que los cuatro mapas aportan resultados óptimos. Las bandas 

infrarrojas cercano y de onda corta son las más relevantes para clasificar. Futuras iniciativas 

deben enfocarse en integrar imágenes de sensores diversos y utilizar series temporales distintas 

a las aquí empleadas.  

PALABRAS CLAVE: Uruguay; laguna Merín; uso/cobertura del suelo; arrozales.  

 

 

Geo Big Data e Sentinel-2 são amplamente reconhecidos para mapear arrozais e outras 

categorias de uso e cobertura do solo. Dada a relevância ambiental da bacia da Lagoa Mirim e 

seu papel na produção de arroz no Uruguai, este trabalho teve como objetivos: 1) mapear os 

arrozais e classes gerais de uso e cobertura do solo, 2) comparar o desempenho dos algoritmos 

Random Forest e Support Vector Machine na classificação de duas séries temporais de Sentinel-

2, e 3) identificar as bandas mais importantes segundo Random Forest. Os materiais incluem as 

imagens e classificadores mencionados, Google Earth Engine, GEEMAP e GridSearchCV do 

Python. Os métodos utilizados incluem ajuste de hiperparâmetros, classificação supervisionada 

e cálculo de métricas de precisão. Estas últimas sugerem que os quatro mapas fornecem 

resultados ótimos. As bandas de infravermelho próximo e infravermelho de onda curta são as 

mais relevantes para a classificação. Futuras iniciativas devem se concentrar em integrar 

imagens de sensores diversos e utilizar séries temporais diferentes das aqui empregadas. 

PALAVRAS-CHAVE: Uruguay; lagoa Merín; uso/cobertura do solo; arrozais. 
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1. Introduction 

Rice production is vital for Uruguay's domestic 

economy and global food security. It is 

considered the most widely cultivated crop, 

grown in over one hundred countries, and 

consumed by at least half of the world's 

population (Food and Agriculture Organization 

[FAO], 2004). Uruguay is one of the most export-

oriented country globally, with approximately 

95% of its total production sold in foreign 

markets (Pittelkow et al., 2016). The local 

production model, known as ‘irrigated lowland’, 

facilitates the extensive use of agricultural 

machinery and allows for more land-extensive 

production compared to traditional methods 

used in various ecosystems such as irrigated 

upland, rainfed lowland, rainfed upland, and 

deepwater/floating ecosystems (Bray, 1986). 

Uruguay's cultivation is limited to a single 

season, typically from late October for 

establishment to March–April for maturity. The 

Cuenca de la Laguna Merín (CLM) has historically 

been a leading region in Uruguay, boasting the 

largest surface area, production, and workforce, 

as reported by the Ministerio de Ganadería, 

Agricultura, y Pesca (MGAP, 2020). These 

conditions render this region the most 

representative of the country. 

By identifying the spatial distribution of Rice 

Paddies (RP) and other general Land Use / Land 

Cover (LULC) classes through corresponding 

cartography, policymakers and agricultural 

experts can enhance their understanding of the 

rural environments and develop effective 

strategies for sustainability.  

LULC mapping could be appropriately 

developed by Geo Big Data (GeoBD) and Sentinel 

2 (S2). GeoBD processes remote sensing data 

while considering velocity, veracity, volume, and 

value characteristics. This allows for handling 

massive, diverse, multi-temporal, multi-scalar, 

and complex data (Zhu, 2019) through tools such 

as Earth Observation Data Cube online portals 

(EOD) and Analysis-Ready Data (ARD). EODs are 

a solution for storing, organising, managing, and 

analysing remote sensing data in a previously 

impossible way (Giuliani et al., 2017) because they 

overcome restrictions connected to traditional 

local processing and data distribution methods. 

ARD is an excellent way to carry out remote 

sensing projects, as users can focus on analysis 

and denote inputs with the highest scientific 

standards and level of processing required for 

direct use in assessing LULC (Dwyer et al., 2018). 

ARD must satisfy conditions such as geometric 

and radiometric consistency and be organised 

into a specific format that supports stacking 

along the time dimension to create a time series 

or dense mosaics using all existing pixel values. 

GeoBD provides robust capabilities for linking 

time series and current machine learning 

classifiers for cartography, focusing on broad 

LULC (Simón-Sanchez et al., 2022) or RP (Huang 

& Zhang, 2022).  

S2 is the multispectral freely accessible option 

offering the highest spatial (up to 10 m) and 

temporal resolutions. The revisit frequency of 

each S2 satellite is 10 days, and the combined 

constellation revisit is 5 days. 

The current scientific literature has 

contributed to LULC mapping in Uruguay (e.g. 

Stanimirova et al., 2022; Zarza et al., 2022; 

Alciaturi et al., 2023). However, there is a 

noticeable lack of research on mapping rice 

crops. Therefore, this study aims to accomplish 

the following objectives: 1) map RP and other 

LUC classes for the agricultural period known as 

‘Zafra’ from 2019 to 2020; 2) compare the 

classification capabilities of Random Forest (RF) 

and Support Vector Machine (SVM) for two S2 

layer stacks; and 3) identify the most important 

features according to the RF.  

Due to various limitations, SVM has 

constraints for identifying features importance. 

The availability of high-resolution imagery from 

Planet Group for cartography validation drove 

the decision to focus on the 2019-2020 season. 

Moreover, this time frame marked the most 

recent period at the beginning of the study.  

Based on the resources available on Scopus or 

the Web of Science, this research project is 

considered pioneering in RP mapping for 

Uruguay. 
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2. The  case study´s geographic context 

The study area, located between 31° 49' 48" S—

34° 26' 37" S and 53° 10' 51" ° W—55° 21' 35" W, 

covers 27,892 km2. This surface is part of Uruguay 

and Brazil's 62,250 km2 trans boundary 

watershed (also known as Cuenca de la Laguna 

Merín), (FIGURE 1). The predominant ecosystem, 

known as ‘pampa’, consists of diverse herbaceous 

communities and wetlands. The region could be 

divided into three landscape units based on 

meters above sea level: mountain ranges (150 – 

517), hills (50 – 150), and lowlands (under 50), 

(Achkar et al., 2012). From a farming perspective, 

the soils in the study area are generally poorly 

drained and offer prospects for mechanization in 

certain zones.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Study area's regional and local context 

 

 

Lowlands are the most representative landscape 

with low drainage rates, leading to extensive 

flooded areas suitable for wetlands. The main 

reason for rice farming in CLM is the optimal 

water volume and flow from Laguna Merín or 

streams from an extensive network (Frank, 2022). 

Certain social factors positively impact rice 

activities, including government policies, 

partnerships between farmers and millers, and 

the development of local infrastructure such as 

roads and electricity (Zorrilla, 2015). Furthermore, 

the region also supports livestock, soybean 

cultivation, and small-scale fisheries. 

 

3. Materials  

This section focuses on the time series database 

(TSD), the classifiers, the software, the training 

samples, and the validation dataset.  

 

3.1 Time series database 

S2L2A is the Analysis ARD used to construct the 

TSD. Products are geometrically rectified and 

provide bottom-of-atmosphere reflectance. This 

reflectance is calculated by correcting the 

scattering of air molecules (Rayleigh scattering), 

the effects of atmospheric gases, such as oxygen, 

ozone, and water vapour, and the absorption and 

scattering due to aerosol particles. The usage of 
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TSD aims to differentiate between classes with 

different phenological cycles, with a specific focus 

on rice paddies (RP). It also enables the 

classification of other summer crops (OSC), bare 

land and its transitions (BLT), water bodies (WA), 

natural grasslands, livestock, and post-

agricultural fields (NGPA), seasonally flooded 

vegetation (SFV), native forest and commercial 

afforestation (NFC), and built-up areas (BU). The 

TSD consists of two-layer stacks. One layer 

contains optical bands and the Normalised 

Vegetation Index (NDVI), while the other layer 

includes quoted inputs along with the Enhanced 

Vegetation Index (EVI) and Land Surface Water 

Index (LSWI). These quoted Indices have been 

widely used for RP (Zhao et al., 2021) and LUC 

mapping (Tobar-Díaz et al., 2023). The TSD 

construction required outlining the RP 

cultivation, spectral and time filtering, temporal 

composites and index computing, and layer 

stacking. 

 

3.1.1 Outlining the RP cultivation 

An outline of the process of cultivating RP in CLM 

is presented based on local experts. The 

cultivation process comprises five stages: 

planting, germination, vegetative reproduction, 

senescence-maturation, and harvesting (FIGURE 2).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. RP evolution for CLM. Source: adapted from Kuenzer & Knauer (2013) 

 

 

RP cultivation exhibits unique temporal and 

spectral features that enable its identification 

from other LULC classes. During planting to early 

vegetative growth (November to December), 

bare soil or shallow water layers with limited 

vegetation cover were observed. Subsequently, in 

January, signs of vegetative growth became 

apparent as the plants developed a dense 

canopy. The peak vegetative growth stage was 

witnessed in February when the rice plants 

displayed a vigorous and healthy canopy. 

Following the postharvest period (typically 

between March and May), the vegetation is 

cleared, leaving the ground resembling bare soil. 

This outline guided the following spectral and 

time filtering. 

3.1.2 Spectral and time filtering  

Spectral filtering is limited to B2, B3, B4, B8, B11, 

and B12. The absorption of leaf pigments, such as 

chlorophyll a and b and carotenoids, significantly 

impacts the visible part of incoming radiation. 

These pigments are closely linked to the plant’s 

physiological status. In this way, Van Niel & 

McVicar (2004) determined that red reflectance 

starts at 10% during emergence, decreases to 2% 

at flowering and gradually increases to 16%–18% 

at maturity due to the loss of green brightness by 

leaves and stems and the yellowness of the rice 

grains. In addition, Blackburn (1998) stated that 

near-infrared (NIR) reflectance changes over time 

according to biomass, increasing from a 

minimum of 15% during early tillering to a 
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maximum of 50% during heading. Finally, Short 

Wave Infrared (SWIR) enhances substrate 

discrimination due to its water absorption 

properties (Casanova et al., 1998).  

The time filtering was limited to acquisitions 

from 10/1/2019 to 5/20/2020, with a cloud cover 

of 10% or less. The quoted imagery encompasses 

rice season and a few post-harvest days. This 

timeframe also lends itself to mapping the 

remaining LULC classes. 

 

3.1.3 Temporal composites and Indices 

computing 

Temporal composites (TC) are an effective way to 

map large areas by combining pixels based on 

statistical measures such as mean, median, 

minimum, and maximum across matching bands 

within a specific period (Meng et al., 2023). These 

calculations help fill in gaps in satellite data and 

reduce data anomalies (Carrasco et al., 2022). A 

critical advantage is their possibility to avoid 

clouds and shadows. 

This study calculated TC by taking the median 

value across filtered scenes grouped by specific 

acquisition dates and RP stages (TABLE 1). Each TC 

is represented visually using the RGB B8/B11/B4 

combination (FIGURE 3). 

 

 

TABLE 1. S2 temporal composites 

Groups Acquisition dates RP stage 

S2nov 11/04/2019; 11/16/2019 
Germination / Vegetative 

reproductive* 

S2deca 11/28/2019; 12/10/2019 Vegetative reproductive 

S2decb 12/22/2019; 01/03/2020 Vegetative reproductive 

S2jan 01/15/2020; 01/27/2020 Vegetative reproductive 

S2feb 02/08/2020; 02/20/2020 Vegetative reproductive 

S2mar 03/03/2020; 03/15/2020 Senescence maturation 

S2may 05/16/2020; 05/18/2020 Post agricultural fields 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. S2 composites 
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The NDVI, EVI, and LSWI calculations used various 

spectral bands from each time group. The results 

are displayed in FIGURE 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             FIGURE 4. S2 Indices 
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3.1.4 Layer stacking 

In FIGURE 5, layer stacking is depicted. The first 

stack, TSD_1, was formed using spectral bands 

from each time group and NDVI. The second 

stack, TSD_2, was created by adding the previous 

inputs and respective EVI and LSWI composites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 5. Layer stacking 

 

 

3.2 The classifiers: Random Forest and  

      Support Vector Machine 

RF is a nonparametric statistical method used for 

classification tasks within a flexible framework. 

One of its main advantages is integrating data 

from different scales and sources (Ramo & 

Chuvieco, 2017). RF can identify the most 

prominent features by computing the impurity 

among decision trees using the mean decrease in 

Gini and the mean decrease in accuracy (Dunne 

et al., 2023). The algorithm has three primary HPS 

that must be set before training: the number of 

trees (specifies how many decision trees will be 

built in the forest), variables per split (determines 

how many variables will be considered when 

making a split at each node), and minimum leaf 

population (sets the minimum number of 

samples required to be in a leaf node). 

SVM is a supervised, nonparametric learning 

technique that constructs hyperplanes or sets of 

hyperplanes in a high-dimensional space. The key 

hyperparameters to set for SVM are the kernel 

type, which is a mathematical function used to 

transform input data into a higher-dimensional 

space, and the cost, which controls the balance 

between maximizing the margin and minimizing 

classification errors on the training set (Adugna 

et al., 2022). One area for improvement of SVM is 

its inability to assess feature importance 

effectively, as it focuses on finding the best 

hyperplane to separate classes rather than 

individual feature weighting. 
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3.3 The software: GEE, GEEMAP &  

      Python Scikit-Learn 

GEE is a platform for retrieving, managing, and 

analysing large volumes of remote sensing data. 

Python was selected as the primary programming 

language for GEEMAP due to its compatibility 

with Scikit-learn’s GridSearchCV. The last offers a 

wide range of capabilities, including assessing the 

importance of RF features and hyperparameter 

tuning (HPT) to identify the most effective 

combination of HPS (model) that enhance the 

performance of RF and SVM. The models are 

determined through k-fold cross-validation 

(Marcot & Hanea, 2021). 

 

3.4 The training dataset 

Experts’ opinions and visual inspection of the S2 

composites support the creation of a training 

dataset by digitising various representative 

features of RP, OSC, BLT, WA, NGPA, SFV, NFC, 

and BU. TABLE 2 shows the number of pixels per 

class. 

 

 

TABLE 2. Sampling pixels per class 

Class RP OSC BLT WA NGPA SFV NFC BU 

Pixels 2000 1960 1000 400 3000 500 1000 200 

 

 

3.5 The validation database 

It was crucial to create a thorough validation 

database using information from four different 

sources: field surveys, visual analysis of high-

resolution imagery, the Dynamic World project 

(Brown et al., 2022), and vector archives provided 

by experts in the rice industry. Essential matters 

are outlined below: a) Field surveys conducted on 

10/2/2020 were instrumental in identifying 

different classes within the LUC, mainly RP, during 

a vigorous growth phase; b) polygons were 

digitised using imagery provided by the Planet 

consortium, specifically those acquired by the 

Dove constellation. The visual interpretation was 

carried out using the February monthly true-

colour composites, which are consistent with RP's 

high vegetative stage; and c) the Dynamic World 

project enabled the creation of time LUC maps 

based on predefined dates. This allows for the 

creation of samples (excluding RP) that were 

previously impossible to obtain. 

This integrated approach optimised the 

creation of a validation dataset across all CLM, 

addressing limitations associated with 

incomplete acquisitions from a single source. 

TABLE 3 displays pixels per class. Additionally, the 

official rice surface statistics from MGAP (2020) 

support validation. 

 

 

TABLE 3. Validation  pixels per class 

Class RP OSC BLT WA NGPA SFV NFC BU 

Pixels 4404 2828 338 196 6164 836 1778 120 

 

 

4.  Methods 

The methods include class sampling, feature 

importance calculation, hyperparameters tuning 

and model creation, classification, and accuracy 

assessment. 

 

4.1. The class sampling 

TSD_1 and TSD_2 stacks, along with the training 

dataset, were used to produce TSD_1sam and 

TSD_2sam files. These files contain representative 

spectral and index values from each LULC class 

based on each layer stack. 

 

4.2 Hyperparameter tuning and models creation 

The HPT uses TSD_1sam and TSD_2sam files to 

determine the best models for classifying each 

layer stack according to RF and SVM. The first 
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step in HPT is to create a parameter grid as a 

dictionary of potential HPS and the values that 

need optimisation. TABLE 4 presents the HPS 

suggested for RF and SVM, broadening the 

alternatives proposed by Belgiu and Drăguţ 

(2016) and Shetty (2019). 

 

 

 

TABLE 4. Alternatives of RF for optimising 

RF SVM 

HPS Alternatives  HPS Alternatives 

Number of trees 50, 162, 275, 387, 500 Kernel 
Linear, polynomial, sigmoid, Radial Basis 

Function 

Variables per split 2,4,6 Cost 2, 5, 10, 15, 20, 35, 30 

Min leaf population 2,4,6 Gamma 0.1,1,2,3  

 

 

 

The datasets TSD_1sam and TSD_2sam were split 

into two subsets for model creation and testing 

purposes. The model creation subset comprised 

70% of the data, while the remaining 30% was 

designated for testing the performance of each 

model. To enhance the robustness of the 

evaluation, K-Fold Partitioning was utilized. This 

method involves dividing the dataset into K 

subsets (or ‘folds’) and training the model K 

times, each time using a different fold as the test 

set and the remaining folds as the training set. 

The results of these K tests are then averaged to 

obtain a general measure of the model's 

performance. For the RF models, an exhaustive 

search for hyperparameters was conducted using 

10-fold cross-validation, evaluating 540 

parameter combinations, and performing 5,400 

fits. Similarly, for the SVM process, there were 

five-fold cross-validations for each of the 112 

parameter combinations, leading to a total of 560 

fits. The final model was chosen based on the 

best-performing model configuration, also 

known as HPS. 

 

4.3 Feature importance calculation 

Feature importance is calculated based on Gini 

importance, which measures the relative 

importance of each feature in the model. It is 

determined from the decrease in Gini impurity 

resulting from splitting a node on a particular 

feature. Features with higher Gini importance are 

more influential in making predictions within the 

RF model. 

 

4.4 Supervised classification 

RF and SVM were optimised using models to 

classify TSD_1 and TSD_2. 

 

4.5 Accuracy assessment 

Validation was aided by extensively used 

statistics, such as overall accuracy (OA), user 

accuracy (UA), producer accuracy (PA) and Kappa 

coefficient (Kappa). 

 

5.  Results & discussions 

The results and discussions are presented in four 

sections: model creation; maps, LUC surface 

estimations and accuracy statistics; efficiency of 

optical imagery and classifiers, and RF 

importance features.  

 

5.1 Model creation 

Based on each layer stack and classifier, a model 

was developed with corresponding optimal HPS 

values as detailed in TABLE 5. 
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TABLE 5. Layer stack, classifier, model names, and optimal hyperparameters  

 

Layer 

stack 
Classifier Model name Optimal hyperparameters 

TSD _1 
RF S2tsRFmap 

Number of trees = 162; Variables per split = 4; Min 

leaf population = 2 

SVM S2tsSVMmap C=2; Kernel=Linear 

TSD _2 
RF S2tsRFmap2 

Number of trees = 275; Variables per split = 4; Min 

leaf population = 2 

SVM S2tsSVMmap2 C=2; Kernel=Linear 

 

 

5.2 Maps, LUC surface estimations, and accuracy statistics 

Four different maps were generated (FIGURE 6): the 

S2tsRFmap, S2tsSVMmap, S2tsRFmap2, and 

S2tsSVMmap2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. The maps  
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FIGURE 6. The maps (continued) 

 

TABLE 6 provides an estimation of the surface area 

for each class. The RP category covers a small but 

consistent percentage of the CLM, ranging from 

3.09% to 3.14%. On the other hand, NGPA 

dominates the landscape, as it covers over 70% 

of the area. NFC also covers a significant surface 

area, indicating the importance of commercial 

forestation activities. SFV shows inconsistency in 

classifier performance. BLT covers a range of 

3.23% to 4.66%, which suggests that some areas 

are undergoing transitional phases or lack 

vegetation cover. Lastly, BU covers a small 

portion and comprises only 0.06% to 0.09%. 

 

TABLE 6. Surface per class and map 

 

Class 
S2tsRFmap S2tsSVMmap S2tsRFmap2 S2tsSVMmap2 

km2 % km2 % Km2 % Km2 % 

WA 175.64 0.61 140.32 0.49 169.08 0.59 133.17 0.46 

NGPA 21432.95 74.47 20813 72.32 21669.49 75.29 20814.29 72.32 

NFC 3311.44 11.51 3532.64 12.27 3232.51 11.23 3531.82 12.27 

SFV 957.36 3.33 1522.75 5.29 953.31 3.31 1523.90 5.29 

BLT 1341 4.66 929.98 3.23 1190.27 4.14 931.10 3.24 

OSC 644.66 2.24 919.58 3.2 655.36 2.28 919.27 3.19 

RP 890.52 3.09 904.31 3.14 887.72 3.08 905.09 3.14 

BU 26.56 0.09 18.13 0.06 22.27 0.08 22.23 0.08 

Total 28780.12 100 28780.7 100 28780.01 100.00 28780.86 100.00 
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The study utilised confusion matrices (TABLE 7) to 

compute accuracy metrics such as OA, Kappa, 

and estimators specific to each class. The findings 

indicated that all models performed well, with 

S2tsRFmap registering an OA accuracy of 91.5% 

and a Kappa of 0.887, S2tsSVMmap recording an 

OA accuracy of 92.6% and a Kappa of 0.901, 

S2tsRFmap2 achieving an OA accuracy of 92.4% 

and a Kappa of 0.899, and S2tsSVMmap2 is 

exhibiting an OA accuracy of 92.7% and a Kappa 

of 0.903. 

 

TABLE 7. Confusion matrix for each map 

S2tsRFmap 

  WA NGPA NFC SFV BLT OSC RP BU Total 

WA 185 0 0 8 0 0 3 0 196 

NGPA 0 5849 20 83 172 27 13 0 6164 

NFC 0 181 1537 56 0 4 0 0 1778 

SFV 16 4 57 736 0 10 13 0 836 

BLT 0 56 0 0 282 0 0 0 338 

OSC 0 143 0 0 280 2405 0 0 2828 

RP 0 29 28 75 12 108 4152 0 4404 

BU 0 5 0 0 13 0 0 102 120 

Total 201 6267 1642 958 759 2554 4181 102 16664 

OA 91,5%   Kappa 0.887  

 

TABLE 7. Confusion matrix for each map (continued) 

S2tsSVMmap 

  WA NGPA NFC SFV BLT OSC RP BU Total 

WA 180 0 0 14 0 0 2 0 196 

NGPA 0 5877 18 114 70 55 14 0 6148 

NFC 0 132 1521 140 1 2 0 0 1796 

SFV 0 0 0 784 0 0 52 0 836 

BLT 0 94 0 0 236 4 0 0 334 

OSC 0 154 0 0 131 2539 0 0 2824 

RP 0 12 28 97 0 80 4195 0 4412 

BU 0 7 0 0 13 2 0 100 122 

Total 180 6276 1567 1149 451 2682 4263 100 16668 

OA 92,6 % Kappa  0.901 

S2tsRFmap2 

  WA NGPA NFC SFV BLT OSC RP BU Total 

WA 180 0 0 12 0 0 4 0 196 

NGPA 0 5911 3 80 110 16 20 0 6140 

NFC 0 163 1553 66 0 4 0 0 1786 

SFV 32 8 11 749 0 0 24 0 824 

BLT 0 85 0 0 247 0 0 0 332 
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OSC 0 142 0 1 262 2429 2 0 2836 

RP 0 34 2 70 4 94 4208 0 4412 

BU 0 6 0 0 13 0 0 103 122 

TOTAL 212 6349 1569 978 636 2543 4258 103 16648 

OA 92,4 %   Kappa 0.899  

S2tsSVMmap2 

  WA NGPA NFC SFV BLT OSC RP BU Total 

WA 174 0 0 17 0 0 3 0 194 

NGPA 0 5868 7 111 81 55 15 0 6137 

NFC 0 113 1561 122 2 4 2 0 1804 

SFV 0 1 0 779 0 0 52 0 832 

BLT 0 104 0 0 226 4 0 0 334 

OSC 0 175 0 0 143 2561 0 0 2879 

RP 0 12 22 82 0 71 4210 0 4397 

BU 0 4 0 0 13 0 0 101 118 

Total 174 6277 1590 1111 465 2695 4282 101 16695 

OA 92,7 %  Kappa  0.903 

 
 

TABLE 8 shows the accuracy statistics per class for 

all four maps. Most classes achieve optimal 

producer and user accuracy, while ‘BLT’ has poor 

precision scores. In summary, consistent 

performance is revealed in almost all classes, and 

challenges persist in accurately classifying ‘BLT’

. 

 

TABLE 8. The accuracy statistics per class 

Class 

Maps 

S2tsRFmap S2tsSVMmap S2tsRFmap2 S2tsSVMmap2 

PA UA PA UA   PA UA   PA UA 

WA 0.92 0.94 1 0.92 0.85 0.92 1 0.9 

NGPA 0.93 0.95 0.94 0.96 0.93 0.96 0.93 0.96 

NFC 0.94 0.86 0.97 0.85 0.99 0.87 0.98 0.87 

SFV 0.77 0.88 0.68 0.94 0.77 0.91 0.7 0.94 

BLT 0.37 0.83 0.52 0.71 0.39 0.74 0.49 0.68 

OSC 0.94 0.85 0.95 0.9 0.96 0.86 0.95 0.89 

RP 0.99 0.94 0.98 0.95 0.99 0.95 0.98 0.96 

BU 1 0.85 1 0.82 1 0.84 1 0.86 

 

 

5.3 Efficiency of optical imagery and classifiers 

The RP surface estimated for the four maps aligns 

with the 1,007 km2 reported by MGAP (2020) for 

the Uruguayan Easter region. This is particularly 

noteworthy when considering that CLM covers 

primarily, but not exclusively, the territory 

belonging to the region above.
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The outcomes are consistent with recent 

studies that reached optimal accuracy for 

classifying RP or other LUC through optical 

imagery and RF or SVM. As prominent examples, 

(Zhang et al., 2020) reached 88.57% overall in an 

SVM employed for map RP in the Banan District 

and Zhongxian County of Southwestern China. 

De Abreu et al. (2021) identified RP for Rio 

Grande do Sul in Brazil at 96.5% OA. İnalpulat 

(2023) mapped various LUC classes for Çanakkale 

Province in Türkiye and found that RF could 

identify RP areas with 96% OA. Wei et al. (2022) 

created RP maps for China from 2014 to 2019, 

with Kappa coefficients ranging from 0.67–0.80. 

This research and other evidence support using 

classifiers such as RF or SVM as trustworthy 

alternatives for RP and general LUC mapping. 

Although many classes demonstrated optimal 

user and producer accuracy performance, some 

issues require further attention. One is 

differentiating between herbaceous (natural and 

artificial) and post-agricultural land, which can be 

difficult due to similarities in spectral behaviour. 

Reinerman et al. (2020) findings support this 

statement.  

It is crucial to differentiate between natural 

and cultivated forests. However, determining 

whether a forest is young or sparse can be 

challenging, as these forests can be mistaken for 

native trees. Fassnacht et al. (2016) came to 

similar conclusions. Additionally, it is important to 

thoroughly sample harvests of OSC (like 

soybeans or corn), which will likely lead to a more 

detailed classification. 

It is important to focus on improving and 

accurately documenting the mapping of SFV over 

an extensive time series, as the analysed period 

only covers one rice season, which may not be 

representative of SFV patterns. The classification 

of SFV posed challenges due to the presence of 

various landscape areas, including shrubs, 

swampy woodlands, palm groves, and wooded 

prairie, which are associated with marshy, 

lacustrine, artificial, riverine, and other systems. 

Meeting the criteria outlined by Sahour et al. 

(2022) was difficult due to the presence of fuzzy 

boundaries and transition zones between 

wetlands and adjacent uplands, as well as the 

existence of elements causing variations in water 

spectral properties, making accurate mapping a 

challenge.  

The low accuracy of BLT mapping is attributed 

to its resemblance to other substrates, such as 

sparse vegetation, leading to classification errors, 

particularly in classes with overlapping spectral 

characteristics. 

 

5.4 The feature importance according to the RF 

TSD_1 consists of 49 features. The top 20 belong 

to various moments during the 2019–2020 

season, explaining 76% of the total. This 

underscores the importance and robustness of 

the time-series approach. Notably, features from 

May contribute about 27%, primarily due to their 

ability to highlight agricultural postharvest 

substrate evolution while retaining the spectral 

values of stable covers. 

Elements from January, February and March, 

accounting for approximately 34% of the total, 

correspond with substantial phenological 

variations in dynamic features. The NDVI was 

highly ranked, and its importance summarised 

about 26%. This is because NDVI is capable of 

monitoring RP and OSC in multiple stages and 

because it has firmly known capabilities of 

correlating with the status of a broad array of 

vegetation properties for large-scale monitoring 

(Huang et al., 2021), such as different kinds of 

pastures (Edirisinghe et al., 2011) or forests with 

distinctive characteristics (Huete et al., 2002). 

SWIR has significant, as it provides about 31% 

importance. This value is due to the band’s 

capabilities of differentiating water content and 

spongy mesophyll structure in crops and other 

distinctive vegetation in the study area. Visible 

region contributions are determined to be about 

12% and mostly belong to the red band.  

TSD_2 consists of 63 features. The top 20 

features contributed almost 70% of the dataset’s 

overall importance. Like TSD_1, several 

coincidences are observed here. The top 

concerns from the dataset are present in different 

periods throughout the 2019–2020 season. May 

remains the period with the most importance, 

accounting for 23% of the dataset. Moreover, the 

broad significance of January, February and 
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March reaches almost 29%. These results support 

earlier statements explaining the relevance of the 

time patterns observed in TSD_1. At this top, the 

Indices reached an importance of almost 39%, 

distributed, respectively, 19.2% (EVI), 11. 16% 

(NDVI) and 8.3% (LSWI). EVI’s relative significance 

is explained by its capacity to identify vegetation 

structure variation, making it helpful in 

monitoring seasonal variations (Zhang et al., 

2023) like those analysed in this research. The 

arguments previously made for NDVI are also 

valid in this circumstance. LSWI’s importance may 

be explained by its accuracy in monitoring land 

surface water changes and mapping irrigated and 

flooded regions, such as those in the study area.  

 

6. Conclusions  

The methodology has proven to be effective in 

identifying most classes. It is trustworthy and 

aligned with the research objectives in the 

context of GeoBD attributes such as velocity, 

veracity, volume, and value. The four models 

exhibited remarkable accuracy on both training 

and test datasets, indicating that they have 

effectively learned from the training and can 

generalize to other suitable data. The similar 

accuracy of the four maps in global and per-class 

statistics provides robust evidence of the optimal 

performance of the RF and SVM classifiers. 

However, using these classifiers did not result in 

significant differences in accuracy. These results 

can be attributed to the adequate addressing of 

the HPT process, effectively avoiding typical 

constraints, such as methodological uncertainty, 

a common issue when implementing RF or SVM 

for LUC classifications.  

The maps generated through a 

comprehensive analysis may serve as a valuable 

tool for addressing various questions related to 

rice production and other landscape 

environmental concerns associated with LUC in 

CLM. Since the availability of the S2 was optimal 

for this research, future initiatives should 

determine if other less dense time series, 

different from those utilised for this research or 

mono-temporal layer stacks, perform optimally in 

classifying LUC over the complex landscape that 

is CLM. Also, future research should employ 

diverse data sources, classify other crops besides 

RP, and test state of the art deep-learning 

approaches. Due to the study area's extensive 

surface, finding agricultural or other thematic 

detailed class validation datasets different from 

field campaigns or high-resolution imagery is 

challenging. Therefore, citizen science initiatives 

should be enforced as a potential source for 

achieving more comprehensive field sampling 

over time and space.  
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