Enfoque integral en el manejo de la hipertensión arterial basado en la gestión de riesgos

Luis Dulcey, Juan Theran, Valentina Cabrera, Raimondo Caltagironne, Edgar Blanco, María Ciliberti

Resumen


DOI: https://doi.org/10.53766/AcBio/2023.13.26.16

En 2022, se publicaron 217 manuscritos excelentes en Hypertension Research. Los equipos editoriales aprecian enormemente la contribución de los autores al progreso de la investigación sobre la hipertensión. Aquí, nuestros miembros editoriales han resumido doce temas del trabajo publicado y discutido temas actuales en profundidad. Esperamos que disfrute de nuestra función especial, "Actualización sobre la investigación de la hipertensión en 2022".

Recibido: 14/07/2023
Aceptado: 25/08/2023


Palabras clave


Investigación sobre hipertensión; actualizada; 2022

Texto completo:

PDF

Referencias


Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73:411–8. doi: 10.1253/circj.CJ-08-1102. (PubMed)(CrossRef) (Google Scholar)

Maruhashi T, Kihara Y, Higashi Y. Assessment of endothelium-independent vasodilation: from methodology to clinical perspectives. J Hypertens. 2018;36:1460– 7. doi: 10.1097/HJH.0000000000001750. (PubMed) (CrossRef) (Google Scholar)

Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data metaanalysis. Hypertension. 2017;69:1045–52. doi: 10.1161/HYPERTENSIONAHA.117.090 97. (PubMed) (CrossRef) (Google

Scholar)

Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB., Sr Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365:213–21. doi: 10.1056/NEJMoa1012592. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Tanaka A, Tomiyama H, Maruhashi T, Matsuzawa Y, Miyoshi T, Kabutoya T, et al. Physiological diagnostic criteria for vascular failure. Hypertension.

;72:1060–71. doi: 10.1161/HYPERTENSIONAHA.118.115 54. (PubMed) (CrossRef) (Google Scholar)

Ankle Brachial Index C, Fowkes FG, Murray GD, Butcher I, Heald CL, Lee RJ, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300:197–208. doi: 10.1001/jama.300.2.197. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Potier L, Halbron M, Bouilloud F, Dadon M, Le Doeuff J, Ha Van G, et al. Ankle-to-brachial ratio index underestimates the prevalence of peripheral occlusive disease in diabetic patients at high risk for arterial disease. Diabetes Care. 2009;32:e44. doi: 10.2337/dc08-2015. (PubMed) (CrossRef) (Google Scholar)

Maruhashi T, Kajikawa M, Kishimoto S, Hashimoto H, Takaeko Y, Yamaji T, et al. Upstroke time is a useful vascular marker for detecting patients with coronary artery disease among subjects with normal Ankle-Brachial Index. J Am Heart Assoc. 2020;9:e017139. doi: 10.1161/JAHA.120.017139. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Maruhashi T, Matsui S, Yusoff FM, Kishimoto S, Kajikawa M, Higashi Y. Falsely normalized ankle-brachial index despite the presence of lower-extremity peripheral artery disease: two case reports. J Med Case Rep. 2021;15:622. doi: 10.1186/s13256-021-03155-z. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Tsai WC, Lee WH, Chen YC, Liu YH, Chang CT, Hsu PC, et al. Combination of low ankle-brachial index and high anklebrachial index difference for mortality prediction. Hypertens Res. 2021;44:850–7. doi: 10.1038/s41440-021-00636-y. (PubMed) (CrossRef) (Google Scholar)

Sang T, Lv N, Dang A, Cheng N, Zhang W. Brachial-ankle pulse wave velocity and prognosis in patients with therosclerotic cardiovascular disease: a systematic review and meta-analysis. Hypertens Res. 2021;44:1175–85. doi: 10.1038/s41440-021-00678-2. (PubMed) (CrossRef) (Google Scholar)

Harada T, Kajikawa M, Maruhashi T, Kishimoto S, Yamaji T, Han Y, et al. Short stature is associated with low flowmediated vasodilation in Japanese men. Hypertens Res. 2022;45:308–14. doi: 10.1038/s41440-021-00785-0. (PubMed) (CrossRef) (Google Scholar)

Paajanen TA, Oksala NK, Kuukasjarvi P, Karhunen PJ. Short stature is associated with coronary heart disease: a systematic review of the literature and a metaanalysis. Eur Heart J. 2010;31:1802–9. doi: 10.1093/eurheartj/ehq155. (PubMed) (CrossRef) (Google Scholar)

Miyaoka Y, Okada T, Tomiyama H, Morikawa A, Rinno S, Kato M, et al. Structural changes in renal arterioles are closely associated with central

hemodynamic parameters in patients with renal disease. Hypertens Res. 2021;44:1113–21. doi: 10.1038/s41440-021-00656-8. (PubMed) (CrossRef) (Google Scholar)

Yamaji T, Harada T, Hashimoto Y, Nakano Y, Kajikawa M, Yoshimura K, et al. Stair climbing activity and vascular function in patients with hypertension. Hypertens Res. 2021;44:1274–82. doi: 10.1038/s41440-021-00697-z. (PubMed) (CrossRef) (Google Scholar)

Funakoshi S, Satoh A, Maeda T, Kawazoe M, Ishida S, Yoshimura C, et al. Eating before bed and new-onset hypertension in a Japanese population: the Iki city epidemiological study of atherosclerosis and chronic kidney disease. Hypertens Res. 2021;44:1662–7. doi: 10.1038/s41440-021-00727-w. (PubMed) (CrossRef) (Google Scholar)

Anuwatmatee S, Tang S, Wu BJ, Rye KA, Ong KL. Fibroblast growth factor 21 in chronic kidney disease. Clin Chim Acta. 2019;489:196–202. doi: 10.1016/j.cca.2017.11.002. (PubMed) (CrossRef) (Google Scholar)

Kohara M, Masuda T, Shiizaki K, Akimoto T, Watanabe Y, Honma S, et al. Association between circulating fibroblast growth factor 21 and mortality in endstage renal disease. PLoS One. 2017;12:e0178971. doi: 10.1371/journal.pone.0178971. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Matsui M, Kosaki K, Kuro OM, Saito C, Yamagata K, Maeda S. Circulating fibroblast growth factor 21 links hemodynamics with kidney function in middle-aged and older adults: a mediation analysis. Hypertens Res. 2022;45:125–34. doi: 10.1038/s41440-021-00782-3. (PubMed) (CrossRef) (Google Scholar)

Lenihan CR, Busque S, Derby G, Blouch K, Myers BD, Tan JC. The association of predonation hypertension with glomerular function and number in older living kidney donors. J Am Soc Nephrol. 2015;26:1261–7. doi: 10.1681/ASN.2014030304. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Tsuboi N, Sasaki T, Okabayashi Y, Haruhara K, Kanzaki G, Yokoo T. Assessment of nephron number and single-nephron glomerular filtration rate in a clinical setting. Hypertens Res. 2021;44:605–17. doi: 10.1038/s41440-020-00612-y. (PubMed) (CrossRef) (Google Scholar)

Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46. doi: 10.1056/NEJMoa2024816. (PubMed) (CrossRef) (Google Scholar)

Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24. doi: 10.1056/NEJMoa2022190. (PubMed) (CrossRef) (Google Scholar)

Nagasu H, Yano Y, Kanegae H, Heerspink HJL, Nangaku M, Hirakawa Y, et al. Kidney outcomes associated with SGLT2 inhibitors versus other glucoselowering drugs in real-world clinical practice: the Japan chronic kidney disease database. Diabetes Care. 2021;44:2542–51. doi: 10.2337/dc21-1081. (PMC freearticle) (PubMed) (CrossRef) (Google Scholar)

Thomson SC, Vallon V. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. Am J Physiol Ren Physiol. 2021;320:F761–F71. doi: 10.1152/ajprenal.00552.2020. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Kario K, Ferdinand KC, O’Keefe JH. Control of 24-hour blood pressure with SGLT2 inhibitors to prevent cardiovascular disease. Prog Cardiovasc

Dis. 2020;63:249–62. doi: 10.1016/j.pcad.2020.04.003. (PubMed) (CrossRef) (Google Scholar)

Masuda T, Nagata D. Recent advances in the management of secondary hypertension: chronic kidney disease. Hypertens Res. 2020;43:869–75. doi: 10.1038/s41440-020-0491-4. (PubMed) (CrossRef) (Google Scholar)

Kravtsova O, Bohovyk R, Levchenko V, Palygin O, Klemens CA, Rieg T, et al. SGLT2 inhibition effect on salt-induced hypertension, RAAS, and sodium transport in Dahl SS rats. Am J Physiol Renal Physiol. 2022. 10.1152/ajprenal.00053.2022. (PMC free article) (PubMed)

Bohm M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, et al. Empagliflozin improves cardiovascular and renal outcomes in heart failure

irrespective of systolic blood pressure. J Am Coll Cardiol. 2021;78:1337–48. doi: 10.1016/j.jacc.2021.07.049. (PubMed) (CrossRef) (Google Scholar)

Ohara K, Masuda T, Murakami T, Imai T, Yoshizawa H, Nakagawa S, et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on

fluid distribution: A comparison study with furosemide and tolvaptan. Nephrology. 2019;24:904–11. (PubMed) (Google Scholar)

Masuda T, Watanabe Y, Fukuda K, Watanabe M, Onishi A, Ohara K, et al. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. Am J Physiol Ren Physiol. 2018;315:F653–F64. doi: 10.1152/ajprenal.00143.2018. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Ohara K, Masuda T, Morinari M, Okada M, Miki A, Nakagawa S, et al. The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease. Diabetol Metab Syndr. 2020;12:37. doi: 10.1186/s13098-020-00545-z. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, et al. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep. 2020;8:e14360. doi: 10.14814/phy2.14360. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Eickhoff MK, Dekkers CCJ, Kramers BJ, Laverman GD, Frimodt-Moller M, Jorgensen NR, et al. Effects of dapagliflozin on volume status when added to renin-angiotensin system inhibitors. J Clin Med. 2019;8:779. (PMC free article) (PubMed)

Sen T, Scholtes R, Greasley PJ, Cherney D, Dekkers CCJ, Vervloet M, et al. Effects of dapagliflozin on volume status and systemic hemodynamics in patients with ERC without diabetes: results from DAPASALT and DIAMOND. Diabetes Obes Metab. 2022. 10.1111/dom.14729. (PMC free article) (PubMed)

Scholtes RA, Muskiet MHA, van Baar MJB, Hesp AC, Greasley PJ, Karlsson C, et al. Natriuretic effect of two weeks of dapagliflozin treatment in patients with type 2 diabetes and preserved kidney function during standardized sodium intake: results of the DAPASALT trial. Diabetes Care. 2021;44:440–7. doi: 10.2337/dc20-2604. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Zanchi A, Pruijm M, Muller ME, Ghajarzadeh-Wurzner A, Maillard M, Dufour N, et al. Twenty-four hour blood pressure response to empagliflozin and its determinants in normotensive nondiabetic subjects. Front Cardiovasc Med. 2022;9:854230. doi: 10.3389/fcvm.2022.854230. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:1180–93. doi: 10.1111/dom.12572. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Cherney DZ, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, et al. The effect of empagliflozin on arterial stiffness and heart rate variITBlity in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28. doi: 10.1186/1475-2840-13-28. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Nagai M, Forster CY, Dote K, Shimokawa H. Sex hormones in heart failure revisited? Eur J Heart Fail. 2019;21:308–10. doi: 10.1002/ejhf.1408. (PubMed) (CrossRef) (Google Scholar)

Takami T, Hoshide S, Kario K. Differential impact of antihypertensive drugs on cardiovascular remodeling: a review of findings and perspectives for ICFEVIC prevention. Hypertens Res. 2022;45:53–60. doi: 10.1038/s41440-021-00771-6. (PubMed) (CrossRef) (Google Scholar)

Wu Y, Quan C, Yang Y, Liang Z, Jiang W, Li X. Renalase improves pressure overload-induced heart failure in rats by regulating extracellular signal-regulated protein kinase 1/2 signaling. Hypertens Res. 2021;44:481–8. doi: 10.1038/s41440-020-00599-6. (PubMed) (CrossRef) (Google Scholar)

Grabowski K, Herlan L, Witten A, QDRASi F, Eisenreich A, Lindner D, et al. Cpxm2 as a novel candidate for cardiac hypertrophy and failure in hypertension. Hypertens Res. 2022;45:292–307. doi: 10.1038/s41440-021-00826-8. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

McDonagh TA, Metra M, Adamo M, GDRASer RS, Baumbach A, Bohm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. doi: 10.1093/eurheartj/ehab368. (PubMed) (CrossRef) (Google Scholar)

Balint B, Jaremek V, Thorburn V, Whitehead SN, Sposato LA. Left atrial microvascular endothelial dysfunction, myocardial inflammation and fibrosis after selective insular cortex ischemic stroke. Int J Cardiol. 2019;292:148–55. doi: 10.1016/j.ijcard.2019.06.004. (PubMed) (CrossRef) (Google Scholar)

Nagai M, Dote K, Kato M. Left atrial fibrosis after ischemic stroke: How the insular cortex-ganglionated plexi axis interacts? Int J Cardiol. 2019;294:16. doi: 10.1016/j.ijcard.2019.07.029. (PubMed) (CrossRef) (Google Scholar)

Kamel H, Rahman AF, O’Neal WT, Lewis CE, Soliman EZ. Effect of intensive blood pressure lowering on left atrial remodeling in the SPRINT. Hypertens Res. 2021;44:1326–31. doi: 10.1038/s41440-021-00713-2. (PubMed) (CrossRef) (Google Scholar)

Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70. doi: 10.1093/ehjci/jev014. (PubMed) (CrossRef) (Google Scholar)

Airale L, Paini A, Ianniello E, Mancusi C, Moreo A, Vaudo G, et al. Left atrial volume indexed for height(2) is a new sensitive marker for subclinical cardiac organ damage in female hypertensive patients. Hypertens Res. 2021;44:692–9. doi: 10.1038/s41440-021-00614-4. (PubMed) (CrossRef) (Google Scholar)

Inciardi RM, Claggett B, Minamisawa M, Shin SH, Selvaraj S, Goncalves A, et al. Association of left atrial structure and function with heart failure in older adults. J Am Coll Cardiol. 2022;79:1549–61. doi: 10.1016/j.jacc.2022.01.053. (PubMed) (CrossRef) (Google Scholar)

Kario K, Sun N, Chiang FT, Supasyndh O, Baek SH, Inubushi-Molessa A, et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension. 2014;63:698–705. doi: 10.1161/HYPERTENSIONAHA.113.020 02. (PubMed) (CrossRef) (Google Scholar)

Jackson AM, Jhund PS, Anand IS, Dungen HD, Lam CSP, Lefkowitz MP, et al. Sacubitril-valsartan as a treatment for apparent resistant hypertension in patients with heart failure and preserved ejection fraction. Eur Heart J. 2021;42:3741–52. doi: 10.1093/eurheartj/ehab499. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Suzuki K, Claggett B, Minamisawa M, Nochioka K, Mitchell GF, Anand IS, et al. Pulse pressure, prognosis, and influence of sacubitril/valsartan in heart failure with preserved ejection fraction. Hypertension. 2021;77:546–56. doi: 10.1161/HYPERTENSIONAHA.120.162 77. (PubMed) (CrossRef) (Google Scholar)

Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. 24-hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebocontrolled SACRA study. Circulation. 2018. 10.1161/CIRCULATIONAHA.118.0370 76. (PMC free article) (PubMed)

Anker SD, Butler J, Filippatos G,Ferreira JP, Bocchi E, Bohm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385:1451–61. doi: 10.1056/NEJMoa2107038. (PubMed) (CrossRef) (Google Scholar)

Kario K, Williams B. Nocturnal hypertension and heart failure:mechanisms, evidence, and new treatments. Hypertension. 2021;78:564–77. doi: 10.1161/HYPERTENSIONAHA.121.174 40. (PubMed) (CrossRef) (Google Scholar)

Kario K, Williams B. Angiotensin receptor-neprilysin inhibitors for hypertension-hemodynamic effects and relevance to hypertensive heart disease. Hypertens Res. 2022. 10.1038/s41440-022-00923-2. (PubMed)

Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension. 2018;72:24–43. doi: 10.1161/HYPERTENSIONAHA.117.108 03. (PubMed) (CrossRef) (Google Scholar)

Gestational Hypertension and Preeclampsia. ACOG practice bulletin, number 222. Obstet Gynecol. 2020;135:e237–e60. doi: 10.1097/AOG.0000000000003891. (PubMed) (CrossRef) (Google Scholar)

American College of O, Gynecologists’ Committee on Practice BO. ACOG Practice Bulletin No. 203: chronic hypertension in pregnancy. Obstet Gynecol. 2019;133:e26–e50. doi: 10.1097/AOG.0000000000003020. (PubMed) (CrossRef) (Google Scholar)

Suzuki H, Takagi K, Matsubara K, Mito A, Kawasaki K, Nanjo S, et al. Maternal and perinatal outcomes according to blood pressure levels for

prehypertension: A review and metaanalysis. Hypertens Res Pregnancy. 2022. 10.14390/jsshp.HRP2021-018.

North RA, McCowan LM, Dekker GA,Poston L, Chan EH, Stewart AW, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. BMJ. 2011;342:d1875. doi: 10.1136/bmj.d1875. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Zhang J, Klebanoff MA, Roberts JM. Prediction of adverse outcomes by common definitions of hypertension in pregnancy. Obstet Gynecol. 2001;97:261–7. (PubMed) (Google Scholar)

Ohkuchi A, Masuyama H, Yamamoto T, Kikuchi T, Taguchi N, Wolf C, et al. Economic evaluation of the sFlt-1/PlGF ratio for the short-term prediction of preeclampsia in a Japanese cohort of the PROGNOSIS Asia study. Hypertens Res. 2021;44:822–9. doi: 10.1038/s41440-021-00624-2. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Ohkuchi A, Saito S, Yamamoto T, Minakami H, Masuyama H, Kumasawa K, et al. Short-term prediction of preeclampsia using the sFlt-1/PlGF ratio: a subanalysis of pregnant Japanese women from the PROGNOSIS Asia study. Hypertens Res. 2021;44:813–21. doi: 10.1038/s41440-021-00629-x. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Salazar ARM, Espeche WG, Leiva Sisnieguez CE, Minetto J, Balbin E, Soria A, et al. Nocturnal hypertension and risk of developing early-onset preeclampsia in high-risk pregnancies. Hypertens Res. 2021;44:1633–40. doi: 10.1038/s41440-021-00740-z. (PubMed) (CrossRef) (Google Scholar)

Ueda A, Hasegawa M, Matsumura N, Sato H, Kosaka K, ITBko K, et al. Lower systolic blood pressure levels in early pregnancy are associated with a decreased risk of early-onset superimposed preeclampsia in women with chronic hypertension: a multicenter retrospective study. Hypertens Res. 2022;45:135–45. doi: 10.1038/s41440-021-00763-6. (PubMed) (CrossRef) (Google Scholar)

Tita AT, Szychowski JM, Boggess K, Dugoff L, Sibai B, Lawrence K, et al. Treatment for mild chronic hypertension during pregnancy. N Engl J Med. 2022;386:1781–92. doi: 10.1056/NEJMoa2201295. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Cho L, Davis M, Elgendy I, Epps K, Lindley KJ, Mehta PK, et al. Summary of updated recommendations for primary prevention of cardiovascular disease in women: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75:2602–18. doi: 10.1016/j.jacc.2020.03.060. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Mendoza M, Garcia-Ruiz I, Maiz N, Rodo C, Garcia-Manau P, Serrano B, et al. Pre-eclampsia-like syndrome induced by severe COVID-19: a prospective observational study. BJOG. 2020;127:1374–80. doi: 10.1111/1471-0528.16339. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Wu J, Deng W, Li S, Yang X. Advances in research on ACE2 as a receptor for 2019-nCoV. Cell Mol Life Sci. 2021;78:531–44. doi: 10.1007/s00018-020-03611-x. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Giardini V, Carrer A, Casati M, Contro E, Vergani P, Gambacorti-Passerini C. Increased sFLT-1/PlGF ratio in COVID-19: a novel link to angiotensin II-mediated endothelial dysfunction. Am J Hematol. 2020;95:E188–E91. doi: 10.1002/ajh.25882. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Kallioinen N, Hill A, Horswill MS, Ward HE, Watson MO. Sources of inaccuracy in the measurement of adult patients’ resting blood pressure in clinical settings: a systematic review. J Hypertens. 2017;35:421–41. doi: 10.1097/HJH.0000000000001197. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Kario K. Management of hypertension in the digital era. Hypertension, 2020;76:640–50. doi: 10.1161/HYPERTENSIONAHA.120.147 42. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Parati G, Stergiou GS, Bilo G, Kollias A, Pengo M, Ochoa JE, et al. Home blood pressure monitoring: methodology, clinical relevance and practical application: a 2021 position paper by the Working Group on Blood Pressure Monitoring and Cardiovascular VariITBlity of the European Society of Hypertension. J Hypertens. 2021;39:1742–67. doi: 10.1097/HJH.0000000000002922. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Kario K, Tomitani N, Morimoto T, Kanegae H, Lacy P, Williams B. Relationship between blood pressure repeatedly measured by a wrist-cuff

oscillometric wearable blood pressure monitoring device and left ventricular mass index in working hypertensive patients. Hypertens Res. 2022;45:.87–96. doi: 10.1038/s41440-021-00758-3. (PubMed) (CrossRef) (Google Scholar)

Roerecke M, Kaczorowski J, Myers MG. Comparing automated office blood pressure readings with other methods of blood pressure measurement for identifying patients with possible hypertension. JAMA Intern Med. 2019;179:351. doi: 10.1001/jamainternmed.2018.6551. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Lee EKP, Zhu M, Chan DCC, Yip BHK, McManus R, Wong SYS. Comparative accuracies of automated and manual office blood pressure

measurements in a Chinese population. Hypertens Res. 2022;45:324–32. doi: 10.1038/s41440-021-00779-y. (PubMed) (CrossRef) (Google Scholar)

Shimbo D, Artinian NT, Basile JN, Krakoff LR, Margolis KL, Rakotz MK, et al. Self-measured blood pressure monitoring at home: a joint policy

statement from the American Heart Association and American Medical Association. Circulation. 2020;142:e42–e63. doi: 10.1161/CIR.000.0000000000803. (PubMed) (CrossRef) (Google Scholar)

Cohen JB, Lotito MJ, Trivedi UK, Denker MG, Cohen DL, Townsend RR. Cardiovascular events and mortality in white coat hypertension: a systematic review and meta-analysis. Ann Intern Med. 2019;170:853–62. doi: 10.7326/M19-0223. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Bobrie G, Clerson P, Menard J, Postel-Vinay N, Chatellier G, Plouin PF. Masked hypertension: a systematic review. J Hypertens. 2008;26:1715–25. doi: 10.1097/HJH.0b013e3282fbcedf. (PubMed) (CrossRef) (Google Scholar)

Uhlig K, Patel K, Ip S, Kitsios GD, Balk EM. Self-measured blood pressure monitoring in the management of hypertension: a systematic review and meta-analysis. Ann Intern Med. 2013;159:185–94. doi: 10.7326/0003-4819-159-3-201308060-00008. (PubMed)(CrossRef) (Google Scholar)

Zhang D, Huang QF, Li Y, Wang JG. A randomized controlled trial on home blood pressure monitoring and quality of care in stage 2 and 3 hypertension. Hypertens Res. 2021;44:533–40. doi: 10.1038/s41440-020-00602-0. (PubMed) (CrossRef) (Google Scholar)

Hoshide S, Kanegae H, Kario K. Nighttime home blood pressure as a mediator of N-terminal pro-brain natriuretic peptide in cardiovascular events. Hypertens Res. 2021;44:1138–46. doi: 10.1038/s41440-021-00667-5. (PubMed) (CrossRef) (Google Scholar)

Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. Twentyfour- hour blood pressure–lowering effect of a sodium-glucose cotransporter .2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension. Circulation. 2019;139:2089–97. doi: 10.1161/CIRCULATIONAHA.118.037076. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Kario K. The sacubitril/valsartan, a first-in-class, angiotensin receptor neprilysin inhibitor (ARNI): potential uses in hypertension, heart failure, and beyond. Current Cardiol Rep. 2018;20:5. (PubMed)

Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–62. doi: 10.1016/S0140-6736(12)62167-9. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Gupta A, Perdomo S, Billinger S, Beddhu S, Burns J, Gronseth G. Treatment of hypertension reduces cognitive decline in older adults: a systematic review and meta-analysis. BMJ Open. 2020;10:e038971. doi: 10.1136/bmjopen-2020-038971. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98. doi: 10.1056/NEJMoa0801369. (PubMed) (CrossRef) (Google Scholar)

Group SMIftSR. Williamson JD, Pajewski NM, Auchus AP, Bryan RN, Chelune G, et al. Effect of intensive vs standard blood pressure control on

probable dementia: a randomized clinical trial. JAMA. 2019;321:553–61. doi: 10.1001/jama.2018.21442. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Streit S, Poortvliet RKE, Gussekloo J. Lower blood pressure during antihypertensive treatment is associated with higher all-cause mortality and accelerated cognitive decline in the oldestold. Data from the Leiden 85-plus Study. Age Ageing. 2018;47:545–50. doi: 10.1.093/ageing/afy072. (PubMed) (CrossRef) (Google Scholar)

Qin J, He Z, Wu L, Wang W, Lin Q, Lin Y, et al. Prevalence of mild cognitive impairment in patients with hypertension: a systematic review and meta-analysis. Hypertens Res. 2021;44:1251–60. doi: 10.1038/s41440-021-00704-3. (PubMed) (CrossRef) (Google Scholar)

Inoue T, Matsuoka M, Shinjo T, Tamashiro M, Oba K, Kakazu M, et al. Blood pressure, frailty status, and all-cause mortality in elderly hypertensives; The Nambu Cohort Study. Hypertens Res. 2022;45:146–54. doi: 10.1038/s41440-021-00769-0. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Benetos A, Petrovic M, Strandberg T. Hypertension management in older and frail older patients. Circ Res. 2019;124:1045–60. doi: 10.1161/CIRCRESAHA.118.313236. (PubMed) (CrossRef) (Google Scholar)

Ishikawa J, Seino S, Kitamura A, Toba A, Toyoshima K, Tamura Y, et al. The relationship between blood pressure and cognitive function. Int J Cardiol Cardiovasc Risk Prev. 2021;10:200104. doi: 10.1016/j.ijcrp.2021.200104. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Dempsey PC, Larsen RN, Dunstan DW, Owen N, Kingwell BA. Sitting less and moving more: implications for hypertension. Hypertension.

;72:1037–46. doi: 10.1161/HYPERTENSIONAHA.118.111 90. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Sardeli AV, Griffth GJ, Dos Santos M, Ito MSR, Chacon-Mikahil MPT. The effects of exercise training on hypertensive older adults: an umbrella meta-analysis. Hypertens Res. 2021;44:1434–43. doi: 10.1038/s41440-021-00715-0. (PubMed) (CrossRef) (Google Scholar)

Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variITBlity. J Hypertens. 1993;11:1133–7. doi: 10.1097/00004872- 199310000-00019. (PubMed) (CrossRef) (Google Scholar)

Hanazawa T, Asayama K, Watabe D, Hosaka M, Satoh M, Yasui D, et al. Seasonal variation in self-measured home blood pressure among patients. on antihypertensive medications: HOMEDPA study. Hypertens Res. 2017;40:284–90. doi: 10.1038/hr.2016.133. (PubMed) (CrossRef) (Google Scholar)

Hoshide S, Yano Y, Mizuno H, Kanegae H, Kario K. Day-by-day variITBlity of home blood pressure and incident cardiovascular disease in clinical practice: The J-HOP Study (Japan Morning Surge-Home Blood Pressure) Hypertension. 2018;71:177–84. doi: 10.1161/HYPERTENSIONAHA.117.10385. (PubMed) (CrossRef) (Google Scholar)

Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Prognostic value of the variITBlity in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension. 2012;59:212–8. doi: 10.1161/HYPERTENSIONAHA.111.178 657. (PubMed) (CrossRef) (Google Scholar)

Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime blood pressure phenotype and cardiovascular prognosis:

practitioner-based nationwide JAMP study. Circulation. 2020;142:1810–20. doi: 10.1161/CIRCULATIONAHA.120.0497 30. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107:1401–6. doi: 10.1161/01.CIR.0000056521.67546.AA. (PubMed) (CrossRef) (Google Scholar)

Muntner P, Whittle J, Lynch AI, Colantonio LD, Simpson LM, Einhorn PT, et al. Visit-to-visit variITBlity of blood pressure and coronary heart disease, stroke, heart failure, and mortality: a cohort study. Ann Intern Med. 2015;163:329–38. doi: 10.7326/M14-2803. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Narita K, Hoshide S, Kario K. Difference between morning and evening home blood pressure and cardiovascular events: the J-HOP Study (Japan Morning Surge-Home Blood Pressure) Hypertens Res. 2021;44:1597–605. doi: 10.1038/s41440-021-00686-2. (PubMed) (CrossRef) (Google Scholar)

Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variITBlity, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905. doi: 10.1016/S0140-6736(10)60308-X. (PubMed) (CrossRef) (Google Scholar)

de Heus RAA, Tzourio C, Lee EJL, Opozda M, Vincent AD, Anstey KJ, et al. Association between blood pressure variITBlity with dementia and cognitive impairment: a systematic review and metaanalysis. Hypertension. 2021;78:1478–89. doi: 10.1161/HYPERTENSIONAHA.121.177 97. (PMC free article) (PubMed)

(CrossRef) (Google Scholar)

Ishiyama Y, Hoshide S, Kanegae H, Kario K. Increased arterial stiffness amplifies the association between home blood pressure variITBlity and cardiac overload: the J-HOP study. Hypertension. 2020;75:1600–6. doi: 10.1161/HYPERTENSIONAHA.119.142 46. (PubMed) (CrossRef) (Google Scholar)

Kokubo A, Kuwabara M, Ota Y, Tomitani N, Yamashita S, Shiga T, et al. Nocturnal blood pressure surge in seconds is a new determinant of left ventricular mass index. J Clin Hypertens. 2022;24:271–82. doi: 10.1111/jch.14383. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Peters R, Xu Y, Eramudugolla R, Sachdev PS, Cherbuin N, Tully PJ, et al. Diastolic blood pressure variITBlity in later life may be a key risk marker for cognitive decline. Hypertension. 2022;79:1037–44. doi: 10.1161/HYPERTENSIONAHA.121.187 99. (PubMed) (CrossRef) (Google Scholar)

Wang Y, Zhao P, Chu C, Du MF, Zhang XY, Zou T, et al. Associations of long-term visit-to-visit blood pressure variITBlity with subclinical kidney damage and albuminuria in adulthood: a 30-year prospective cohort study. Hypertension. 2022. 10.1161/HYPERTENSIONAHA.121.186 58):101161HYPERTENSIONAHA12118 658. (PMC free article) (PubMed)

Kario K, Chirinos JA, Townsend RR, Weber MA, Scuteri A, Avolio A, et al. Systemic hemodynamic atherothrombotic syndrome (SHATS) - Coupling vascular disease and blood pressure variITBlity: Proposed concept from pulse of Asia. Prog Cardiovasc Dis. 2020;63:22–32. doi: 10.1016/j.pcad.2019.11.002. (PubMed) (CrossRef) (Google Scholar)

Kario K, Tomitani N, Kanegae H, Yasui N, Nishizawa M, Fujiwara T, et al. Development of a new ICT-based multisensor blood pressure monitoring system for use in hemodynamic biomarker-initiated anticipation medicine for cardiovascular disease: the National IMPACT Program Project. Prog Cardiovasc Dis. 2017;60:435–49. doi: 10.1016/j.pcad.2017.10.002. (PubMed) (CrossRef) (Google Scholar)

Huang JF, Zhang DY, Sheng CS, An DW, Li M, Cheng YB, et al. Isolated nocturnal hypertension in relation to host and environmental factors and clock genes. J Clin Hypertens. 2022. In press. 115. Ewen S, Dorr O, Ukena C, Linz D, Cremers B, Laufs U, et al. Blood pressure variITBlity after catheter-based renal sympathetic denervation in patients with resistant hypertension. J Hypertens. 2015;33:2512–8. doi: 10.1097/HJH.0000000000000751. (PubMed) (CrossRef) (Google Scholar)

Hoshide S, Yoshida T, Mizuno H, Aoki H, Tomitani N, Kario K. Association of night-to-night adherence of continuous positive airway pressure with day-to-day morning home blood pressure and its seasonal variation in obstructive sleep apnea. J Am Heart Assoc. 2022;11:e024865. doi:

1161/JAHA.121.024865. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Narita K, Hoshide S, Kario K. Seasonal variation in blood pressure: current evidence and recommendations for hypertension management. Hypertens Res. 2021;44:1363–72. doi: 10.1038/s41440-021-00732-z. (PubMed) (CrossRef) (Google Scholar)

Umishio W, Ikaga T, Kario K, Fujino Y, Hoshi T, Ando S, et al. Cross-sectional analysis of the relationship between home blood pressure and indoor temperature in winter: a nationwide smart wellness housing survey in Japan. Hypertension. 2019;74:756–66. doi: 10.1161/HYPERTENSIONAHA.119.12914. (PubMed) (CrossRef) (Google Scholar)

Marx N, Davies MJ, Grant PJ, Mathieu C, Petrie JR, Cosentino F, et al. Guideline recommendations and the positioning of newer drugs in type 2

diabetes care. Lancet Diabetes Endocrinol. 2021;9:46–52. doi: 10.1016/S2213-8587(20)30343-0. (PubMed) (CrossRef) (Google Scholar)

Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, American Diabetes Association Professional Practice Committee et al. 9.

Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45:S125–S43. doi: 10.2337/dc22-S009. (PubMed) (CrossRef) (Google Scholar)

Tanaka A, Node K. Hypertension in diabetes care: emerging roles of recent hypoglycemic agents. Hypertens Res. 2021;44:897–905. doi: 10.1038/s41440-021-00665-7. (PubMed) (CrossRef) (Google Scholar)

Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of

Hypertension (JSH 2019) Hypertens Res. 2019;42:1235–481. doi: 10.1038/s41440-019-0284-9. (PubMed) (CrossRef) (Google Scholar)

Bangalore S, Kumar S, Lobach I, Messerli FH. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation.

;123:2799–810. doi: 10.1161/CIRCULATIONAHA.110.0163 37. (PubMed) (CrossRef) (Google Scholar)

Reboldi G, Gentile G, Angeli F, Ambrosio G, Mancia G, Verdecchia P. Effects of intensive blood pressure reduction on myocardial infarction and

stroke in diabetes: a meta-analysis in 73,913 patients. J Hypertens. 2011;29:1253–69. doi: 10.1097/HJH.0b013e3283469976. (PubMed) (CrossRef) (Google Scholar)

Ueki K, Sasako T, Okazaki Y, Kato M, Okahata S, Katsuyama H, et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (JDOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:951–64. doi:

1016/S2213-8587(17)30327-3. (PubMed) (CrossRef) (Google Scholar)

Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, prediabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255–323. doi: 10.1093/eurheartj/ehz486. (PubMed) (CrossRef) (Google Scholar)

Itoh H, Komuro I, Takeuchi M, Akasaka T, Daida H, Egashira Y, et al. Intensive treat-to-target statin therapy in high-risk japanese patients with

hypercholesterolemia and diabetic retinopathy: report of a randomized study. Diabetes Care. 2018;41:1275–84. doi: 10.2337/dc17-2224. (PubMed) (CrossRef) (Google Scholar)

Shinohara K, Ikeda S, Enzan N, Matsushima S, Tohyama T, Funakoshi K, et al. Efficacy of intensive lipid-lowering therapy with statins stratified by blood pressure levels in patients with type 2 diabetes mellitus and retinopathy: Insight from the EMPATHY study. Hypertens Res. 2021;44:1606–16. doi:

1038/s41440-021-00734-x. (PubMed) (CrossRef) (Google Scholar)

Node K, Kishi T, Tanaka A, Itoh H, Rakugi H, Ohya Y, et al. The Japanese Society of Hypertension-Digest of plan for the future. Hypertens Res. 2018;41:989– 90. doi: 10.1038/s41440-018-0111-8. (PubMed) (CrossRef) (Google Scholar)

Tanaka M. Improving obesity and blood pressure. Hypertens Res. 2020;43:79–89. doi: 10.1038/s41440-019-0348-x. (PubMed) (CrossRef) (Google Scholar)

Haze T, Hatakeyama M, Komiya S, Kawano R, Ohki Y, Suzuki S, et al. Association of the ratio of visceral-tosubcutaneous fat volume with renal

function among patients with primary aldosteronism. Hypertens Res. 2021;44:1341–51. doi: 10.1038/s41440-021-00719-w. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Murai N, Saito N, Nii S, Nishikawa Y, Suzuki A, Kodama E, et al. Postloading insulinemia is independently associated with arterial stiffness in young Japanese persons. Hypertens Res. 2021;44:1515–23. doi: 10.1038/s41440-021-00749-4. (PMC free article) (PubMed) (CrossRef)(Google Scholar)

Burchfiel CM, Sharp DS, Curb JD, Rodriguez BL, Abbott RD, Arakaki R, et al. Hyperinsulinemia and cardiovascular disease in elderly men: the Honolulu Heart Program. Arterioscler Thromb Vasc Biol. 1998;18:450–7. doi: 10.1161/01.ATV.18.3.450. (PubMed) (CrossRef) (Google Scholar)

Packer M. Differential Pathophysiological Mechanisms in Heart Failure With a Reduced or Preserved Ejection Fraction in Diabetes. JACC Heart

Fail. 2021;9:535–49. doi: 10.1016/j.jchf.2021.05.019. (PubMed) (CrossRef) (Google Scholar)

Tanaka A, Toyoda S, Node K. Vascular functional tests and preemptive medicine. Hypertens Res. 2021;44:117–9. doi: 10.1038/s41440-020-00546-5. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Tanaka A, Node K. Better vascular function tests in cardiovascular care: learning from evidence and providing improved diagnostics to the patient. Hypertens Res. 2022;45:538–40. doi: 10.1038/s41440-021-00841-9. (PubMed) (CrossRef) (Google Scholar)

Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens. 2012;25:514–23. doi: 10.1038/ajh.2011.245. (PubMed) (CrossRef) (Google Scholar)

Kario K, Ito S, Itoh H, Rakugi H, Okuda Y, Yamakawa S. Effect of esaxerenone on nocturnal blood pressure and natriuretic peptide in different dipping phenotypes. Hypertens Res. 2022;45:97– 105. doi: 10.1038/s41440-021-00756-5. (PMC free article) (PubMed) (CrossRef)(Google Scholar)

Yoshida Y, Yoshida R, Shibuta K, Ozeki Y, Okamoto M, Gotoh K, et al. Quality of life of primary aldosteronism patients by mineralocorticoid receptor antagonists. J Endocr Soc. 2021;5:bvab020. doi: 10.1210/jendso/bvab020. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Ito S, Kashihara N, Shikata K, Nangaku M, Wada T, Okuda Y, et al. Esaxerenone (CS-3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN): phase 3 randomized controlled clinical trial. Clin J Am Soc Nephrol. 2020;15:1715–27. doi: 10.2215/CJN.06870520. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl JMed. 2020;383:2219–29. doi: 10.1056/NEJMoa2025845. (PubMed) (CrossRef) (Google Scholar)

Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021;385:2252–63. doi: 10.1056/NEJMoa2110956. (PubMed) (CrossRef) (Google Scholar)

Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022;43:474–84. doi: 10.1093/eurheartj/ehab777. (PMC free

article) (PubMed) (CrossRef) (Google Scholar)

Okazaki-Hada M, Moriya A, Nagao M, Oikawa S, Fukuda I, Sugihara H. Different pathogenesis of glucose intolerance in two subtypes of primary aldosteronism: Aldosterone-producing adenoma and idiopathic hyperaldosteronism. J Diabetes Investig. 2020;11:1511–9. doi: 10.1111/jdi.13312.

(PMC free article) (PubMed) (CrossRef) (Google Scholar)

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. doi: 10.1056/NEJMoa1504720. (PubMed) (CrossRef) (Google Scholar)

Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J

Med. 2019;380:347–57. doi: 10.1056/NEJMoa1812389. (PubMed) (CrossRef) (Google Scholar)

McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced

ejection fraction. N Engl J Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303. (PubMed) (CrossRef) (Google Scholar)

Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone locker, in patients with left ventricular

dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21. doi: 10.1056/NEJMoa030207. (PubMed) (CrossRef) (Google Scholar)

Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21. doi: 10.1056/NEJMoa1009492. (PubMed) (CrossRef) (Google Scholar)

Bouhanick B, Delchier MC, Lagarde S, Boulestreau R, Conil C, Gosse P, et al. Radiofrequency ablation for adenoma in patients with primary aldosteronism and hypertension: ADERADHTA, a pilot study. J Hypertens. 2021;39:759–65. doi: 10.1097/HJH.0000000000002708. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Cano-Valderrama O, Gonzalez-Nieto J, Abad-Cardiel M, Ochagavia S, Runkle I, Mendez JV, et al. Laparoscopic DASenalectomy vs. radiofrequency ablation for the treatment of primary aldosteronism. A single center retrospective cohort analysis adjusted with propensity score. Surg Endosc. 2022;36:1970–8. doi: 10.1007/s00464-021-08481-3. (PubMed) (CrossRef) (Google Scholar)

Guo RQ, Li YM, Li XG. Comparison of the radiofrequency ablation versus laparoscopic DRASenalectomy for aldosterone-producing adenoma: a metaanalysis of perioperative outcomes and safety. Updates Surg. 2021;73:1477–85. doi: 10.1007/s13304-021-01069-5. (PubMed) (CrossRef) (Google Scholar)

Brown JM, Auchus RJ, Honzel B, Luther JM, Yozamp N, Vaidya A. Recalibrating interpretations of aldosterone assays across the physiologic

range: immunoassay and liquid chromatography-tandem mass spectrometry measurements under multiple controlled conditions. J Endocr Soc. 2022;6:bvac049. doi: 10.1210/jendso/bvac049. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Nishikawa T, Satoh F, Takashi Y, Yanase T, Itoh H, Kurihara I, et al. Comparison and commutITBlity study between standardized liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and chemiluminescent enzyme immunoassay for aldosterone measurement in blood. Endocr J. 2022;69:45–54. doi:

1507/endocrj.EJ21-0278. (PubMed) (CrossRef) (Google Scholar)

Ozeki Y, Tanimura Y, Nagai S, Nomura T, Kinoshita M, Shibuta K, et al. Development of a new chemiluminescent enzyme immunoassay using a two-step sandwich method for measuring aldosterone concentrations. Diagnostics. 2021;11:433. (PMC free article) (PubMed)

Teruyama K, Naruse M, Tsuiki M, Kobayashi H. Novel chemiluminescent immunoassay to measure plasma aldosterone and plasma active renin concentrations for the diagnosis of primary aldosteronism. J Hum Hypertens. 2022;36:77–85. doi: 10.1038/s41371-020-00465-5. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Naruse M, Katabami T, Shibata H, Sone M, Takahashi K, Tanabe A, et al. Japan Endocrine Society clinical practice guideline for the diagnosis and management of primary aldosteronism 2021. Endocr J. 2022;69:327–59. doi: 10.1507/endocrj.EJ21-0508. (PubMed) (CrossRef) (Google Scholar)

Ozeki Y, Kinoshita M, Miyamoto S, Yoshida Y, Okamoto M, Gotoh K, et al. Re-assessment of the oral salt loading test using a new chemiluminescent enzyme immunoassay based on a two-step sandwich method to measure 24-hour urine aldosterone excretion. Front Endocrinol. 2022;13:859347. doi:

3389/fendo.2022.859347. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Ochiai-Homma F, Kuribayashi-Okuma E, Tsurutani Y, Ishizawa K, Fujii W, Odajima K, et al. Characterization of pendrin in urinary extracellular vesicles in a rat model of aldosterone excess and in human primary aldosteronism. Hypertens Res. 2021;44:1557–67. doi: 10.1038/s41440-021-00710-5. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Shibata H. Exosomes and exosomal cargo in urinary extracellular vesicles: novel potential biomarkers for mineralocorticoid-receptor-associated hypertension. Hypertens Res. 2021;44:1668–70. doi: 10.1038/s41440-021-00759-2. (PubMed) (CrossRef)(Google Scholar)

Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, et al. Ultrasound renal denervation for hypertension resistant to a triple

medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, singleblind, sham-controlled trial. Lancet. 221;397:2476–86. doi: 10.1016/S0140-6736(21)00788-1. (PubMed) (CrossRef) (Google Scholar)

Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension

(RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–45. doi: 10.1016/S0140-6736(18)31082-1. (PubMed) (CrossRef) (Google Scholar)

Bohm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre,randomised, sham-controlled trial. Lancet. 2020;395:1444–51. doi: 10.1016/S0140-6736(20)30554-7. (PubMed) (CrossRef)(Google Scholar)

Kandzari DE, Bohm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of

antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55. doi: 10.1016/S0140-6736(18)30951-6. (PubMed) (CrossRef) (Google Scholar)

Osborn JW, Foss JD. Renal nerves and long-term control of arterial pressure. Compr Physiol. 2017;7:263–320. doi: 10.1002/cphy.c150047. (PubMed) (CrossRef) (Google Scholar)

Kario K. Essential manual on perfect 24-hour blood pressure management from morning to nocturnal hypertension: up-todate for anticipation medicine. Wiley Publishing Japan: Tokyo, Japan, 2018, p. 1–328 167. Foss JD, Wainford RD, Engeland WC, Fink GD, Osborn JW. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Regul Integr Comp Physiol. 2015;308:R112–22. doi: 10.1152/ajpregu.00427.2014. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Zheng H, Katsurada K, Liu X, Knuepfer MM, Patel KP. Specific afferent renal denervation prevents reduction in neuronal nitric oxide synthase within the paraventricular nucleus in rats with chronic heart failure. Hypertension. 2018;72:667–75. doi: 10.1161/HYPERTENSIONAHA.118.110 71. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Katsurada K, Ogoyama Y, Imai Y, Patel KP, Kario K. Renal denervation based on experimental rationale. Hypertens Res. 2021;44:1385–94. doi:10.1038/s41440-021-00746-7. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: basic and clinical evidence. Hypertens Res. 2022;45:198–209. doi:

1038/s41440-021-00827-7. (PubMed) (CrossRef) (Google Scholar)

Ogoyama Y, Tada K, Abe M, Nanto S, Shibata H, Mukoyama M, et al. Effects of renal denervation on blood pressures in patients with hypertension: a systematic review and meta-analysis of randomized sham-controlled trials. Hypertens Res. 2022;45:210–20. doi: 10.1038/s41440-021-00761-8. (PubMed) (CrossRef) (Google Scholar)

Bohm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M, et al. First report of the Global SYMPLICITY Registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension. 2015;65:766–74. doi: 10.1161/HYPERTENSIONAHA.114.050 10. (PubMed) (CrossRef) (Google

Scholar)

Mahfoud F, Bohm M, Schmieder R, Narkiewicz K, Ewen S, Ruilope L, et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the Global SYMPLICITY Registry. Eur Heart J. 2019;40:3474–82. doi: 10.1093/eurheartj/ehz118. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Kim BK, Bohm M, Mahfoud F, Mancia G, Park S, Hong MK, et al. Renal denervation for treatment of uncontrolled hypertension in an Asian population: results from the Global SYMPLICITY Registry in South Korea (GSR Korea) J Hum Hypertens. 2016;30:315–21. doi: 10.1038/jhh.2015.77. (PubMed) (CrossRef) (Google Scholar)

Mahfoud F, Kandzari DE, Kario K, Townsend RR, Weber MA, Schmieder RE, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTNON MED): a randomised, sham-controlled trial. Lancet. 2022;399:1401–10. doi: 10.1016/S0140-6736(22)00455-X. (PubMed) (CrossRef) (Google Scholar)

Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401. doi: 10.1056/NEJMoa1402670. (PubMed) (CrossRef) (Google Scholar)

Miyajima E, Yamada Y, Yoshida Y, Matsukawa T, Shionoiri H, Tochikubo O, et al. Muscle sympathetic nerve activity in renovascular hypertension and primary aldosteronism. Hypertension. 1991;17:1057–62. doi: 10.1161/01.HYP.17.6.1057. (PubMed) (CrossRef) (Google Scholar)

Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359:1811–21. doi: 10.1056/NEJARMa0800885. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Kuwabara M. Hyperuricemia, cardiovascular disease, and hypertension. Pulse. 2016;3:242–52. doi: 10.1159/000443769. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Johnson RJ, Bakris GL, Borghi C, Chonchol MB, Feldman D, Lanaspa MA, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation. Am J Kidney Dis. 2018;71:851–65. doi:

1053/j.ajkd.2017.12.009. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Lanaspa MA, Andres-Hernando A, Kuwabara M. Uric acid and hypertension. Hypertens Res. 2020;43:832–4. doi: 10.1038/s41440-020-0481-6. (PubMed) (CrossRef) (Google Scholar)

Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, et al.Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med. 2020;382:2493–503. doi: 10.1056/NEJMoa1916624. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al. Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med. 2020;382:2504–13. doi: 10.1056/NEJMoa1915833. (PubMed) (CrossRef) (Google Scholar)

Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al. Febuxostat therapy for patients with stage 3 ERC and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis.2018;72:798–810. doi: 10.1053/j.ajkd.2018.06.028. (PubMed) (CrossRef) (Google Scholar)

Tanaka A, Taguchi I, Teragawa H, Ishizaka N, Kanzaki Y, Tomiyama H, et al. Febuxostat does not delay progression of carotid atherosclerosis in patients with asymptomatic hyperuricemia: a randomized, controlled trial. PLoS Med. 2020;17:e1003095. doi:10.1371/journal.pmed.1003095. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Mackenzie IS, Ford I, Nuki G, Hallas J, Hawkey CJ, Webster J, et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet. 2020;396:1745–57. doi: 10.1016/S0140-6736(20)32234-0. (PubMed) (CrossRef) (Google Scholar)

White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378:1200–10. doi: 10.1056/NEJMoa1710895. (PubMed) (CrossRef) (Google Scholar)

Mori K, Furuhashi M, Tanaka M, Higashiura Y, Koyama M, Hanawa N, et al. Serum uric acid level is associated with an increase in systolic blood pressure over time in female subjects: Linear mixedeffects model analyses. Hypertens Res. 2022;45:344–53. doi: 10.1038/s41440-021-00792-1. (PubMed) (CrossRef)(Google Scholar)

Azegami T, Uchida K, Arima F, Sato Y, Awazu M, Inokuchi M, et al. Association of childhood anthropometric measurements and laboratory parameters with high blood pressure in young adults. Hypertens Res. 2021;44:711–9. doi: 10.1038/s41440-021-00615-3. (PubMed) (CrossRef) (Google Scholar)

Kawasoe S, Kubozono T, Ojima S, Kawabata T, Miyahara H, Tokushige K, et al. J-shaped curve for the association between serum uric acid levels and the prevalence of blood pressure abnormalities. Hypertens Res. 2021;44:1186–93. doi: 10.1038/s41440-021-00691-5. (PubMed) (CrossRef)(Google Scholar)

Kuwabara M, Hisatome I, Niwa K, Bjornstad P, Roncal-Jimenez CA, Andres-Hernando A, et al. The optimal range of serum uric acid for cardiometabolic diseases: a 5-year japanese cohort study. J Clin Med. 2020;9:942. (PMC free article) (PubMed)

Furuhashi M, Higashiura Y, Koyama M, Tanaka M, Murase T, Nakamura T, et al. Independent association of plasma xanthine oxidoreductase activity with hypertension in nondiabetic subjects not using medication. Hypertens Res. 2021;44:1213–20. doi: 10.1038/s41440-021-00679-1. (PubMed) (CrossRef)

(Google Scholar)

Kusunose K, Yoshida H, Tanaka A, Teragawa H, Akasaki Y, Fukumoto Y, et al. Effect of febuxostat on left ventricular diastolic function in patients with asymptomatic hyperuricemia: a sub analysis of the PRIZE Study. Hypertens Res. 2022;45:106–15. doi: 10.1038/s41440-021-00752-9. (PMC free article) (PubMed) (CrossRef) (Google Scholar)

Chen CW, Wu CH, Liou YS, Kuo KL, Chung CH, Lin YT, et al. Roles of cardiovascular autonomic regulation and sleep patterns in high blood pressure induced by mild cold exposure in rats. Hypertens Res. 2021;44:662–73. doi: 10.1038/s41440-021-00619-z. (PubMed) (CrossRef) (Google Scholar)

Domingos-Souza G, Santos-Almeida FM, Meschiari CA, Ferreira NS, Pereira CA, Pestana-Oliveira N, et al. The ITBlity of baroreflex activation to improve blood pressure and resistance vessel function in spontaneously hypertensive rats is dependent on stimulation parameters. Hypertens Res. 2021;44:932–40. doi: 10.1038/s41440-021-00639-9. (PubMed) (CrossRef) (Google Scholar)

Hirooka Y. Sympathetic activation in hypertension: importance of the central nervous system. Am J Hypertens. 2020;33:914–26. (PubMed) (Google Scholar)

Iyonaga T, Shinohara K, Mastuura T, Hirooka Y, Tsutsui H. Brain perivascular macrophages contribute to the development of hypertension in strokeprone spontaneously hypertensive rats via sympathetic activation. Hypertens Res. 2020;43:99–110. doi: 10.1038/s41440-019-0333-4. (PubMed) (CrossRef)

(Google Scholar)

Kasacka I, Piotrowska Z, Domian N, Acewicz M, Lewandowska A. Canonical Wnt signaling in the kidney in different hypertension models. Hypertens Res. 2021;44:1054–66. doi: 10.1038/s41440-021-00689-z. (PubMed) (CrossRef)(Google Scholar)

Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012;23:1181–9. doi:10.1681/ASN.2011121159. (PMC freearticle) (PubMed) (CrossRef) (Google Scholar)

Matsuyama T, Ohashi N, Aoki T, Ishigaki S, Isobe S, Sato T, et al. Circadian rhythm of the intrarenal renin-angiotensin s stem is caused by glomerular filtration of liver-derived angiotensinogen depending on glomerular capillary pressure in DRASiamycin nephropathy rats. Hypertens Res. 2021;44:618–27. doi: 10.1038/s41440-021-00620-6. (PubMed) (CrossRef) (Google Scholar)

Otsuki T, Fukuda N, Chen L, Ueno T, Otsuki M, Abe M. TWIST1 transcriptionally upregulates complement 3 in glomerular mesangial cells from spontaneously hypertensive rats. Hypertens Res. 2022;45:66–74. doi: 10.1038/s41440-021-00750-x. (PubMed) (CrossRef) (Google Scholar)

Liu C, Li X, Fu J, Chen K, Liao Q, Wang J, et al. Increased AT1 receptor expression mediates vasoconstriction leading to hypertension in Snx1(-/-) mice. Hypertens Res. 2021;44:906–17. doi: 10.1038/s41440-021-00661-x. (PMC free article) (PubMed) (CrossRef) (Google

Scholar)

Liu X, Jiang D, Huang W, Teng P, Zhang H, Wei C, et al. Sirtuin 6 attenuates angiotensin II-induced vascular adventitial aging in rat aortae by suppressing the NFkappaB pathway. Hypertens Res. 2021;44:770–80. doi: 10.1038/s41440-021-00631-3. (PubMed) (CrossRef)(Google Scholar)

Wu H, Lam TYC, Shum TF, Tsai TY, Chiou J. Hypotensive effect of captopril on deoxycorticosterone acetate-salt-induced hpertensive rat is associated with gut microbiota alteration. Hypertens Res. 2022;45:270–82. doi: 10.1038/s41440-021-00796-x. (PMC free article)(PubMed) (CrossRef) (Google Scholar)





DOI: https://www.doi.org/10.53766/AcBio/

Se encuentra actualmente indizada en:

tanaman herbal berkhasiat obat  

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.