Papel de la impresión 3D: ponerse al día con las expectativas en odontología pediátrica

Srujana Aravinda Voleti Sri, Ram Kandregula Chaitanya, Y. Malathi, Krishna M. Madhavi, BS Nikitha, Likitha Musunuri Raga

Resumen


El auge de la impresión tridimensional ha cambiado la cara de la odontología en la última década. La impresión 3D es una técnica versátil que permite la fabricación de planes de tratamiento totalmente automatizados y a medida, ofreciendo así dispositivos dentales personalizados a los pacientes. Es muy eficaz, reproducible y proporciona resultados precisos de forma asequible. Aparte de su éxito clínico, las técnicas de impresión 3D se emplean en el desarrollo de modelos precisos para la educación dental, incluida la sensibilización de los pacientes. Este ensayo describe la evolución y las tendencias actuales de las aplicaciones de la impresión 3D en diversas áreas de la odontología pediátrica. El objetivo es centrarse en el proceso de la impresión 3D utilizado en el diagnóstico clínico de diferentes afecciones dentales y cómo pueden aplicarse en la odontología pediátrica. También se discute una breve perspectiva sobre las técnicas más recientes de fabricación de objetos impresos en 3D y sus implicaciones actuales y futuras.


Recibido 2/12/2021
Aprobado: 4/02/2022


Texto completo:

PDF (English)

Referencias


AndonoviC V, Vrtanoski G. Growing rapid prototyping as a technology in dental medicine. Mech Eng Sci J 2010; 29: 31–39.

Liu Q, Leu M C, Schmitt S M. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 2006; 29: 317–335.

Sears, N.A.; Seshadri, D.R.; Dhavalikar, P.S.; Cosgriff-Hernandez, E. A Review of Three- Dimensional Printing in Tissue Engineering. Tissue Eng. Part B Rev. 2016, 22, 298–310.

Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and

bridge restorations. Aust Dent J 2011; 56: 97–106.

John. J Manapallil, Text book on the basics Dental Materials, 4th edition

Melchels F, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010; 31: 6121–6130.

Deckard C, Beaman J. Process and control issues in selective laser sintering. ASME Prod Eng Div PED 1988; 33: 191– 197.

Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 2012;6(2):149–155.

Obregon, F.; Vaquette, C.; Ivanovski, S.; Hutmacher, D.W.; Bertassoni, L.E. Three- dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J. Dent. Res. 2015, 94, 143S–152S.

Annabi, N.; Tamayol, A.; Uquillas, J.A.; Akbari, M.; Bertassoni, L.E.; Cha, C.; Camci-Unal, G.; Dokmeci, R.; Peppas, N.A.; Khademhossaini, A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 2014, 26, 85–123.

Bajaj, P.; Schweller, R.M.; Khademhosseini, A.; West, J.L.; Bashir, R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 2014, 16, 247–276.

Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart hydrogels in tissue engineering and regenerative medicine. Materials 2019, 12, 3323.

Barazanchi, A.; Li, K.C.; Al-Amleh, B.; Lyons, K.; Waddell, J.N. Additive technology: Update on current materials and applications in dentistry. J. Prosthodont. 2017, 26, 156–163.

Van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12.

Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204.

Dizon, J.R.C.; Espera, A.H., Jr.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D- printed polymers. Addit. Manuf. 2018, 20, 44–67.Khaing, M.W.; Fuh, J.Y.H.; Lu, L. Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts. J. Mater. Process. Technol. 2001, 113, 269–272.

Xin Gong,Renxing Dang,y Ting Xu, BS,z Quan Yu and Jiawei Zheng Full Digital Workflow of Nasoalveolar Molding Treatment in Infants With Cleft Lip and Palate The Journal of Craniofacial Surgery: March/April 2020;vol 3.

Hopkins, B.; Dean, K.; Appachi, S.; Drake, A.F. Craniofacial Interventions in Children. Otolaryngol. Clin. N. Am. 2019, 52, 903–922.

Zheng, J.; He, H.; Kuang, W.; Yuan, W. Presurgical nasoalveolar molding with 3D printing for a patient with unilateral cleft lip, alveolus, and palate. Am. J. Orthod. Dentofacial Orthop. 2019, 156, 412–419.

Krey, K.F.; Ratzmann, A.; Metelmann, P.H.; Hartmann, M.; Ruge, S.; Kordass, B. Fully digital workflow for presurgical orthodontic plate in cleft lip and palate patients. Int. J. Comput. Dent. 2018, 21, 251–259.

Lobo, S.E.; Glickman, R.; da Silva, W.N.; Arinzeh, T.L.; Kerkis, I. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tissue Res. 2015, 361, 477– 495.

Faulkner-Jones A, Greenough S, King JA, et al.: Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 5:015013, 2013.

Obregon F, Vaquette C, Ivanovski S, et al.: Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res 94:143S–152S, 2015

Strbac GD, Schnappauf A, Giannis K, et al.: Guided autotransplantation of teeth :A novel method using virtually planned 3-dimensional templates. J Endod 42:1844-1850, 2016.

Sinha P, Skolnick G, Patel KB, et al.: A 3-dimensional-printed short-segment template prototype for mandibular fracture repair. JAMA Facial Plast Surg 20 :373-380, 2018.

Xia J, Li Y, Cai D, et al.: Direct resin composite restoration of maxillary central incisors using a 3D-printed template: two clinical cases. BMC Oral Health18 :158, 2018.

Flügge T V, Nelson K, Schmelzeisen R, Metzger M C. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery. J Oral Maxillofac Surg 2013; 71: 1340–1346.

Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent 2014; 112: 1088–1095.

Chappuis, V.; Shahim, K.; Buser, R.; Koller, E.; Joda, T.; Reyes, M.; Buser, D. Novel Collagen Matrix to Increase Tissue Thickness Simultaneous with Guided Bone Regeneration and Implant Placement in Esthetic Implant Sites: A Feasibility Study. Int. J. Periodontics Restor. Dent. 2018, 38, 575–582.

Thoma, D.S.; Gasser, T.J.; Jung, R.E.; Hammerle, C.H. Randomized controlled clinical trial comparing implant sites augmented with a volume-stable collagen matrix or an autogenous connective tissue graft: 3-year data after insertion of reconstructions. J. Clin. Periodontol. 2020, 47, 630–639.

Tao, O.; Wu, D.T.; Pham, H.M.; Pandey, N.; Tran, S.D. Nanomaterials in craniofacial tissue regeneration: A review. Appl. Sci. 2019, 9, 317.

Murray, P.E.; Garcia-Godoy, F.; Hargreaves, K.M. Regenerative endodontics: A review of current status and a call for action. J. Endod. 2007, 33, 377–390.

Ma, Y.; Xie, L.; Yang, B.; Tian, W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol. Bioeng. 2019, 116, 452– 468.

Anderson, J.; Wealleans, J.; Ray, J. Endodontic applications of 3D printing. Int. Endod. J. 2018, 51, 1005–1018.

Ahn, S.Y.; Kim, N.H.; Kim, S.; Karabucak, B.; Kim, E. Computer-aided Design/Computer- aided manufacturing-guided endodontic surgery: Guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate. J. Endod. 2018, 44, 665–670.

Giacomino, C.M.; Ray, J.J.; Wealleans, J.A. Targeted endodontic microsurgery: A novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases. J. Endod. 2018, 44, 671–677.

Mohmmed, S.A.; Vianna, M.E.; Penny, M.R.; Hilton, S.T.; Mordan, N.J.; Knowles, J.C. Investigations into in situ enterococcus faecalis biofilm removal by passive and active sodium hypochlorite irrigation delivered into the lateral canal of a simulated root canal model. Int. Endod. J. 2018, 51, 649–662.

Kelly K Hilgers, Deborah Redford-Badwal, Susan Reisine, Orthodontic treatment provided by pediatric dentists.American Journal of Orthodontics and Dentofacial Orthopedics.2003;124(5):551-560.

Jheon, A.H.; Oberoi, S.; Solem, R.C.; Kapila, S. Moving towards precision orthodontics: An

evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthod. Craniofac. Res. 2017, 20, 106–113.

Yang, L.; Yin, G.; Liao, X.; Yin, X.; Ye, N. A novel customized ceramic bracket for esthetic orthodontics: In vitro study. Prog. Orthod. 2019, 20, 39.

Tavares, A.; Braga, E.; Araujo, T.M. Digital models: How can dental arch form be verified chairside? Dental Press J. Orthod. 2017, 22, 68–73.

Pawar, B.A. Maintenance of space by innovative three-dimensional-printed band and loop space maintainer. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 205–208.

Pawar BA. Maintenance of space by innovative three-dimensional-printed band and loop space maintainer. J Indian Soc Pedod Prev Dent 2019; 37:205-8.

Perry Jones Digital scanning and 3D printing: The future is now for dentistry J Biomed Imag Bio eng 2021 Volume 5 Issue 2.

Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofac Orthop. 2014;145(1):108–15.

Alharbi N, Alharbi S, Cuijpers VMJI, Osman RB, Wismeijer D. Three-dimensional evaluation of marginal and internal fit of 3Dprinted interim restorations fabricated on different finish line designs. J Prosthodont Res 2017.

Yue J, Zhao P, Gerasimov JY, van de Lagemaat M, Grotenhuis A, Rustema-Abbing M, et al. 3D-Printable Antimicrobial Composite Resins. Adv Funct Mater. 2015;25(43):6756–67

Rasperini, G.; Pilipchuk, S.; Flanagan, C.; Park, C.; Pagni, G.; Hollister, S.; Giannobile, W.V. 3D-printed bioresorbable scaffold for periodontal repair. J. Dent. Res. 2015, 94, 153S–157S.

Tarnow, D.P.; Magner, A.W.; Fletcher, P. The effect of the distance from the contact point to the crest of bone on the presence or absence of the interproximal dental papilla. J. Periodontol. 1992, 63, 995–996.

Yin, J.; Liu, D.; Huang, Y.; Wu, L.; Tang, X. CAD/CAM techniques help in the rebuilding of ideal marginal gingiva contours of anterior maxillary teeth: A case report. J. Am. Dent. Assoc. 2017, 148, 834–839.

J. M. Albandar, L. J. Brown, and H. Loe, “Clinical features of ¨ early-onset periodontitis,” The Journal of the American Dental Association, vol. 128, no. 10, pp. 1393–1399, 1997.

The American Academy of Periodontology, “Diabetes and periodontal diseases,” Journal of Periodontology, vol. 70, no. 8, pp. 935–949, 1999.

K. S. Kornman and P. B. Robertson, “Clinical and microbiological evaluation of therapy for juvenile periodontitis,” Journal of Periodontology, vol.

, no. 8, pp. 443–446, 1985.

Vulicevic Z, Beloica M, Kosanovic D, Radovic I, Juloski J, Ivanovic D. Prosthetics in Paediatric Dentistry. Balk J Dent Med. 2017 Jul; 21(2):78-82.

Haskins DR. Pediatric dental rehabilitation procedures in the OR. AORN J. 1996 Oct;64(4):573-9.

Korchagina V. [Achievment of maximum dental health of children by the introduction of modern technologies.] [Disertation]. Moscow (RU): Moscow State university of Medicine and Dentistry; 2008. 277 p.

Teixeira Marques NC, Gurgel CV, Fernandes AP, Lima MC, Machado MA, Soares S, et al. Prosthetic rehabilitation in children: an alternative clinical technique. Case Rep Dent. 2013; 2013:512951.

Tumen E, Hamamci N, Deger Y, Tuen D, Agackiran E. Direct composite resin application, and

prosthetic management in a patient with hypohidric ectodermal dysplasia: a case report. J Int Dent Med Res. 2009; 2(1): 19-24.

Muzio L, Carlie F, Scotti C. Prosthetic rehabilitation of a child affected from anhydrotic ectodermal dysplasia: a case report. J Contemp Dent Pract. 2005; 6(3): 120-126.

Murthy JV, Vaze R. Prosthetic management of an ectodermal dysplasia: a case report. PJSR. 2010 Jul; 3(2):37-40

Parisotto TM, Souza-e-Silva CM, Steiner-Oliveira C, Nobre-dosSantos M, GaviaoMBD. Prosthetic rehabilitation in a four-year-old child with severe early childhood caries: A case report. J Contemp Dent Pract. 2009; 10(2): 090-097

Mapagar V, Naik S, Jadhvar RG, Raurale A. Complete denture prosthe es in an 8-year-old child with hypohidric ectodermal dysplasia. J Pediatr Dent. 2014 Jul;2(2):74-77.

Tarjan I, Gabris K, Rozsa N. Early prosthetic treatment of patients with ectodermal dysplasia: A clinical report. J Prosthet Dent. 2005; 93(5): 419-24.

Shashibhushan K, Viswanathan R, Sathyajith Naik N, Reddy S. Hypohidrotic Ectodermal Dysplasia with total anodontia: a

case report. J Clin Exp Dent. 2011; 3(Suppl 1):352-5.

Nomura S, Hasegawa S, Noda T, Ishioka K. Longitudinal study of jaw growth and prosthetic management in a patient with ectodermal dysplasia and anodontia. Int J Pediatr Dent. 1993; 3(1): 29-38

Paul ST, Tandon S, Kiran M. Prosthetic rehabilitation of a child with induced anodontia. J Clin Pediatr Dent. 1995; 20(1):5-8.

Cronin RJ, Jr, Oesterle LJ, Ranly DM. Mandibular implants and the growing patient. International Journal of Oral and Maxillofacial Implants. 1994;9:55–62

Brahim JS. Dental Implants in children. Oral Maxillofacial Surgery.Dental clinics of North America. 2005;17(4):375-81.

Dalal, N.; Ammoun, R.; Abdulmajeed, A.A.; Deeb, G.R.; Bencharit, S. Intaglio surface dimension and guide tube deviations of implant surgical guides influenced by printing layer thickness and angulation setting. J. Prosthodont. 2020, 29, 161–165.

Nesic, D.; Schaefer, B.M.; Sun, Y.; Saulacic, N.; Sailer, I. 3D Printing approach in dentistry: The future for personalized oral soft tissue regeneration. J. Clin. Med. 2020, 9, 2238.

Höhne, C.; Schmitter, M. 3D printed teeth for the preclinical education of dental students. J. Dent. Educ. 2019, 83, 1100–1106

Kristina Killgrove (2015) How 3D Printed Bones Are Revolutionizing Forensics And Bioarchaeology.

Thali MJ, Braun M, Markwalder TH, Brueschweiler W, Zollinger U, et al. (2003) Bite mark documentation and analysis: the forensic 3D/CAD supported photogrammetry approach. Forensic science international 135(2): 115-121.

Rothwell BR (1995) Bite marks in forensic dentistry: A review of legal, scientific issues. J Am Dent Assoc 126(2): 2230-232

Van der Velden A, Spiessens M, Willems G (2006) Bite mark analysis and comparison using image perception technology. Journal of Forensic Odontostomatology 24(1): 14-17.

Eugene Liscio, P Eng (2013) Forensic Uses of 3D Printing.

Sarah J Trenfield, Atheer Awad, Christine M Madla, Grace B Hatton, Jack Firth, Alvaro Goyanes, Simon Gaisford & Abdul W Basit (2019): Shaping the future: recent advances of 3D printing in drug delivery and healthcare, Expert Opinion on Drug Delivery.

Mironov V, Boland T, Trusk T et al (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161.

Wlodarczyk-Biegun MK, del Campo A (2017) 3D bioprinting of structural proteins. Biomaterials 134:180–201.

Groll J, Burdick JA, Cho DW et al (2019) A defnition of bioinks and their distinction from biomaterial inks. Biofabrication.

Kessler, A.; Hickel, R.; Reymus, M. 3D printing in dentistry—State of the art. Oper. Dent. 2020, 45, 30–40.

Dawood, A.; Marti Marti, B.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529.

Abduo, J.; Elseyoufi, M. Accuracy of intraoral scanners: A systematic review of influencing factors. Eur. J. Prosthodont. Restor. Dent. 2018, 26, 101–121. S

Favaretto, M.; Shaw, D.; De Clercq, E.; Joda, T.; Elger, B.S. Big data and digitalization in dentistry: A systematic review of the ethical issues. Int. J. Environ. Res. Public Health 2020, 17, 2495.

Zhizhou Zhang, Kahraman G. Demir & Grace X. Gu (2019): Developments in 4D-printing: a review on current smart materials, technologies, and

applications, International Journal of Smart and Nano Materials.





DOI: https://www.doi.org/10.53766/AcBio/

Se encuentra actualmente indizada en:

tanaman herbal berkhasiat obat  

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.