La metformina reduce la expresión de los genes ABCB1 y Bcl-2 en células derivadas de leucemias
Resumen
Las leucemias mieloides afectan diferenciación, supervivencia y muerte celular de la serie mieloide, que ocasiona el acúmulo de células indiferenciadas e hiper longevas en la médula ósea y sangre circulante. La regresión de la enfermedad con los actuales fármacos no es eficiente, por lo que se buscan tratamientos alternos. El presente trabajo evaluó mediante RT-PCR la expresión de los genes ABCB1 y Bcl-2 a distintos tiempos de exposición a metformina, fármaco antidiabético con antecedentes para el tratamiento de cáncer de mama, en dos líneas celulares de leucemia mieloide aguda. Los resultados mostraron que la metformina modificó la expresión de ambos genes disminuyéndola
Recibido: 08/08/2025
Aceptado: 09/12/2025
Palabras clave
Texto completo:
PDFReferencias
Instituto Nacional del Cáncer (NIH). Tratamiento de la leucemia mieloide aguda (PDQ®)–Versión para pacientes. https://www.can cer.gov/espanol/tipos/leucemia/paciente/tratamiento-lma-adultos -pdq
J Stentofi. The Toxicity of Cytarabine. Drug-Safety, 5, 7-27 (1990). https://doi.org/10.2165/00002018-199005010-00003
J Parigger, CM Zwaan, D Reinhardt, GJL Kaspers. Dose-related efficacy and toxicity of gemtuzumab ozogamicin in pediatric acute myeloid leukemia. Expert Rev. Anticancer Ther., 16, 137-146 (2016). https://doi.org/10.1586/14737140.2016.1129903
WJ Baker, GL Royer, RB Weiss. Cytarabine and Neurologic Tox-icity. J. Clin. Oncol., 9, 679-693 (1991). https://doi.org/10. 1200/JCO.1991.9.4.679.
H He, X Wen, H Zheng. Efficacy and safety of venetoclax-based combination therapy for previously untreated acute myeloid leu-kemia: a meta-analysis. Hematology (United Kingdom), 29, 2343604 (2024).https://doi.org/10.1080/16078454.2024.2343604
VM Dilman. Age-associated elevation of hypothalamic, threshold to feedback control, and its role in development, ageine and dis-ease. Lancet, 1, 1211-1219 (1971). https://doi.org/10.1016/S0 140-6736(71)91721-1
VM Dilman, LM Berstein, MN Ostroumova, SN Fedorov, TE Po-roshina, EV Tsyrlina et al. Metabolic immunodepression and met-abolic immunotherapy: an attempt of improvement in immuno-logic response in breast cancer patients by correction of metabolic disturbances. Oncology, 39, 13-19 (1982). https://doi. org/10.1159/000225596
VM Dilman, LM Berstein, TP Yevtushenko, YV Tsyrlina, MN Ostroumova, YuF Bobrov et al. Preliminary evidence on metabolic rehabilitation of cancer patients. Arch. Geschwulstforsch, 58, 175-183 (1988). https://pubmed.ncbi.nlm.nih.gov/3415435/
VN Anisimov, AV Semenchenko, AI Yashin. Insulin and longev-ity: antidiabetic biguanides as geroprotectors. Biogerontology, 4, 297-307 (2003). https://doi.org/10.1023/A:1026299318315
VN Anisimov, IN Alimova, DA Baturin, IG Popovich, MA Zabezhinski, KG Manton et al. The effect of melatonin treatment regimen on mammary adeno-carcinoma development in HER-2/neu transgenic mice. Int. J. Cancer, 103, 300-305 (2003). https://doi.org/10.1002/ijc.10827
VN Anisimov, LM Berstein, PA Egormin, TS Piskunova, IG Po-povich, MA Zabezhinski et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp. Gerontol., 40, 685-693 (2005). https://doi.org/10.1016/j.exger.2005.07.007
B Martin-Castillo, A Vazquez-Martin, C Oliveras-Ferraros, JA Menendez. Metformin and cancer doses, mechanisms and the dandelion and hormetic phenomena. Cell Cycle, 9, 1057-1064 (2010). https://doi.org/10.4161/cc.9.6.10994.
M Zakikhani, R Dowling, IG Fantus, N Sonenberg, M Pollak. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res., 66, 10269-10273 (2006). https://doi.org/10.1158/0008-5472.CAN-06-1500
TE Lamoia, GI Shulman. Cellular and Molecular Mechanisms of Metformin Action. Endocr. Rev., 42, 77-96 (2021). https://doi. org/10.1210/endrev/bnaa023
CO Ramos-Peñafiel, C Martínez-Murillo, A Santoyo-Sánchez, F Jiménez-Ponce, E Rozen-Fuller, J Collazo-Jaloma et al. Metfor-mina adicionada a la quimio-terapia contra la leucemia linfoblás-tica aguda. Rev. Med. Inst. Mex. Seguro Soc., 52, 270-275 (2014). https://www.medigraphic.com/cgi-bin/new/resumen. cgi?IDARTICULO=49666
RS Soderquist, L Crawford, E Liu, M Lu, A Agarwal, GR Anderson et al. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nature Communications, 9, 3513 (2018). https://doi.org/10.1038/s41467-018-05815-z
AS Ebrahim, H Sabbagh, A Liddane, A Raufi, M Kandouz, A Al-Katib. Hematologic malignancies: newer strategies to counter the BCL-2 protein. J. Cancer Res. Clin. Oncol., 142, 2013-2022 (2016). https://doi.org/10.1007/s00432-016-2144-1
KG Chen, BI Sikic. Molecular pathways: regulation and therapeutic implications of multidrug resistance. Clin. Cancer Res., 18, 1863-1869 (2012). https://doi.org/10.1158/1078-0432.CCR-11-1590
S Qian, Z Wei, W Yang, J Huang, Y Yang, J Wang. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol., 12, 985363 (2022). https://doi.org/10.3389/fonc. 2022.985363
GJ Zhang, I Kimijima, A Tsuchiya, R Abe. The role of bcl-2 ex-pression in breast carcinomas (Review). Oncol. Rep., 5, 1211-1216 (1998). https://doi.org/10.3892/or.5.5.1211
YK Choi, KG Park. Metabolic roles of AMPK and metformin in cancer cells. Mol. Cells, 36, 279-287 (2013). https://doi.org/ 10.1007/s10059-013-0169-8
M Jansen, JP Ten Klooster, GJ Offerhaus, H Clevers. LKB1 and AMPK family signaling: The intimate link between cell polarity and energy metabolism. Physiol. Rev., 89, 777-798 (2009). https://doi.org/10.1152/physrev.00026.2008
M Laplante, DM Sabatini. mTOR signaling in growth control and disease. Cell, 149, 274-293 (2012). https://doi.org/10.1016/j.cell. 2012.03.017
YC Kim, KL Guan. MTOR: A pharmacologic target for autoph-agy regulation. Journal of Clinical Investigation, 125, 25-32. (2015). https://doi.org/10.1172/JCI73939
Y Hua, Y Zheng, Y Yao, R Jia, S Ge, A Zhuang. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. J. Transl. Med., 21, 403, (2023). https://doi.org/10.1186/s12967-023-04263-8
PM Jones, AM George. The ABC transporter structure and mech-anism: Perspectives on recent research. Cellular and Molecular Life Sciences, 61, 682-699 (2004). https://doi.org/10. 1007/s00018-003-3336-9
AL Davidson, E Dassa, C Orelle, J Chen. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbi-ology and Molecular Biology Reviews, 72, 317-364 (2008). https://doi.org/10.1128/MMBR.00031-07
I Klein, B Sarkadi, A Väradi. An Inventory of the Human ABC Pro-teins. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1461, 237-262 (1999) https://doi.org/10.1016/S0005-2736(99) 00161-3
K Ueda, C Cardarelli, MM Gottesman, I Pastan. Expression of a Full-Length CDNA for the Human “MDRI” Gene Confers Re-sistance to Colchicine, Doxorubicin, and Vinblastine (P-Glycopro-tein/Actinomycin D/Chemotherapy/Multidrug Resistan-ce/Retro-virus). Proc. Natl. Acad. Sci. USA, 84, 3004-3008 (1987). https://staging.europepmc.org/backend/picrender.fcgi?accid=PM C304789&blobtype=pdf
E Zintzaras. Is there evidence to claim or deny association be-tween variants of the multidrug resistance gene (MDR1 or ABCB1) and inflammatory bowel disease? Inflamm. Bowel Dis., 18, 562-572 (2012). https://doi-org/10.1002/ibd.21728
G Ayaz, B Batar, G Kanigur, M Guven, I Onaran, B Karadag et al. The association of MDR1 C3435T and G2677T/A polymor-phisms with plasma platelet-activating factor levels and coronary artery disease risk in Turkish population. Gene, 527, 301-305, (2013). https://doi.org/10.1016/j.gene.2013.06.046
T Boyer, F Gonzales, A Barthélémy, A Marceau-Renaut, P Pey-rouze, S Guihard et al. Clinical Significance of ABCB1 in Acute Myeloid Leukemia: A Comprehensive Study. Cancers (Basel), 11, 1323 (2019). https://doi.org/10.3390/cancers11091323
J Neumann, D Rose-Sperling, UA Hellmich. Diverse relations be-tween ABC transporters and lipids: An overview. Biochim. Bio-phys Acta Biomembr., 1859, 605-618 (2017). https://doi. org/10.1016/j.bbamem.2016.09.023
AW Jehle, SJ Gardai, S Li, P Linsel-Nitschke, K Morimoto, WJ Janssen et al. ATP-binding cassette transporter A7 enhances phag-ocytosis of apoptotic cells and associated ERK signaling in mac-rophages. Journal of Cell Biology, 174, 547-556 (2006). https://doi.org/10.1083/jcb.200601030
T Aikawa, ML Holm, T Kanekiyo. ABCA7 and pathogenic path-ways of Alzheimer’s disease. Brain Sci., 8, 27 (2018). https:// doi.org/10.3390/brainsci8020027
L Zhu, K Yang, Z Ren, D Yin, Y Zhou. Metformin as anticancer agent and adjuvant in cancer combination therapy: Current pro-gress and future prospect. Transl. Oncol., 44, 101945 (2024). https://doi.org/10.1016/j.tranon.2024.101945
E Amengual-Cladera, PM Morla-Barcelo, A Morán-Costoya, J Sastre-Serra, DG Pons, A Valle et al. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. Biology (Basel), 13, 302 (2024). https://doi.org/10. 3390/biology13050302
P Sharma, S Kumar. Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD). Cellular Oncology, 41, 637-650 (2018). https://doi.org/10.1007/s13402-018-0398-0
IS Grønningsæter, H Reikvam, E Aasebø, S Bartaula-Brevik, TH Tvedt, Ø Bruserud et al. Targeting cellular metabolism in acute myeloid leukemia and the role of patient heterogeneity. Cells, 9, 1155 (2020). https://doi.org/10.3390/cells9051155
I Krastinaite, S Charkavliuk, R Navakauskiene, VV Borutinskaite. Metformin as an Enhancer for the Treatment of Chemoresistant CD34+ Acute Myeloid Leukemia Cells. Genes (Basel), 15, 648 (2024). https://doi.org/10.3390/genes15050648
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
DOI: https://doi.org/10.53766/AVANQUIM
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.