Biocompatibilidad, potencial inductor de mineralización y propiedad antibacteriana de materiales de recubrimiento pulpar a base de silicato de calcio: revisión de la literatura
Resumen
DOI: https://doi.org/10.53766/AcBio/2024.14.27.23
Esta revisión de la literatura tiene como objetivo describir la biocompatibilidad, potencial inductor de mineralización y propiedad antibacteriana de materiales de recubrimiento pulpar a base de silicato de calcio. Se realizó una búsqueda sistemática de la literatura para identificar, analizar y resumir la literatura disponible sobre biocompatibilidad, potencial inductor de mineralización y propiedad antibacteriana de materiales de recubrimiento pulpar a base de silicato de calcio, publicada de 2013 a 2023. Se entró que, en condiciones experimentales, todos los materiales de recubrimiento pulpar a base de silicato de calcio muestran una biocompatibilidad aceptable. Biodentine, MTA Angelus, EndoSequence y ProRoot MTA tienen un mejor potencial inductor de mineralización. Por su parte, todos los materiales a base de silicato de calcio tienen actividad antibacterial, pero Biodentine exhibió la tasa de inhibición antibacteriana más alta, seguido de NeoMTA 2, MTA-Angelus y EndoSequence. A pesar de las controversias observadas, la evidencia sugiere que Biodentine exhibe mejores propiedades in vitro y clínicas.
Recibido: 4/09/2023
Aceptado: 17/11/2023
Palabras clave
Texto completo:
PDFReferencias
Holan G, Needleman HL. Premature loss of primary anterior teeth due to trauma-potential short-and long-term sequelae. Dent Traumatol. 2014;30:100–106.
Fuks AB. Current concepts in vital primary pulp therapy. Eur J Paediatr Dent. 2002;3:115-20.
Giraud T, Jeanneau C, Bergmann M, Laurent P, About I. Tricalcium silicate capping materials modulate pulp healing and inflammatory activity in vitro. J Endod. 2018;44(11):1686-91.
Chen L, Suh BI. Cytotoxicity and biocompatibility of resin-free and resin-modified direct pulp capping materials: A state-of-the-art review. Dent Mater J. 2017;36(1):1-7.
Fuks A, Kupietzky A, Guelmann M. Pulp therapy for the primary dentition. En: Pediatric Dentistry. Elsevier; 2019. p. 329-351.e1.
Casamassimo P, Nowak A. The handbook of pediatric dentistry. 5th. American Academy of Pediatric Dentists; 2018.
Brizuela C, Ormeño A, Cabrera C, Cabezas R, Silva CI, Ramírez V, et al. Direct pulp capping with calcium hydroxide, mineral trioxide aggregate, and Biodentine in permanent young teeth with caries: A randomized clinical trial. J Endod. 2017;43(11):1776-80.
Adigüzel M, Ahmetoglu F, Ünverdi Eldeniz A, Gökhan Tekin M, Gögebakan B. Comparison of cytotoxic effects of calcium silicate-based materials on human pulp fibroblasts. J Dent Res Dent Clin Dent Prospects. 2019;13(4):241-6.
Jain AS, Gupta AS, Agarwal R. Comparative evaluation of the antibacterial activity of two Biocompatible materials i.e. Biodentine and MTA when used as a direct pulp capping agent against streptococcus mutans and Enterococcus faecalis. Endodontology. 2018;30(1):66-8.
Kim R, Young Ji, Kim M, Lee K, Lee D, Shin J. An in vitro evaluation of the antibacterial properties of three mineral trioxide aggregate (MTA) against five oral bacteria. Arch Oral Biol. 2015;60(10):1497-502.
Arias-Moliz MT, Farrugia C, Lung CYK, Wismayer PS, Camilleri J. Antimicrobial and biological activity of leachate from light curable pulp capping materials. J Dent. 2017;64:45-51.
Kunert M, Lukomska-Szymanska M. Bio-inductive materials in direct and indirect pulp capping - a review article. Materials (Basel). 2020;13(5).
Kim Y, Lee D, Song D, Kim HM, Kim SY. Biocompatibility and bioactivity of set direct pulp capping materials on human dental pulp stem cells. Materials (Basel). 2020;13(18):1-11.
Halperson E, Moss D, Tickotsky N, Weintraub M, Moskovitz M. Dental pulp therapy for primary teeth in children undergoing cancer therapy. Pediatr Blood Cancer. 1 de diciembre de 2014;61(12):2297-301.
Primosch RE, Glomb TA, Jerrell RG. Primary tooth pulp therapy as taught in predoctoral pediatric dental programs in the United States. Pediatr Dent. 1997;19(2):118-40.
Cameron AC, Wildmer RP. Handbook of pediatric dentistry. 4th. Mosby; 2013.
Zhang S, Yang X, Fan M. BioAggregate and iRoot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. Int Endod J. 1 de octubre de 2013;46(10):923-9.
Tuna D, Ölmez A. Clinical long-term evaluation of MTA as a direct pulp capping material in primary teeth. Int Endod J. 1 de abril de 2008;41(4):273-8.
Dawood AE, Parashos P, Wong RHK, Reynolds EC, Manton DJ. Calcium silicate-based cements: composition, properties, and clinical applications. J Investig Clin Dent. 2017;8(2):1-15.
Zafar K, Jamal S, Ghafoor R. Bio-active cements-mineral trioxide aggregate based calcium silicate materials: A narrative review. J Pak Med Assoc. 2020;70(3):497-504.
American Academy of Pediatric Dentistry. American Academy of Pediatric Dentistry reference manual. American Academy of Pediatric Dentistry; 2009.
Chang SW, Lee SY, Ann HJ, Kum KY, Kim EC. Effects of calcium silicate endodontic cements on biocompatibility and mineralization-inducing potentials in human dental pulp cells. J Endod. 2014;40(8):1194-200.
Chang SW, Bae WJ, Yi JK, Lee S, Lee DW, Kum KY, et al. Odontoblastic differentiation, inflammatory response, and angiogenic potential of 4 calcium silicate-based cements: Micromega MTA, ProRoot MTA, RetroMTA, and Experimental Calcium Silicate Cement. J Endod. 2015;41(9):1524-9.
Hinata G, Yoshiba K, Han L, Edanami N, Yoshiba N, Okiji T, et al. Physical Properties of MTA. J Endod. 2014;44(4):373-7.
da Rosa WLO, Cocco AR, Silva TM d., Mesquita LC, Galarça AD, Silva AF d., et al. Current trends and future perspectives of dental pulp capping materials: A systematic review. J Biomed Mater Res - Part B Appl Biomater. 2018;106(3):1358-68.
Poggio C. Biocompatibility of a new pulp capping cement. Ann Stomatol (Roma). 2014;(2):69-76.
Al-Sherbiny IM, Farid MH, Abu-Seida AM, Motawea IT, Bastawy HA. Chemico-physical and mechanical evaluation of three calcium silicate-based pulp capping materials. Saudi Dent J. 1 de mayo de 2020;33(4):207-14.
Min KS, Park HJ, Lee SK, Park SH, Hong CU, Kim HW, et al. Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase-1 in human dental pulp. J Endod. 1 de junio de 2008;34(6):666-70.
Tawil P, Duggan D, Galicia J. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Compend Contin Educ Dent. 2015;36(4):247-52.
Poggio C, Ceci M, Dagna A, Beltrami R, Colombo M, Chiesa M. In vitro cytotoxicity evaluation of different pulp capping materials: A comparative study. Arh Hig Rada Toksikol. 2015;66(3):181-8.
Berzins DW. Chemical properties of MTA. En: Mineral Trioxide Aggregate: Properties and Clinical Applications. John Wiley & Sons, Inc.; 2014. p. 17-35.
Al-Hezaimi K, Al-Shalan TA, Naghshbandi J, Oglesby S, Simon JHS, Rotstein I. Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. J Endod. 2006;32(11):1053-6.
Rodríguez-Lozano FJ, Lozano A, López-García S, García-Bernal D, Sanz JL, Guerrero-Gironés J, et al. Biomineralization potential and biological properties of a new tantalum oxide (Ta2O5)–containing calcium silicate cement. Clin Oral Investig. 2022;26(2):1427-41.
Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015;13(1):43-60.
Chou R, Helfand M. Challenges in systematic reviews that sssess treatment harms. Ann Intern Med. 2005;142(12):1090-9.
Salehimehr G, Baladi F, Allahbakhshi H. Physical and chemical properties of new endodontic restorative material in comparison with proroot MTA. Biomed Pharmacol J. 2017;10(3):1121-9.
Al-Hiyasat AS, Ahmad DM, Khader YS. The effect of different calcium silicate-based pulp capping materials on tooth discoloration: an in vitro study. BMC Oral Health. 2 de julio de 2021;21(1):1-10.
Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: An observational study. JADA. 2008;139:305-15.
Monteiro Bramante C, Claudia Cardoso Oliveira Demarchi A, Gomes de Moraes I, Bernadineli N, Brandão Garcia R, W Spångberg LS, et al. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(6):999-913.
Giraud T, Jeanneau C, Rombouts C, Bakhtiar H, Laurent P, About I. Pulp capping materials modulate the balance between inflammation and regeneration. Dent Mater. 2019;35(1):24-35.
Elreash AA, Hamama H, Eldars W, Zaen El-Din AM, Xiaoli X. Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health. 2019;19(235):1-10.
Siboni F, Taddei P, Prati C, Gandolfi MG. Properties of NeoMTA plus and MTA plus cements for endodontics. Int Endod J. 1 de enero de 2017;50(Special Issue 2):e83-94.
Emara R, Elhennawy K, Schwendicke F. Effects of calcium silicate cements on dental pulp cells: A systematic review. J Dent. 2018;77(August):18-36.
Michelotto AL da C, Pupo YM, Oshiro STK, Yamamoto ÂTA, Oliveira CC de, Batista A, et al. Cytotoxicity, cytoprotection and morphological analysis of MTA, MTA Repair HP and Biodentine. Res Soc Dev. 2022;11(3):e58211326639.
Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J Endod. 1 de enero de 2018;44(1):126-32.
Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez-Andrade GM, et al. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent Mater. 2021;37(2):311-20.
Ferreira Cláudio M.A., Sassone LM, Gonçalves AS, de Carvalho JJ, Tomás-Catalá CJ, García-Bernal D, et al. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci Rep. 1 de diciembre de 2019;9(1):1-11.
Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J. 2013;46(9):808-14.
Shokouhinejad N, Nekoofar MH, Razmi H, Sajadi S, Davies TE, Saghiri MA, et al. Bioactivity of EndoSequence root repair material and Bioaggregate. Int Endod J. 2012;45(12):1127-34.
Damas BA, Wheater MA, Bringas JS, Hoen MM. Cytotoxicity comparison of mineral trioxide aggregates and endosequence bioceramic root repair materials. J Endod. 2011;37(3):372-5.
Ciasca M, Aminoshariae A, Jin G, Montagnese T, Mickel A. A Comparison of the cytotoxicity and proinflammatory cytokine production of endosequence root repair material and proroot mineral trioxide aggregate in human osteoblast cell culture using reverse-transcriptase polymerase chain reaction. J Endod. 2012;38(4):486-9.
Alqahtani AS, Alsuhaibani NN, Sulimany AM, Bawazir OA. NeoPUTTY® Versus NeoMTA 2® as a Pulpotomy Medicament for Primary Molars: A Randomized Clinical Trial. Pediatr Dent. 2023;45(3):240-4.
Özata MY, Falakaloglu S, Plotino G, Adigüzel Ö. The micro-shear bond strength of new endodontic tricalcium silicate-based putty: An in vitro study. Aust Endod J. 2023;49(1):124-9.
Kim B, Lee YH, Kim IH, Lee KE, Kang CM, Lee HS, et al. Biocompatibility and mineralization potential of new calcium silicate cements. J Dent Sci. 2023;18(3):1189-98.
Siboni F, Taddei P, Prati C, Gandolfi MG. Properties of NeoMTA plus and MTA plus cements for endodontics. Int Endod J. 1 de enero de 2017;50(Special Issue 2):e83-94.
Walsh RM, Woodmansey KF, He J, Svoboda KK, Primus CM, Opperman LA. Histology of NeoMTA Plus and Quick-Set2 in contact with pulp and periradicular tissues in a canine model. J Endod. 1 de septiembre de 2018;44(9):1389-95.
Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Biocompatibility of new pulp-capping materials NeoMTA Plus, MTA Repair HP, and Biodentine on human dental pulp stem cells. J Endod. 1 de enero de 2018;44(1):126-32.
Hakeem J, Shamaa A, Mohammed S. Effect of premixed bioceramic putty and mineral trioxide aggregate on human fibroblasts (an in vitro study). Egypt Dent J. 2023;69.
Sun Q, Meng M, Steed JN, Sidow SJ, Bergeron BE, Niu L na, et al. Manoeuvrability and biocompatibility of endodontic tricalcium silicate-based putties. J Dent. 2021;104(September 2020):103530.
Ipek I, Bü B, Gaç K, Gaç G, Iba E, Glar et al. Evaluation of the shear bond strength of biodentine, pre-mixed neoputty and new resin modified calcium silica cement with bulk fill composites; scanning electron microscopy-energy distributed x-ray spectroscopy analysis title page evaluation of the shear. Authorea Prepr. 2023;1:0-3.
Lozano-Guillén A, López-García S, Rodríguez-Lozano FJ, Sanz JL, Lozano A, Llena C, et al. Comparative cytocompatibility of the new calcium silicate-based cement NeoPutty versus NeoMTA Plus and MTA on human dental pulp cells: an in vitro study. Clin Oral Investig. 2022;26(12):7219-28.
Ipek I, Ünal M, Güner A. Push-out bond strength of Biodentine, MTA repair HP, and a new pre-mixed NeoPutty bioactive cement: scanning electron microscopy energy dispersive X-ray spectroscopy analysis. J Aust Ceram Soc. 2022;58:171-83.
American Academy of Pediatric Dentistry. Pulp therapy for primary and immature permanent teeth: An overview. En: The Reference Manual of Pediatric Dentistry. American Academy of Pediatric Dentistry; 2020. p. 384-92.
Dhar V, Marghalani AA, Crystal YO, Ashok Kumar R, Priyanshi OT, Graham L. Use of Vital Pulp Therapies in Primary Teeth with Deep Caries Lesions. Pediatr Dent. 2017;39(5):146-59.
American Academy of Pediatric Dentistry. Guideline on Pulp Therapy for Primary and Immature Permanent Teeth. En: Handbook of Pediatric Dentistry. American Academy of Pediatric Dentistry; 2013. p. 103-22.
International Association of Paediatric Dentistry. Pulp Therapy for Primary and Young Permanent Teeth: Foundational Articles and Consensus Recommendations, 2021. 2021.
Wellington L, Cocco AR, Fernandes Da Silva A. Systematic review of dental pulp capping materials. J Biomed Mater Res Part B. 2017;00B:1-12.
Mahmoud S, El-Negoly S, Zaen El-Din A, El-Zekrid M, Grawish L, Grawish H, et al. Biodentine versus mineral trioxide aggregate as a direct pulp capping material for human mature permanent teeth – A systematic review. J Conserv Dent. 2018;21(5):466.
Katge FA, Patil DP. Comparative Analysis of 2 Calcium Silicate–based Cements (Biodentine and Mineral Trioxide Aggregate) as Direct Pulp-capping Agent in Young Permanent Molars: A Split Mouth Study. J Endod. 2017;43(4):507-13.
Özyürek T, Demiryürek E. Comparison of the antimicrobial activity of direct pulp-capping materials: Mineral trioxide aggregate-Angelus and Biodentine. J Conserv Dent. 2016;19(6):569-72.
Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, et al. Cytocompatibility and antibacterial properties of capping materials. Sci World J. 2014;2014:1-10.
Kang S. Mineralization-inducing potentials of calcium silicate-based pulp capping materials in human dental pulp cells. Yeungnam Univ J Med. 2020;37(3):217-25.
Khedmat S, Dehghan S, Hadjati J, Masoumi F, Nekoofar MH, Dummer PMH. In vitro cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay. Restor Dent Endod. 2014;39(3):149-54.
Sultana N, Singh M, Nawal RR, Chaudhry S, Yadav S, Mohanty S, et al. Evaluation of Biocompatibility and Osteogenic Potential of Tricalcium Silicate-based Cements Using Human Bone Marrow-derived Mesenchymal Stem Cells. J Endod. 1 de marzo de 2018;44(3):446-51.
Talabani RM, Garib BT, Masaeli R, Zandsalimi K, Ketabat F. Biomineralization of three calcium silicate-based cements after implantation in rat subcutaneous tissue. Restor Dent Endod. 2020;46(1).
Vafaei A, Azima N, Erfanparast L, Løvschall H, Ranjkesh B. Biomaterial investigations in dentistry direct pulp capping of primary molars using a novel fast-setting calcium silicate cement: a randomized clinical trial with 12-month follow-up Direct pulp capping of primary molars using a novel fast-setting calcium. Biomater Investig Dent. 2019;6(1):73–80.
Kundzina R, Stangvaltaite L, Eriksen HM, Kerosuo E. Capping carious exposures in adults: a randomized controlled trial investigating mineral trioxide aggregate versus calcium hydroxide. Int Endod J. 2017;50(10):924-32.
Awawdeh L, Al-Qudah A, Hamouri H, Chakra RJ. Outcomes of vital pulp therapy using mineral trioxide aggregate or Biodentine: A prospective randomized clinical trial. J Endod. 1 de noviembre de 2018;44(11):1603-9.
Banerjee A, Mercadé M. BiodentineTM Clinical Applications in Vital Pulp Therapy in Permanent Teeth. En: About I, editor. BiodentineTM. Springer; 2022. p. 67-86.
Rodríguez-Lozano FJ, López-García S, García-Bernal D, Sanz JL, Lozano A, Pecci-Lloret MP, et al. Cytocompatibility and bioactive properties of the new dual-curing resin-modified calcium silicate-based material for vital pulp therapy. Clin Oral Investig. 27 de febrero de 2021;25(8):5009-24.
Hinata G, Yoshiba K, Han L, Edanami N, Yoshiba N, Okiji T. Bioactivity and biomineralization ability of calcium silicate-based pulp-capping materials after subcutaneous implantation. Int Endod J. 2017;50:e40-51.
Liu M, He L, Wang H, Su W, Li H. Comparison of in vitro biocompatibility and antibacterial activity of two calcium silicate-based materials. J Mater Sci Mater Med. 1 de mayo de 2021;32(5):1-10.
Lim ES, Park YB, Kwon YS, Shon WJ, Lee KW, Min KS. Physical properties and biocompatibility of an injectable calcium-silicate-based root canal sealer: In vitro and in vivo study. BMC Oral Health. 21 de octubre de 2015;15(1):1-7.
Yanwei Y, Li H, Yan D, Hongchen Z, Wei Z, Jinghao B, et al. In vitro antibacterial activity of a novel resin-based pulp capping material containing the quaternary ammonium salt Mae-db and portland cement. PLoS One. 2014;9(11).
Zakerzadeh A, Esnaashari E, Dadfar S. In vitro comparison of cytotoxicity and genotoxicity of three vital pulp capping materials. Iran Endod J. 2017;12(4):419-25.
Koruyucu M, Topcuoglu N, Tuna EB, Ozel S, Gencay K, Kulekci G, et al. An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: An in vitro study. Eur J Dent. 2015;9(2):240-5.
Elshamy FMM, Singh G, Elraih H, Gupta I, Idris FAI. Antibacterial effect of new bioceramic pulp capping material on the main cariogenic bacteria. J Contemp Dent Pract. 2016;17(5):349-53.
Loison-Robert LS, Tassin M, Bonte E, Berbar T, Isaac J, Berdal A, et al. In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis. PLoS One. 1 de enero de 2018;13(1).
Sun J, Wei L, Liu X, Li J, Li B, Wang G, et al. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater. 1 de mayo de 2009;5(4):1284-93.
Eid AA, Niu LN, Primus CM, Opperman LA, Pashley DH, Watanabe I, et al. In vitro osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement. J Endod. septiembre de 2013;39(9):1161-6.
Chen C, Kao C, Ding S, Shie M, Huang T. Expression of the Inflammatory marker cyclooxygenase-2 in dental pulp cells cultured with mineral trioxide aggregate or calcium silicate cements. J Endod. 1 de marzo de 2010;36(3):465-8.
Hung CJ, Kao CT, Chen YJ, Shie MY, Huang TH. Antiosteoclastogenic activity of silicate-based materials antagonizing receptor activator for nuclear factor kappab ligand-induced osteoclast differentiation of murine marcophages. J Endod. 1 de diciembre de 2013;39(12):1557-61.
Tawil PZ, Abe D, Duggan DJ, Galicia JC. MTA: A clinical review. Compend Contin Educ Dent. 2015;36(4):247–264.
Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review-part II: Leakage and biocompatibility investigations. J Endod. 2010;36(2):190-202.
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-part I: Chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16-27.
Gomes AC, Filho JEG, de Oliveira SHP. MTA-induced neutrophil recruitment: a mechanism dependent on IL-1ß, MIP-2, and LTB4. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. septiembre de 2008;106(3):450-6.
Yaltirik M, Ozbas H, Bilgic B, Issever H. Reactions of connective tissue to mineral trioxide aggregate and amalgam. J Endod. 2004;30(2):95-9.
Lee BN, Hong JU, Kim SM, Jang JH, Chang HS, Hwang YC, et al. Anti-inflammatory and osteogenic effects of calcium silicate–based root canal sealers. J Endod. 2019;45(1):73-8.
Lovato KF, Sedgley CM. Antibacterial activity of EndoSequence root repair material and ProRoot MTA against clinical isolates of enterococcus faecalis. J Endod. 2011;37(11):1542-6.
Damlar I, Ozcan E, Yula E, Yalcin M, Celik S. Antimicrobial effects of several calcium silicate-based root-end filling materials. Dent Mater J. 2014;33(4):453-7.
Zayed MM, Hassan RE, Riad MI. Evaluation of the antibacterial efficacy of different bioactive lining and pulp capping agents. Tanta Dent J. 2015;12(2):132-9.
Estrela C, Bammann LL, Estrela CR, Silva RS, Pécora JD. Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent J. 2000;11(1):3-9.
DOI: https://www.doi.org/10.53766/AcBio/Se encuentra actualmente indizada en: | |||
![]() | ![]() | ![]() | ![]() |
![]() ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() |
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.