Fármacos de uso común y disbiosis de la microbiota intestinal

Jorly Mejia-Montilla, Nadia Reyna-Villasmil, Alfonso R. Bravo-Henríquez, Andreina Fernández-Ramírez, Eduardo Reyna-Villasmil

Resumen


La microbiota intestinal es un ecosistema complejo importante en la interacción del huésped con el entorno. En los adultos es relativamente estable comparado con la composición de microorganismos durante la infancia y representa un papel clave en el mantenimiento de la salud. Su composición cuantitativa y cualitativa está afectada por numerosos factores externos que afectan al huésped. Existe evidencia que indica que la disbiosis de la microbiota intestinal puede estar relacionada con en la patogenia de enfermedades cardiovasculares, autoinmunes, gastrointestinales y neoplásicas. La interacción entre los microorganismos intestinales y fármacos de uso común es compleja y bidireccional y la composición de la microbiota intestinal pueden estar influenciada por medicamentos. El problema del uso excesivo y abuso de algunos fármacos, como agentes antimicrobianos, inhibidores de la bomba de protones, antiinflamatorios no esteroides, en ocasiones en formas diferentes a las indicaciones habituales son sustancias comúnmente disponibles sin receta y existe evidencia de efectos potenciales sobre la disbiosis y sus posibles consecuencias clínicas. El objetivo de la revisión fue evaluar la interacción de fármacos de uso común y disbiosis de la microbiota intestinal.

Recibido: 25 de enero de 2021. Aceptado: 25 deAbril de 2022.

Palabras clave


Microbiota intestinal; Disbiosis; Fármacos.

Texto completo:

PDF

Referencias


Marietta E, Mangalam AK, Taneja V, Murray JA. Intestinal Dysbiosis in and Enteral Bacterial Therapies for Systemic Autoimmune Diseases. Front Immunol. 2020; 11: 573079. [PubMed] [Google Scholar]

Sirisinha S. The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac J Allergy Immunol. 2016; 34: 249-264. [PubMed] [Google Scholar]

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444: 1027-31. [PubMed] [Google Scholar]

Goodman B, Gardner H. The microbiome and cancer. J Pathol. 2018;244: 667-676. [PubMed] [Google Scholar]

Fritsch J, Abreu MT. The Microbiota and the Immune Response: What Is the Chicken and What Is the Egg? Gastrointest Endosc Clin N Am. 2019; 29: 381-93. [PubMed] [Google Scholar]

Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, Sunagawa S, Coelho LP, Schrotz-King P, Vogtmann E, Habermann N, Niméus E, Thomas AM, Manghi P, Gandini S, Serrano D, Mizutani S, Shiroma H, Shiba S, Shibata T, Yachida S, Yamada T, Waldron L, Naccarati A, Segata N, Sinha R, Ulrich CM, Brenner H, Arumugam M, Bork P, Zeller G. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25: 679-89. [PubMed] [Google Scholar]

Zhou W, Sailani MR, Contrepois K, Zhou Y, Ahadi S, Leopold SR, Zhang MJ, Rao V, Avina M, Mishra T, Johnson J, Lee-McMullen B, Chen S, Metwally AA, Tran TDB, Nguyen H, Zhou X, Albright B, Hong BY, Petersen L, Bautista E, Hanson B, Chen L, Spakowicz D, Bahmani A, Salins D, Leopold B, Ashland M, Dagan-Rosenfeld O, Rego S, Limcaoco P, Colbert E, Allister C, Perelman D, Craig C, Wei E, Chaib H, Hornburg D, Dunn J, Liang L, Rose SMS, Kukurba K, Piening B, Rost H, Tse D, McLaughlin T, Sodergren E, Weinstock GM, Snyder M. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. 2019; 569: 663-671. [PubMed] [Google Scholar]

Del Rey NL, Blesa J. Parkinson's disease: Oh my gut! Mov Disord. 2017;32: 396. [PubMed] [Google Scholar]

Gual-Grau A, Guirro M, Mayneris-Perxachs J, Arola L, Boqué N. Impact of different hypercaloric diets on obesity features in rats: a metagenomics and metabolomics integrative approach. J NutrBiochem. 2019; 71: 122-31. [PubMed] [Google Scholar]

Xu H, Zhao H, Fan D, Liu M, Cao J, Xia Y, Ju D, Xiao C, Guan Q. Interactions between Gut Microbiota and Immunomodulatory Cells in Rheumatoid Arthritis. Mediators Inflamm. 2020; 2020: 1430605. [PubMed] [Google Scholar]

Jackson MA, Verdi S, Maxan ME, Shin CM, Zierer J, Bowyer RCE, Martin T, Williams FMK, Menni C, Bell JT, Spector TD, Steves CJ. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun. 2018;9: 2655. [PubMed] [Google Scholar]

Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020; 69: 1510-1519. [PubMed] [Google Scholar]

Garcia-Mazcorro JF, Noratto G, Remes-Troche JM. The Effect of Gluten-Free Diet on Health and the Gut Microbiota Cannot Be Extrapolated from One Population to Others. Nutrients. 2018; 10: 1421. [PubMed] [Google Scholar]

Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De Sutter L, Lima-Mendez G, D'hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. Population-level analysis of gut microbiome variation. Science. 2016; 352: 560-4. [PubMed] [Google Scholar]

Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, Mujagic Z, Jonkers DMAE, Masclee AAM, Fu J, Kurilshikov A, Wijmenga C, Zhernakova A, Weersma RK. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020; 11: 362. [PubMed] [Google Scholar]

Tian J, Liu H, Guo H, Han W, Ding H, Chen T. Application of antibiotics before 3 years of age increases the risk of childhood overweight and obesity. Exp Ther Med. 2021; 21: 56. [PubMed]

Chen LW, Xu J, Soh SE, Aris IM, Tint MT, Gluckman PD, Tan KH, Shek LP, Chong YS, Yap F, Godfrey KM, Gilbert JA, Karnani N, Lee YS. Implication of gut microbiota in the association between infant antibiotic exposure and childhood obesity and adiposity accumulation. Int J Obes (Lond). 2020; 44: 1508-20. [PubMed] [Google Scholar]

Azad MB, Moossavi S, Owora A, Sepehri S. Early-Life Antibiotic Exposure, Gut Microbiota Development, and Predisposition to Obesity. Nestle Nutr Inst Workshop Ser. 2017; 88: 67-79. [PubMed] [Google Scholar]

Sulis G, Adam P, Nafade V, Gore G, Daniels B, Daftary A, Das J, Gandra S, Pai M. Antibiotic prescription practices in primary care in low- and middle-income countries: A systematic review and meta-analysis. PLoS Med. 2020; 17: e1003139. [PubMed] [Google Scholar]

Nagpal R, Yamashiro Y. Gut Microbiota Composition in Healthy Japanese Infants and Young Adults Born by C-Section. Ann NutrMetab. 2018; 73 Suppl 3: 4-11. [PubMed] [Google Scholar]

Nogacka A, Salazar N, Suárez M, Milani C, Arboleya S, Solís G, Fernández N, Alaez L, Hernández-Barranco AM, de Los Reyes-Gavilán CG, Ventura M, Gueimonde M. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017; 5: 93. [PubMed] [Google Scholar]

Gerber JS, Bryan M, Ross RK, Daymont C, Parks EP, Localio AR, Grundmeier RW, Stallings VA, Zaoutis TE. Antibiotic Exposure During the First 6 Months of Life and Weight Gain During Childhood. JAMA. 2016; 315: 1258-65. [PubMed] [Google Scholar]

Zhang M, Differding MK, Benjamin-Neelon SE, Østbye T, Hoyo C, Mueller NT. Association of prenatal antibiotics with measures of infant adiposity and the gut microbiome. Ann Clin Microbiol Antimicrob. 2019; 18: 18. [PubMed] [Google Scholar]

Rasmussen SH, Shrestha S, Bjerregaard LG, Ängquist LH, Baker JL, Jess T, Allin KH. Antibiotic exposure in early life and childhood overweight and obesity: A systematic review and meta-analysis. Diabetes ObesMetab. 2018; 20: 1508-14. [PubMed] [Google Scholar]

Gorris A, Bustamante G, Mayer KA, Kinaciyan T, Zlabinger GJ. Cesarean section and risk of allergies in Ecuadorian children: A cross-sectional study. ImmunInflamm Dis. 2020; 8: 763-73. [PubMed] [Google Scholar]

Navarro-Tapia E, Sebastiani G, Sailer S, Toledano LA, Serra-Delgado M, García-Algar Ó, Andreu-Fernández V. Probiotic Supplementation During the Perinatal and Infant Period: Effects on Gut Dysbiosis and Disease. Nutrients. 2020; 12: 2243. [PubMed] [Google Scholar]

Adler-Neal AL, Cline A, Frantz T, Strowd L, Feldman SR, Taylor S. Complementary and Integrative Therapies for Childhood Atopic Dermatitis. Children (Basel). 2019; 6: 121. [PubMed] [Google Scholar]

Pitter G, Ludvigsson JF, Romor P, Zanier L, Zanotti R, Simonato L, Canova C. Antibiotic exposure in the first year of life and later treated asthma, a population based birth cohort study of 143,000 children. Eur J Epidemiol. 2016; 31: 85-94. [PubMed] [Google Scholar]

Han YY, Forno E, Badellino HA, Celedón JC. Antibiotic Use in Early Life, Rural Residence, and Allergic Diseases in Argentinean Children. J Allergy Clin Immunol Pract. 2017; 5: 1112-18.e2. [PubMed] [Google Scholar]

Jalanka J, Cheng J, Hiippala K, Ritari J, Salojärvi J, Ruuska T, Kalliomäki M, Satokari R. Colonic Mucosal Microbiota and Association of Bacterial Taxa with the Expression of Host Antimicrobial Peptides in Pediatric Ulcerative Colitis. Int J Mol Sci. 2020; 21: 6044. [PubMed] [Google Scholar]

Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, Tremblay A, Ouwehand AC. Criteria to Qualify Microorganisms as "Probiotic" in Foods and Dietary Supplements. Front Microbiol. 2020; 11: 1662. [PubMed] [Google Scholar]

Douillard FP, de Vos WM. Biotechnology of health-promoting bacteria. Biotechnol Adv. 2019;37: 107369. [Google Scholar]

Yu LY, Sun LN, Zhang XH, Li YQ, Yu L, Yuan ZQ, Meng L, Zhang HW, Wang YQ. A Review of the Novel Application and Potential Adverse Effects of Proton Pump Inhibitors. Adv Ther. 2017; 34: 1070-86. [PubMed] [Google Scholar]

Zhou P, Zhou Y, Liu B, Jin Z, Zhuang X, Dai W, Yang Z, Feng X, Zhou Q, Liu Y, Xu X, Zhang L. Perinatal Antibiotic Exposure Affects the Transmission between Maternal and Neonatal Microbiota and Is Associated with Early-Onset Sepsis. mSphere. 2020; 5: e00984-19. [PubMed] [Google Scholar]

Chou YS, Jiang HJ, Chen CH, Ho PS, Lee TC. Proton pump inhibitor use and risk of hip fracture in patients with type 2 diabetes. Sci Rep. 2020;10: 14081. [PubMed] [Google Scholar]

Wauters L, Talley NJ, Walker MM, Tack J, Vanuytsel T. Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut. 2020; 69: 591-600. [PubMed] [Google Scholar]

Fujiwara Y, Watanabe T, Muraki M, Yamagami H, Tanigawa T, Shiba M, Tominaga K, Arakawa T. Association between chronic use of proton pump inhibitors and small- intestinal bacterial overgrowth assessed using lactulose hydrogen breath tests. Hepatogastroenterology. 2015; 62: 268-72. [PubMed] [Google Scholar]

Dial S, Delaney JA, Barkun AN, Suissa S. Use of gastric acid-suppressive agents and the risk of community-acquired Clostridium difficile-associated disease. JAMA. 2005; 294: 2989-95. [PubMed] [Google Scholar]

Biswal S. Proton pump inhibitors and risk for Clostridium difficile associated diarrhea. Biomed J. 2014; 37: 178-83. [PubMed] [Google Scholar]

Willems RPJ, van Dijk K, Ket JCF, Vandenbroucke-Grauls CMJE. Evaluation of the Association Between Gastric Acid Suppression and Risk of Intestinal Colonization With Multidrug-Resistant Microorganisms: A Systematic Review and Meta-analysis. JAMA Intern Med. 2020; 180: 561-71. [PubMed] [Google Scholar]

Stevens V, Dumyati G, Brown J, Wijngaarden E. Differential risk of Clostridium difficile infection with proton pump inhibitor use by level of antibiotic exposure. Pharmacoepidemiol Drug Saf. 2011; 20: 1035-42. [PubMed] [Google Scholar]

Sivamaruthi BS, Kesika P, Suganthy N, Chaiyasut C. A Review on Role of Microbiome in Obesity and Antiobesity Properties of Probiotic Supplements. Biomed Res Int. 2019; 2019: 3291367. [PubMed] [Google Scholar]

Otani K, Tanigawa T, Watanabe T, Shimada S, Nadatani Y, Nagami Y, Tanaka F, Kamata N, Yamagami H, Shiba M, Tominaga K, Fujiwara Y, Arakawa T. Microbiota Plays a Key Role in Non-Steroidal Anti-Inflammatory Drug-Induced Small Intestinal Damage. Digestion. 2017; 95: 22-8. [PubMed] [Google Scholar]

Maseda D, Ricciotti E. NSAID-Gut Microbiota Interactions. Front Pharmacol. 2020; 11: 1153. doi: 10.3389/fphar.2020.01153. [PubMed] [Google Scholar]

Satoh H, Amagase K, Takeuchi K. Mucosal protective agents prevent exacerbation of NSAID-induced small intestinal lesions caused by antisecretory drugs in rats. J Pharmacol Exp Ther. 2014; 348: 227-35. [PubMed] [Google Scholar]

Rodriguez J, Hiel S, Delzenne NM. Metformin: old friend, new ways of action-implication of the gut microbiome? CurrOpin Clin NutrMetab Care. 2018; 21: 294-301. [PubMed] [Google Scholar]

Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B, Zhang S, Yun C, Lian G, Zhang X, Zhang H, Bisson WH, Shi J, Gao X, Ge P, Liu C, Krausz KW, Nichols RG, Cai J, Rimal B, Patterson AD, Wang X, Gonzalez FJ, Jiang C. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018; 24: 1919-29. [PubMed] [Google Scholar]

Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J; MetaHIT consortium, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015; 528: 262-6. [PubMed] [Google Scholar]

Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23: 850-8. [PubMed] [Google Scholar]

Hadizadeh F, Walter S, Belheouane M, Bonfiglio F, Heinsen FA, Andreasson A, Agreus L, Engstrand L, Baines JF, Rafter J, Franke A, D'Amato M. Stool frequency is associated with gut microbiota composition. Gut. 2017; 66: 559-60. [PubMed] [Google Scholar]

Vandeputte D, Kathagen G, D'hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, Vermeire S, Falony G, Raes J. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017; 551: 507-11. [PubMed] [Google Scholar]

Tropini C, Moss EL, Merrill BD, Ng KM, Higginbottom SK, Casavant EP, Gonzalez CG, Fremin B, Bouley DM, Elias JE, Bhatt AS, Huang KC, Sonnenburg JL. Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota. Cell. 2018; 173: 1742-1754.e17. [PubMed] [Google Scholar]

Nagata N, Tohya M, Fukuda S, Suda W, Nishijima S, Takeuchi F, Ohsugi M, Tsujimoto T, Nakamura T, Shimomura A, Yanagisawa N, Hisada Y, Watanabe K, Imbe K, Akiyama J, Mizokami M, Miyoshi-Akiyama T, Uemura N, Hattori M. Effects of bowel preparation on the human gut microbiome and metabolome. Sci Rep. 2019; 9: 4042. [PubMed] [Google Scholar]




Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.