Polimorfismos en genes de la vía de los folatos y su asociación con enfermedades humanas

Miguel Ángel Cáceres Durán, Bárbara Do Nascimento Borges

Resumen


El folato juega un papel esencial en procesos celulares importantes, entre ellos la síntesis de precursores del ADN y eventos epigenéticos como la metilación del ADN. Polimorfismos en genes involucrados en la vía de los folatos pueden estar asociados a diferentes tipos de enfermedades humanas, principalmente defectos en el tubo neural, autismo, enfermedades cardiovasculares y diversos tipos de cáncer. Se piensa que las variantes polimórficas TSER y 1494del6 del gen Timidilato sintasa (TYMS), C677T y A1298C del gen Metilentetrahidrofolato reductasa (MTHFR) y A1298G del gen Metionina sintasa (MTR) podrían ser funcionalmente relevantes y estar asociadas al riesgo de padecer ciertas enfermedades humanas. Por esta razón, la presente revisión tiene por objetivo describir estos polimorfismos y su posible asociación a patologías humanas. El abordaje molecular de estos genes, aunado a factores ambientales, puede ayudar a dilucidar la función del folato en el desarrollo de enfermedades.

Recibido: 12/12/2019
Aprobado: 2/01/2020


Palabras clave


El folato juega un papel esencial en procesos celulares importantes, entre ellos la síntesis de precursores del ADN y eventos epigenéticos como la metilación del ADN. Polimorfismos en genes involucrados en la vía de los folatos pueden estar asociados a di

Texto completo:

PDF

Referencias


Ducker G, Rabinowitz JD. One-Carbon metabolism in health and disease. Cell Metabo. 2017; 25(1): 27–42. DOI: 10.1016/j.cmet.2016.08.009

Hiraoka M, Yasuo K. Genetic polymorphisms and folate status: SNPs and folate”. Congenit Anom. 2017; 57(5):142-9. DOI: 10.1111/cga.12232

González-Galofre Z, Villegas V, Martínez-Agüero M. Determinación del polimorfismo C677T de metilentetrahidrofolato reductasa (MTHFR) en una población piloto de estudiantes de la Universidad del Rosario. Rev Cienc Salud. 2010;8(1):7-21.

Suzuki T, Matsuo K, Hirose K, Hiraki A, Kawase T, Watanabe M, Yamashita T, Iwata H, Tajima K. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis.

; 29(2):356-62. DOI: 10.1093/carcin/bgm295

Hori T, Takahashi E, Ayusawa D, Takeishi K, Kaneda S, Seno T. Regional assignment of the human thymidylate synthase (TS) gene to chromosome band 18p11.32 by nonisotopic in situ hybridization. Hum Genet. 1990;85(6):576-80.

Kaneda S, Nalbantoglu J, Takeishi K, Shimizu K, Seno T, Ayusawa D. Structural and functional analysis of the human thymidylate synthase gene. J Biol Chem. 1990; 265(33):20277-84.

Costi M, Ferrari S, Venturelli A, Calò S, Tondi D, Barlocco D. Thymidylate synthase Structure, Function and Implication in Drug Discovery. Curr Med Chem. 2005; 12(19):2241-58.

Henríquez-Hernández LA, Fernández-Pérez L, González-Hernandez A, Cabrera de León A, Díaz-Chico B, Murias-Rosales A: TYMS, MTHFR, p53 and MDR1 gene polymorphisms in breast cancer patients treated with adjuvant therapy. Cancer Epidemiol. 2010; 34:490-3. DOI: 10.1016/j.canep.2010.03.004

Yim DJ, Kim OJ, An HJ, Kang H, AHN DH, Hwang SG. Polymorphisms of thymidylate synthase gene 5'- and 3'-untranslated region and risk of gastric cancer in Koreans. Anticancer Res. 2010; 30:2325-30.

Sulzyc-Bielicka V, Bielicki D, Binczak-Kuleta A, Kaczmarczyk M, Pioch W, Machoy-Mokrzynska A, Ciechanowicz A, Golebiewska M, Drozdzik M. Thymidylate synthase gene polymorphism and survival of colorectal cancer patients receiving adjuvant 5-Fluorouracil. Genet Test and Mole Biomarkers. 2013; 17(11):799-806. DOI: 10.1089/GTMB.2013.0171

Villafranca E, Okruzhnov Y, Dominguez MA, García-Foncillas J, Azinovic J, Martínez E, Illarramendi JJ, Arias F, Martínez-Monge R, Salgado E, Angeletti S, Brugarolas A. Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after

preoperative chemoradiation in rectal cancer. J Clin Oncol. 2001; 19:1779–86. DOI: 10.1200/JCO.2001.19.6.1779

Edler, D. Glimelius B, Hallström M, Jakobsen A, Johnston PG, Magnusson I, Ragnhammar P, Blomgren H. Thymidylate synthase expression in colorectal cancer: a prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. J Clin Oncol. 2002; 20(7):1721-8. DOI: 10.1200/JCO.2002.07.039

Kawakami K, Watanabe G. Identification and Functional Analysis of Single Nucleotide Polymorphism in the Tandem Repeat Sequence of Thymidylate Synthase Gene. Cancer Res. 2003; 63:6004-7.

Marsh S. Thymidylate synthase pharmacogenetics. Invest New Drugs. 2005; 23:533-7. DOI: 10.1007/s10637-005-4021-7

Lurje G, Manegold PC, Ning Y, Pohl A, Zhang W, Lenz HJ. Thymidylate Synthase gene variations: predictive and prognostic markers”. Mol Cancer Ther 2009;8(5):1000–07. DOI: 10.1158/1535-7163.MCT-08-0219

Hu Q, Li X, Su C, Chen X, Gao G, Zhang J, Zhao Y, Li J, Zhou C. Correlation between thymidylate synthase gene polymorphisms and efficacy of pemetrexed in advanced non-small cell lung cancer. Expe Ther Med. 2012; 4:1010-6. DOI: 10.3892/etm.2012.730

Gibson, TB. Polymorphisms in the Thymidylate synthase gene predict response to 5-fluorouracil therapy in colorectal cancer. Clin Colorectal Cancer. 2006;5(5):321-23.

Mandola MV, Stoehlmacher J, Muller-Weeks S, Cesarone G, Yu MC, Lenz HJ, Ladner RD. A novel single nucleotide polymorphism within the 5’ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res. 2003; 63:2898-904.

Quintero-Ramos A, Gutiérrez-Rubio SA, Del Toro-Arreola A, Franco-Topete RA, Oceguera-Villanueva A, Jiménez-Pérez LM, Castro-Cervantes JM,

Barragán-Ruiz A, Vázquez-Camacho JG, Daneri-Navarro A. Association between polymorphisms in the thymidylate synthase gene and risk of breast cancer in a Mexican population. Genet Mol Res. 2014;13(4):8749-56. DOI: dx.doi.org/10.4238/2014.October.27.16

da Silva J, de Lima FA, Bertuzzo CS. Thymidylate synthase gene (TYMS) polymorphisms in sporadic and hereditary breast cancer. BMC Res Notes. 2012;5(676):1-6. DOI: 10.1186/1756-0500-5-676

Schwarzenbach H, Goekkurt E, Pantel K, Aust DE, Stoehlmacher J. Molecular analysis of the polymorphisms of thymidylate synthase on cell-free circulating DNA in blood of patients with advanced colorectal carcinoma. Int J Cancer. 2010; 127:881-8. DOI: 10.1002/ijc.25096

Ulrich CM, Bigler J, Bostick R, Fosdick L, Potter JD. Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res. 2002; 62:3361-4.

Mandola MV, Stoehlmacher J, Zhang W, Groshen S, Yu M, Iqbal S, Lenz HJ, Ladner R. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics. 2004; 14(5):319-27. DOI: 10.1097/01.fpc.0000114730.08559.df.

Kumar K, Vamsy K, Jamil K. Thymidylate synthase gene polymorphisms effecting 5-FU response in breast cancer patients. Cancer Biomark. 2010; 6:83-93. DOI: 10.3233/CBM-2009-0121.

Skibola CF, Forrest MS, Coppedé F, Agana L, Hubbard A, Smith MT, Bracci PM, Holly EA. Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma. Blood. 2004; 104(107):2155-62. DOI: 10.1182/blood-2004-02-0557.

Shi Q, Zhang Z, Neumann AS, Li G, Spitz MR, We Q: Case-control analysis

of thymidylate synthase polymorphisms and risk of lung cancer. Carcinogenesis. 2005; 26(3):649-56. DOI: 10.1093/carcin/bgh351.

Gallegos-Arreola MP, Peralta-Leal V, Morgan-Villela G, Puebla-Pérez AM. Frecuencia del polimorfismo TS 1494del6 en pacientes con cáncer colorrectal del Occidente de México. Rev Invest Clin. 2008; 60(1):21-30.

Mo A, Zhao Y, Shi Y, Qian F, Hao Y, Chen J, Yang S, Jiang Y, Luo Z, Yu P. Association between polymorphisms of thymidylate synthase gene 5’- and 3’-UTR and gastric cancer risk: meta-analysis. Biosci Rep. 2016; 36:e00429. DOI: 10.1042/BSR20160273.

Stanislawska-Sachadyn A, Borzyszkowska J, Krzeminski M, Janowicz A, Dziadziuszko R, Jassem J, Rzyman W, Limon J. Folate/homocysteine metabolism and lung cancer risk among smokers. Plos One. 2019; 14(4): e0214462. DOI:

1371/journal.pone.0214462.

Pullmann R, Abdelmohsen K, Lal A, Martindale JL, Ladner RD. Differential Stability of Thymidylate synthase 3’-Untranslated Region Polymorphic Variants Regulated by AUF1. J Biol Chem. 2006; 281(33):23456–63. DOI: 10.1074/jbc.M600282200.

Thomas F, Hoskins JM, Dvorak A, Tan BR, McLeod H. Detection of the G>C SNP and rare mutations in the 28-bp repeat of TYMS using gel-based capillary electrophoresis. Pharmacogenomics. 2010;11(12):1751-6. DOI: 10.2217/PGS.10.170.

Yawata A, Kim SR, - Miyajim A, Kubo T, Ishida S, Nakajima Y, Katori N, Matsumoto Y, Fukuoka M, Ohno Y, Ozawa S, Sawada, J. Polymorphic tandem repeat sequences of the thymidylate synthase gene correlates with cellular-based sensitivity to fluoropyrimidine antitumor agents. Cancer Chemother Pharmacol. 2005; 56:465-72. DOI: 10.1007/s00280-005-1018-z.

Gusella M, Bolzonella C, Crepaldi G, Ferrazzi E, Padrini R. A novel G/C

single-nucleotide polymorphism in the double 28-bp repeat thymidylate synthase allele. Pharmacogenomics J. 2006; 6:421-24.

Lincz L, Scorgie FE, Garg MB, Ackland SP. Identification of a novel single nucleotide polymorphism in the first tandem repeat sequence of the thymidylate synthase 2R allele. Int J Cancer 2007; 120(9):1930-4. DOI: 10.1002/ijc.22568.

Meulendijks D, Jacobs BAW, Aliev A, Pluim D, van Werkhoven E, Deenen MJ, Beijnen JH, Cats A, Schellens JHM. Icreased risk of severe fluoropyrimidine-associated toxicity in patients carrying a G to C substitution in the first 28-pb tandem repeat of the thymidylate sintase 2R allele. Int J Cancer. 2016; 138:245-53. DOI: 10.1002/ijc.29694.

Goyette P, Sumner JS, Milos R, Duncan AMV, Rosenblatt DS, Matthews RG, Rozen R. Human Methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genetics. 1994; 7:195-200.

Rezende LM, Lima Marson FA, Passos Lima CS, Bertuzzo CS. Can MTHFR C677T and A1298C polymorphisms alter the risk and severity of sporadic breast cancer in Brazilian women? Clin Breast Cancer. 2017. DOI: 10.1016/j.clbc.2017.02.004.

Gaughan D, Barbaux S, Kluijtmans LAJ, Whitehead AS. The human and mouse methylenetetrahydrofolate reductase (MTHFR) genes: genomic organization, mRNA structure and linkage to the CLCN6 gene. Gene. 2000; 257(2):279-89.

Duthie S.J. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull 1999; 55(3):578-92.

Zhang, N. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim Nutr 2015; 1:144-51. DOI: dx.doi.org/10.1016/j.aninu.2015.09.002.

Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, van del Heuvel LP, Rozen R. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genetics. 1995; 10:111-3.

Castro R, Rivera I, Ravasco P, Camilo ME, Jakobs C, Blom HJ de Almeida IT. 5,10-methylenetetrahydrofolate reductase (MTHFR) 677CT and 1298AC mutations are associated with DNA hypomethylation. J Med Genet. 2004; 41:454-8. DOI: 10.1136/jmg.2003.017244

Uleand PM, Hustad S, Schneede J, Refsum H, Vollset SE. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001; 22(4)195-201.

Gonzales M, Yu P, Shiao P. MTHFR gene polymorphism-mutations and air pollution as risk factors for breast cancer. A Metaprediction Study. Nurs Res. 2017; 66(2):151-62. DOI: 10.1097/NNR.0000000000000206.

Semenza J, Delfino RJ. Ziogas A, Anton-Culver H. Breast cancer risk and methylenetetrahydrofolate reductase polymorphism. Breast Cancer Res Tr. 2003; 77:217-23.

López-Cortés A, Jaramillo-Koupermann G, Muñoz MJ, Cabrera A, Echeverría C, Rosales F, Vivar N, Paz-y-Miño C. Genetic polymorphisms in MTHFR (C677T, A1298C), MTR (A2756G) and MTRR (A66G) genes associated with pathological characteristics of prostate cancer in the Ecuadorian population. Am J Med Sci. 2013; 346(6):447-54.

van der Put NMJ, Gabreëls F, Stevens EMB, Smeitink AM, Trijbels FJM, Eskes TKAB, van der Heuvel LP, Blom H. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998; 62:1044-61.

Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998; 64:169-72.

Khazamipour N, Noruzinia M, Fatehmanesh P, Keyhanee M, Pujol P. MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: The role of epigenetics in male infertility. Hum Reprod. 2009; 24:2361-64. DOI: 10.1093/humrep/dep194.

Rotondo JC, Bosi S, Bazzan E, Di Domenico M, De Mattei M, Selvatici R, Patella A, Marci R, Tognon M, Martini F. Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum Reprod. 2012; 27:3632-8. DOI: 10.1093/humrep/des319.

Ge J, Wang J, Zhang F, Diao B, Song ZF, Shan LL, Wang W, Cao HJ, Li XQ. Correlation between MTHFR gene methylation and pre-eclampsia, and its clinical significance. Genet Mol Res. 2015; 14:8021-8. DOI: 10.4238/2015.July.17.10.

Coppedè F, Denaro M, Tannorella P, Migliore L. Increased MTHFR promoter methylation in mothers of Down syndrome individuals. Mutat. Res. 2016; 787:1-6. DOI: 10.1016/j.mrfmmm.2016.02.008.

Santana Bezerra H, Severo de Assis C, Dos Santos Nunes MK, Wanderley de Queiroga EI, Modesto Filho J, Alves Pegado Gomes CN, Ferreira do Nascimento RA, Pordeus Luna RC, de Carvalho Costa MJ, de Oliveira NFP, Camati Persuhn D. The MTHFR promoter hypermethylation pattern associated with the A1298C polymorphism influences lipid parameters and glycemic control in diabetic patients. Diabetol. Metab Syndr. 2019; 11:4 DOI: 10.1186/s13098-019-0399-9.

Botezatu A, Socolov D, Iancu IV, Huica I, Plesa A, Ungureanu C, Anton G. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and promoter methylation in cervical oncogenic lesions and cancer. J Cell Mol Med. 2013; 17:543-9. DOI: 10.1111/JCMM.12032.

Wei LK, Sutherland H, Au A, Camilleri E, Haupt LM, Gan SH, Griffiths LRA. A potential epigenetic marker mediating serum folate and vitamin B12 levels contributes to the risk of ischemic stroke. Biomed Res Int. 2015; 2015:167976. DOI: 10.1155/2015/167976.

Leclerc D, Campeau E, Goyette P, Adjalla CE, and Christensen B, Ross M etc al. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum Mol Genet. 1996; 5(12):1867-74.

Al Farra, HY. Methionine synthase polymorphisms (MTR 2756 A>G and MTR 2758 C>G) frequencies and distribution in the Jordanian population and their correlation with neural tube defects in the population of the northern part of Jordan. Indian J Hum Genet. 2010; 16(3):138-43. DOI: 10.4103/0971-6866.73405.

Elshihawy H, Helal M, Said M, Hammad MA. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors. Bioorgan Med Chem. 2014; 22:550-8.

Zhu H, Wicker NJ, Shaw GM, Lammer EJ, Hendricks K, Suarez L, Mark C, Richard F. Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Mol Genet Metab. 2003; 78:216-21. DOI: 10.1016/S1096-7192(03)00008-8.

Lu M, Wang F, Qiu J. Methionine synthase A2756G polymorphism and breast cancer risk: a meta-analysis involving 18,953 subjects. Breast Cancer Res Tr. 2010; 123:213-7. DOI: 10.1007/s10549-010-0755-9.

De Cássia Carvalho Barbosa R, da Costa DM, Cordeiro DE, Vieira AP, Rabenhorst SH. Interaction of MTHFR C677T and A1298C, and MTR A2756G Gene Polymorphisms in Breast Cancer

Risk in a Population in Northeast Brazil. Anticancer Res. 2012; 32:4805-12.

Yu K, Zhang J, Zhang J, Dou C, Gu S, Xie Y, Mao Y, Ji C. Methionine synthase A2756G polymorphism and cancer risk: a meta-analysis. Eur J Hum Genet. 2010; 18:370-8. DOI: 10.1038/ejhg.2009.131.

Paz M, Ávila S, Fraga MF, Pollan M, Capella G, Peinado MA, Sanchez-Cespedes M, Hermam JG, Esteller M. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res. 2002; 62(15):4519-24.

De Lima EL, da Silva VC, da Silva HAD, Bezerra A, de Morais VL, de Morais AL, Cruz RV, Barros MHM, Hassan R, de Freitas AC, Muniz MTC. MTR Polymorphic Variant A2756G and Retinoblastoma Risk in Brazilian Children. Pediatr Blood Cancer. 2010; 54:904-08. DOI: 10.1002/pbc.22472.

Wang Y, Liu Y, Ji, W, Qin H, Wu H, Xu D, Tukebai T, Wang Z. Analysis of MTR and MTRR polymorphisms for neural tube defects risk association. Medicine. 2015; 94(35) DOI: 10.1097/MD.0000000000001367.

Haghiri R, Mashayekhi F, Bidabadi E, Salehi Z. Analysis of methionine synthase (rs1805087) gene polymorphism in autism patients in Northern Iran. Acta Neurobiol Exp. 2016; 76:318-23.

Raina JK, Sharma M, Panjaliya RK, Bhagat M, Sharma R, Bakaya A. Methylenetetrahydrofolate reductase C677T and methionine synthase A2756G gene polymorphisms and associated risk of cardiovascular diseases: A study from Jammu region. Indian Heart J. 2016; 68:421-30. DOI: dx.doi.org/10.1016/j.ihj.2016.02.009. 68. Ebrahimi A, Hosseinzadeh A, Karimian M. Association of human methionine synthase A2756G transition with prostate cancer: a case-control study and in silico analysis. Acta Med Iran. 2017; 55(5):297-303.





Se encuentra actualmente indizada en:
tanaman herbal berkhasiat obat  

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.