Las reacciones clic o de abrochadura
Resumen
https://doi.org/10.53766/AVANQUIM/2023.18.01.02
En este trabajo se presenta una visión panorámica de la denominada química clic, mostrándose de manera general los principales tipos de reacciones químicas que se han venido utilizando para desarrollar esta nueva filosofía de trabajo, la cual debería permitir, idealmente, el surgimiento de metodologías más sustentables para la creación de materiales novedosos y sustentables, incluyendo muchos que pueden ser generados en combinación con materiales biológicos a través de reacciones ahora conocidas como reacciones bioortogonales. Igualmente, se presentan algunos ejemplos de aplicaciones específicos de este tipo de reacciones para hacer énfasis en la tremenda importancia que tiene este tema tan actual, lo indica el hecho de que sus creadores han sido reconocidos en el año 2022 con el premio Nobel de Química.
RECIBIDO: 16/04/2023
ACEPTADO: 28/05/2023
Palabras clave
Texto completo:
PDFReferencias
HC Kolb, MG Finn, KB Sharpless. Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40(11), 2004–2021 (2001).
KB Sharpless. Searching for new reactivity (Nobel lecture). Angewandte Chemie International Edition, 41(12), 2024– 2032 (2002).
A Pfenninger. Asymmetric epoxidation of allylic alcohols: the Sharpless epoxidation. Synthesis, 1986(02), 89–116. (1986).
WS Knowles. Asymmetric Hydrogenations (Nobel Lecture). Angewandte Chemie International Edition, 41(12), 1998– 2007 (2002).
R Noyori. Asymmetric catalysis: science and opportunities (Nobel lecture). Angewandte Chemie International Edition, 41(12), 2008–2022 (2002).
https://www.nobelprize.org/prizes/chemistry/2022/press-release/ 5 de octubre de 2022. Consultado: 10/04/2023
CW Tornoe, C Christensen, M Meldal. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. Journal of Organic Chemistry, 67(9), 3057-3064 (2002).
DH Dube, CR Bertozzi. Metabolic oligosaccharide engineering as a tool for glycobiology. Current Opinion in Chemical Biology, 7(5), 616-625 (2003).
SH Lee, OK Park, J Kim, K Shin, CG Pack, K Kim et al. Deep tumor penetration of drug-loaded nanoparticles by click reactionassisted immune cell targeting strategy. Journal of the American Chemical Society, 141(35), 13829-13840 (2019).
WH Binder, R Sachsenhofer. ‘Click’ chemistry in polymer and materials science. Macromolecular Rapid Communications, 28(1), 15-54 (2007).
Y Luo, J Cai, Y Huang, J Luo. Synthesis of Xylan-Click-Quaternized Chitosan via Click Chemistry and Its Application in the Preparation of Nanometal Materials. Molecules, 27(11), 3455, 16 páginas (2022).
Z Zhang, T Li, Y Sheng, L Liu, HC Wu. Enhanced sensitivity in nanopore sensing of cancer biomarkers in human blood via click chemistry. Small, 15(2), 1804078 (2019).
MR Rojas-Pirela, V Rojas, E Pérez-Pérez, C Lárez-Velásquez. Encapsulación de células usando quitosano: Aspectos químicos y aplicaciones. Avances en Química, 16(3), 89-103 (2021).
X Jiang, X Hao, L Jing, G Wu, D Kang, X Liu, P Zhan. Recent applications of click chemistry in drug discovery. Expert Opinion on Drug Discovery, 14(8), 779-789 (2019).
A Suárez. Reacciones de cicloadición 1, 3-dipolares a alquinos catalizadas por cobre. Anales de la Real Sociedad Española de Química, 108(4), 306-313 (2012).
MI Hossain, MIH Khan, SJ Kim, HV Le. Synthesis of 3, 4, 5- trisubstituted isoxazoles in water via a [3+ 2]-cycloaddition of nitrile oxides and 1, 3-diketones, ß-ketoesters, or ß-ketoamides. Beilstein Journal of Organic Chemistry, 18(1), 446-458 (2022).
AR Reddy, G Goverdhan, A Sampath, K Mukkanti, PP Reddy, R Bandichhor. Application of [3+2]-cycloaddition in the synthesis of valdecoxib. Synthetic Communications, 42(5), 639-649 (2012).
F Zhang, JE Moses. Benzyne Click Chemistry with in situ Generated Aromatic Azides. Organic Letters, 11(7), 1587–1590 (2009).
NM Rachel, JN Pelletier. One-pot peptide and protein conjugation: a combination of enzymatic transamidation and click chemistry. Chemical Communications, 52(12), 2541–2544 (2016).
SJ Yan, YJ Liu, YL Chen, L Liu, J Lin. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents. Bioorganic & Medicinal Chemistry Letters, 20(17), 5225–5228 (2010).
DA MacKenzie, AR Sherratt, M Chigrinova, AJ Kell, JP Pezacki. Bioorthogonal labelling of living bacteria using unnatural amino acids containing nitrones and a nitrone derivative of vancomycin. Chem. Commun., 51, 12501–12504 (2015).
S Singh, IS Dubinsky-Davidchik, R Kluger. Strain-promoted azide–alkyne cycloaddition for protein–protein coupling in the formation
of a bis-hemoglobin as a copper-free oxygen carrier. Organic& Biomolecular Chemistry, 14(42), 10011-10017 (2016).
H Ding, B Li, Z Liu, G Liu, S Pu, Y Feng et al. Decoupled pHand thermo-responsive injectable chitosan/PNIPAM hydrogel via thiol-ene click chemistry for potential applications in tissue engineering. Advanced Healthcare Materials, 9(14), 2000454 (2020).
L Gao, X Li, Y Wang, W Zhu, Z Shen, X Li. Injectable thiolepoxy “click” hydrogels. Journal of Polymer Science Part A,
(17), 2651-2655 (2016).
WN Lipscomb, N Sträter. Recent advances in zinc enzymology. Chemical Reviews, 96(7), 2375–2433 (1996).
R Huisgen. 1,3-Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English, 2(10), 565–598 (1963).
VV Rostovtsev, LG Green, VV Fokin, KB Sharpless. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie, 114(14), 2708–2711 (2002).
E Haldón, MC Nicasio, PJ. Pérez. Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Organic & Biomolecular Chemistry, 13(37), 9528–9550 (2015).
KL Dávila, RR Contreras, B Fontal, FJ Torres, L Rincón. Analternative description of aromaticity in metallabenzenes. Journal of the Mexican Chemical Society, 61(2), 97–101 (2017).
M Meldal, CW Tornøe. Cu-catalyzed azide-alkyne Cycloaddition. Chemical Reviews, 108(8), 2952–3015 (2008). 31. EM Sletten, CR Bertozzi. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angewandte Chemie International Edition, 48(38), 6974–6998 (2009).
NJ Agard, JA Prescher, CR Bertozzi. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society, 126(46), 15046–15047 (2004).
JC Jewett, EM, Sletten, CR. Bertozzi. Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones. Journal of the American Chemical Society, 132(11), 3688–3690 (2010).
G Yang, Y Xie, Y Wang, Y Tang, LL Chng, F Jiang, et al. Water-soluble Cu30 nanoclusters as a click chemistry catalyst for living cell labeling via azide-alkyne cycloaddition. Nano Research, 16(1), 1748–1754 (2023).
SL Scinto, DA Bilodeau, R Hincapie, W Lee, SS Nguyen, MXu, et al. Bioorthogonal chemistry. Nature Reviews Methods Primers, 1(1), 30. (2021).
D Wu, K Yang, Z Zhang, Y Feng, L Rao, X Chen, et al. Metalfree bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, 51(4), 1336?1376 (2022)
A Battigelli, B Almeida, A Shukla. Recent advances in bioorthogonal click chemistry for biomedical applications. Bioconjugate Chemistry, 33(2), 263?271 (2022).
M Serafini, T Pirali, GC Tron. Click 1,2,3-triazoles in drug discovery and development: From the flask to the clinic? Advances in Heterocyclic Chemistry, 134, 101?148 (2021).
T Posner. Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe (Aportaciones al conocimiento de los compuestos insaturados. II De la adición de mercaptanos a los hidrocarburos no saturados). Berichte der deutschen chemischen Gesellschaft, 38(1), 646-657 (1905).
R Ramapanicker y P Chauhan. Click chemistry: mechanistic and synthetic perspectives. En: Click Reactions in Organic Synthesis, Editor: S Chandrasekaran, Viley-VCH, pags. 1-24 (2016).
AK Sinha, D Equbal. Thiol-Ene Reaction as a Sharping Stone of Click Chemistry: Recent Advances in Synthetic Aspects and Mechanistic Studies of Anti-Markovnikov-selective Hydrothiolation of Olefins. Asian Journal of Organic Chemistry, 8, 32–47 (2018).
C Lárez-Velásquez. Síntesis, caracterización y degradación térmica de poliuretanos basados en poliésteres insaturados modificados con antraceno. Tesis de Grado, Universidad de los Andes. Mérida, Venezuela (1987).
S Li, L Wang, X Yu, C Wang, Z Wang. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding. Materials Science and Engineering: C, 82, 299-309 (2018).
SC Owen, SA Fisher, RY Tam, CM Nimmo, MS Shoichet. Hyaluronic acid click hydrogels emulate the extracellular matrix, Langmuir, 29, 7393–7400 (2013).
A Badria. Click chemistry: a promising tool for building hierarchical structures. Polymers, 14(19), 4077 (2022)
R Singh, G Singh, N George, G Singh, S Gupta, H Singh, et al. Copper-based metal–organic frameworks (MOFs) as an emerging catalytic framework for click chemistry. Catalysts, 13(1), 130 (2023).
W Yang, J Chen, J Yan, S Liu, Y Yan, Q Zhang. Advance of click chemistry in anion exchange membranes for energy application. Journal of Polymer Science, 60(4), 627-649 (2022).
B J Levandowski, RT Raines. Click chemistry with cyclopentadiene. Chemical Reviews, 121(12), 6777–6801 (2021).
B Albada, JF Keijzer, H Zuilhof, F van Delft. Oxidation-induced “one-pot” click chemistry. Chemical Reviews, 121(12), 7032–7058 (2021).
Y Hayashi. Pot economy and one-pot synthesis. Chemical science, 7(2), 866–880 (2016).
AM Jonker, A Borrmann, ERH van Eck, FL van Delft, DWPM Löwik, JCM van Hest. A fast and activatable cross-linking strategy for hydrogel formation. Advanced Materials, 27(7), 1235–1240 (2014).
M Kugler, M Hadzima, R Dzijak, R Rampmaier, P Srb, L Vrzal, et al. Identification of specific carbonic anhydrase inhibitors via in situ click chemistry, phage-display and synthetic peptide libraries: comparison of the methods and structural study. RSC Medicinal Chemistry, 14, 144?153 (2023).
DI Ugwu, J Conradie. Application of click chemistry in the synthesis of bidentate ligands and their metal complexes. Polyhedron, 235, 116317 (2023).
Y Zhao, Z Chai, Q Zeng, WX Zhang. Overview of 1,5-selective click reaction of azides with alkynes or their synthetic equivalents. Molecules, 28(3), 1400 (2023).
A Garg, D Sarma. Click reaction in micellar media: A green and sustainable approach toward 1,2,3-triazoles synthesis. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. JP Hayton (Ed.). Chapter 4, pp. 85? 112. Amsterdam, Netherlands: Elsevier (2023).
MG Finn, HC Kolb, KB Sharpless. Click chemistry connections for functional discovery. Nature Synthesis, 1(1), 8?10 (2022).
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.