Sesquiterpenos halogenados en algas del género Laurencia: diversidad, biosíntesis y aplicaciones terapéuticas
Resumen
Los sesquiterpenos constituyen una clase diversa de terpenoides de 15 átomos de carbono con relevancia biológica y farmacoló-gica. El objetivo de esta revisión es analizar de manera crítica la clasificación estructural, las rutas biosintéticas y los mecanismos celulares de acción de sesquiterpenos halogenados aislados de algas rojas del género Laurencia. Se integran evidencias experi-mentales que describen la inducción de apoptosis dependiente de p53, la inhibición de angiogénesis mediada por VEGF, la supresión de migración e invasión celular asociada a MMPs e IL-8, así como la alteración del metabolismo energético y el estrés oxidante. En particular, compuestos como el laurinterol muestran perfiles bioactivos consistentes, aunque dependientes del mo-delo experimental. En conjunto, estos hallazgos posicionan a los sesquiterpenos de Laurencia como candidatos relevantes para el desarrollo de estrategias terapéuticas basadas en productos naturales marinos, destacando la necesidad de estudios preclínicos que validen sus mecanismos de acción y seguridad.
Recibido: 01/09/2025
Aceptado: 29/12/2025
Palabras clave
Texto completo:
PDFReferencias
H Bartikova, V Hanusova, L Skalova, M Ambroz, I Bousova. An-tioxidant, pro-oxidant and other biological activities of sesquiter-penes. Current Topics in Medicinal Chemistry, 14, 2478–2494 (2014). https://doi.org/10.2174/1568026614666141203120833
M Jaspars, D De Pascale, JH Andersen, F Reyes, AD Crawford, A Ianora. The marine biodiscovery pipeline and ocean medicines of tomorrow. Journal of the Marine Biological Association of the United Kingdom, 96, 151–158 (2016). https://doi.org/ 10.1017/S0025315415002106
M Barreca, V Spanò, A Montalbano, M Cueto, AR Díaz Marrero, I Deniz, et al. Marine Anticancer Agents: An Overview with a Particular Focus on Their Chemical Classes. Marine Drugs, 18, 619 (2020). https://doi.org/10.3390/md18120619
Comprehensive Marine Natural Products Database. Structural Classification. Disponible en: https://www.cmnpd.org/visualiza-tion Achieved: 25/08/2025
M Harizani, E Ioannou, V Roussis. The Laurencia Paradox: An Endless Source of Chemodiversity. Progress in the Chemistry of Organic Natural Products, 102, 91–252 (2016). https://doi. org/10.1007/978-3-319-33172-0_2
I Arberas-Jiménez, N Nocchi, J Chao-Pellicer, I Sifaoui, AR Soa-res, AR Díaz-Marrero et al. Sesquiterpenos tipo chamigrana de Laurencia dendroidea como compuestos de plomo contra Naegle-ria fowleri. Marine Drugs, 21, 224 (2023). https://doi.org/ 10.3390/md21040224
S García-Davis, K Leal-López, CA Molina-Torres, L Vera-Ca-brera, AR Díaz-Marrero, JJ Fernández et al. Antimycobacterial Activity of Laurinterol and Aplysin from Laurencia johnstonii. Marine Drugs, 18, 287 (2020). https://doi.org/10.3390/md18060 287
I Merfort. Review of the analytical techniques for sesquiterpenes and sesquiterpene lactones. Journal of Chromatography A, 967, 115–130 (2002). https://doi.org/10.1016/s0021-9673(01)01560-6
F Le Bideau, M Kousara, L Chen, L Wei, F Dumas. Tricyclic Ses-quiterpenes from Marine Origin. Chemical Reviews, 117, 6110–6159 (2017). https://doi.org/10.1021/acs.chemrev.6b00502
I Moreno-Gutiérrez, S Berenguel-Gómez, M Muñoz-Dorado, M Álvarez-Corral, I Rodríguez-García. Sesquiterpenes from Brown Algae. Marine Drugs, 23, 210 (2025). https://doi.org/10.3390/ md23050210
DK Ro, EM Paradise, M Ouellet, KJ Fisher, KL Newman, JM Ndungu et al. Production of the antimalarial drug precursor arte-misinic acid in engineered yeast. Nature, 440, 940–943 (2006). https://doi.org/10.1038/nature04640
AJ Robles, J Peng, RM Hartley, B Lee, SL Mooberry. Melampo-dium leucanthum, a source of cytotoxic sesquiterpenes with anti-mitotic activities. Journal of Natural Products, 78, 388–395 (2015). https://doi.org/10.1021/np500768s
RCE Silva, JSD Costa, RO Figueiredo, WN Setzer, JKRD Silva, JGS Maia et al. Monoterpenes and Sesquiterpenes of Essential Oils from Psidium Species and Their Biological Properties. Mol-ecules, 26, 965 (2021). https://doi.org/10.3390/molecules260 40965
S García-Davis, A López-Arencibia, CJ Bethencourt-Estrella, D San Nicolás-Hernández, E Viveros-Valdez, AR Díaz-Marrero et al. Laurequinone, a Lead Compound against Leishmania. Marine Drugs, 21, 333 (2023). https://doi.org/10.3390/md21060333
QB Yang, LF Liang. Spongia Sponges: Unabated Sources of Novel Secondary Metabolites. Marine Drugs, 22, 213 (2024). https://doi.org/10.3390/md22050213
A Koutsaviti, M Kvasnicová, G Gonzalez, T Štenclová, S Agusti, CM Duarte et al. Isolation and Bioactivity Evaluation of Sesquit-erpenes from an Alcyonarian of the Genus Lemnalia from the Saudi Arabian Red Sea. Chemistry & Biodiversity, 21, e202400235 (2024). https://doi.org/10.1002/cbdv.202400235
C Avila. Terpenoids in Marine Heterobranch Molluscs. Marine Drugs, 18, 162 (2020). https://doi.org/10.3390/md18030162
LR De Carvalho, JN Farias, P Riul, MT Fujii. Una descripción general de la distribución global de los diterpenos sintetizados por el complejo de algas rojas Laurencia (Ceramiales, Rhodomela-ceae). Marine Algae Extracts: Processes, Products, and Appli-cations, 14, 245–266 (2015). https://doi.org/10.1002/97835276 79577.ch14
XD Li, FP Miao., K Li, NY Ji. Sesquiterpenes and acetogenins from the marine red alga Laurencia okamurai. Fitoterapia, 83, 518–522 (2012). https://doi.org/10.1016/j.fitote.2011.12.018.
MM Kim, E Mendis, SK Kim. Laurencia okamurai extract con-taining laurinterol induces apoptosis in melanoma cells. Journal of Medicinal Food, 11, 260–266 (2008). https://doi.org/10. 1089/jmf.2007.575
NY Ji, XM Li, K Li, LP Ding, JB Gloer, BG Wang. Diterpenes, sesquiterpenes, and a C15-acetogenin from the marine red alga Laurencia mariannensis. Journal of Natural Products, 70, 1901–1905 (2007). https://doi.org/10.1021/np070378b
JY Chen, CY Huang, YS Lin, TL Hwang, WL Wang, SF Chiou et al. Halogenated Sesquiterpenoids from the Red Alga Laurencia tristicha Collected in Taiwan. Journal of Natural Products, 79, 2315–2323 (2016). https://doi.org/10.1021/acs.jnatprod.6b00452
J Sun, D Shi, M Ma, S Li, S Wang, L Han et al. Sesquiterpenes from the red alga Laurencia tristicha. Journal of Natural Prod-ucts, 68, 915–919 (2005). https://doi.org/10.1021/np050096g
G Topcu, Z Aydogmus, S Imre, AC Gören, JM Pezzuto, JA Cle-ment et al. Brominated sesquiterpenes from the red alga Lauren-cia obtusa. Journal of Natural Products, 66, 1505–1508 (2003). https://doi.org/10.1021/np030176p
JRB Monteiro, RP Rodrigues, AC Mazzuco, R de Cassia Ribeiro Gonçalves, AF Bernardino, RM Kuster et al. In Vitro and In Silico Evaluation of Red Algae Laurencia obtusa Anticancer Activity. Marine Drugs, 21, 318 (2023). https://doi.org/10.3390/ md21060318
TL Biá Ventura, FL da Silva Machado, MH de Araujo, LM de Souza Gestinari, CR Kaiser, F de Assis Esteves et al. Nitric Oxide Production Inhibition and Anti-Mycobacterial Activity of Extracts and Halogenated Sesquiterpenes from the Brazilian Red Alga Laurencia dendroidea J. Agardh. Pharmacognosy Magazine, 11, 611–618 (2015). https://doi.org/10.4103/0973-1296.172972
MA Tammam, MG Daskalaki, N Tsoureas, O Kolliniati, A Mahdy, SC Kampranis et al. Secondary Metabolites with Anti-Inflammatory Activity from Laurencia majuscula Collected in the Red Sea. Marine Drugs, 21, 79 (2023). https://doi.org/10. 3390/md21020079
H Su, DY Shi, J Li, SJ Guo, LL Li, ZH Yuan et al. Sesquiterpenes from Laurencia similis. Molecules, 14, 1889–1897 (2009). https://doi.org/10.3390/molecules14051889
T Kamada, CS Vairappan. Non-halogenated new sesquiterpenes from Bornean Laurencia snackeyi. Natural Product Research, 31, 333–340 (2017). https://doi.org/10.1080/14786419.2016. 1241996
LS De Oliveira, DA Tschoeke, AS de Oliveira, LJ Hill, WC Para-das, LT Salgado et al. New Insights on the terpenome of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta). Marine Drugs, 13, 879–902 (2015). https://doi.org/10.3390/ md13020879
MD Awouafack, P Tane, V Kuete, JN Eloff. 2 - Sesquiterpenes from the Medicinal Plants of Africa. Medicinal Plant Research in Africa, 33–103 (2013). https://doi.org/10.1016/B978-0-12-405927-6.00002-3
J Han, SY Bae, SJ Oh, J Lee, JH Lee, HC Lee et al. Zerumbone suppresses IL-1ß-induced cell migration and invasion by inhibit-ing IL-8 and MMP-3 expression in human triple-negative breast cancer cells. Phytotherapy Research, 28, 1654–1660 (2014). https://doi.org/10.1002/ptr.5178
E al-Adha, AS Alanazi, S Koosha, AA Alrasheedy, F Azam, IM Taban et al. Zerumbone Induces Apoptosis in Breast Cancer Cells by Targeting avß3 Integrin upon Co-Administration with TP5-iRGD Peptide. Molecules (Basel, Switzerland), 24, 2554. (2019) https://doi.org/10.3390/molecules24142554
BA Ferreira, RF Silva, FBR de Moura, CT Narduchi, SR Deconte, P Sartorelli et al. a-Zingiberene, a sesquiterpene from essential oil from leaves of Casearia sylvestris, suppresses inflammatory angi-ogenesis and stimulates collagen deposition in subcutaneous im-plants in mice. Natural Product Research, 36, 5858–5862 (2022). https://doi.org/10.1080/14786419.2021.2019729
Y Lee. Cytotoxicity Evaluation of Essential Oil and its Compo-nent from Zingiber officinale Roscoe. Toxicological Research, 32, 225–230. (2016). https://doi.org/10.5487/TR.2016.32.3.225
BA Ferreira, FBR Moura, IS Cassimiro, VS Londero, MM Gon-çalves, JHG Lago et al. Costic acid, a sesquiterpene from Nectan-dra barbellata (Lauraceae), attenuates sponge implant-induced in-flammation, angiogenesis and collagen deposition in vivo. Fitot-erapia, 175, 105939 (2024). https://doi.org/10.1016/j.fitote. 2024.105939
M Kladi, H Xenaki, C Vagias, P Papazafiri, V Roussis. New cy-totoxic sesquiterpenes from the red algae Laurencia obtusa and Laurencia microcladia. Tetrahedron, 62, 182–189 (2006). https://doi.org/10.1016/j.tet.2005.09.113
S García-Davis, E Viveros-Valdez, AR Díaz-Marrero, JJ Fer-nández, D Valencia-Mercado, O Esquivel-Hernández et al. Efecto antitumoral del laurinterol en cultivo 3D de explantes de cáncer de mama. Drogas Marinas, 17, 201 (2019). https://doi.org/10. 3390/md17040201
J Elia, K Petit, JM Huvelin, M Tannoury, M Diab-Assaf, D Car-bonnelle et al. Acetone Fraction of the Red Marine Alga Lauren-cia papillosa Reduces the Expression of Bcl-2 Anti-apoptotic Marker and Flotillin-2 Lipid Raft Marker in MCF-7 Breast Cancer Cells. Iranian Journal of Pharmaceutical Research, 19, 321–330 (2020). https://doi.org/10.22037/ijpr.2020.1100933
I Arberas-Jiménez, S García-Davis, A Rizo-Liendo, I Sifaoui, EQ Morales, JE Piñero et al. Cyclolauranes as plausible chemical scaffold against Naegleria fowleri. Biomedicine & Pharma-cotherapy, 149, 112816 (2022). https://doi.org/10.1016/j.biopha. 2022.112816
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
DOI: https://doi.org/10.53766/AVANQUIM
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.