Evaluación comparativa de la resistencia a la fractura de una estructura de FPD frontal flexible anterior CAD/CAM fabricada con zirconia y peek: un estudio in vitro
Resumen
Este estudio tuvo como objetivo evaluar comparativamente la resistencia a la fractura del diseño asistido por computadora, la fabricación asistida por computadora, la zirconia anterior de 3 unidades y el marco de PEEK. Se obtuvo un modelo de diente preparado prefabricado para FPD anterior de 3 unidades en relación con 21, 22 y 23 y se escaneó utilizando 3 Shape, escáner intraoral Trios, y se fresó un troquel metálico utilizando una aleación de metal base. El troquel metálico se escaneó utilizando el mismo escáner intraoral (3 shape, Trios), y se fabricaron cinco estructuras de zirconia CAD/CAM de 3 unidades (Grupo A) y cinco estructuras de PEEK de 3 unidades (Grupo B) y se cementaron al troquel metálico utilizando cemento de resina. Se utilizó una máquina de prueba universal para la evaluación de la resistencia a la fractura. La carga se aplicó a la muestra a una velocidad de cruceta de 0,5 mm/min hasta que se produjo una falla catastrófica. Esto se repitió para todas las estructuras de FPD, y el valor medio de la resistencia a la fractura se registró y se analizó estadísticamente mediante una prueba t de Student no pareada. La resistencia media a la fractura del zirconio CAD/CAM es de 1862 N + 18,8149 N, y la del PEEK CAD/CAM es de 2563 N + 19,7231 N. La resistencia a la fractura de la estructura de PEEK CAD/CAM fue superior a la de la estructura de zirconio CAD/CAM. Los valores fueron estadísticamente significativos al 1 % (p < 0,01). Dado que el PEEK mostró una resistencia a la fractura significativamente superior a la del zirconio, podría ser un material alternativo, sin metal y estético, para la sustitución de dientes anteriores faltantes.
Palabras clave
Texto completo:
PDF (English)Referencias
Agustín-Panadero R, Román-Rodríguez JL, Ferreiroa A, Solá-Ruíz MF, Fons-Font A. Zirconia in fixed prosthesis. A literature review. Journal of clinical and experimental dentistry. 2014; 6: e66. [PubMed] [Google Scholar]
Daou EE. The zirconia ceramic: strengths and weaknesses. The open dentistry journal. 2014; 8: 33. [PubMed] [Google Scholar]
Lægreid SJ, Nergård JM. Fracture resistance of monolithic zirconia crowns: The importance of the compressive strength of the dental cements used
(Master's thesis, UiT Norges arktiske universitet). [Google Scholar]
Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016; 60: 12-9. [PubMed] [Google Scholar]
Sinha N, Gupta N, Reddy KM, Shastry YM. Versatility of PEEK as a fixed partial denture framework. J Indian Prosthodont Soc. 2017; 17: 80-3. [PubMed] [Google Scholar]
Vaishnavi K, Vidyashree Nandini V. Fabrication of peek crowns with improved esthetics–A.
Nazari V, Ghodsi S, Alikhasi M, Sahebi M, Shamshiri AR. Fracture Strength of ThreeUnit Implant Supported Fixed Partial Dentures with Excessive Crown Height Fabricated from Different Materials. J Dent (Tehran). 2016; 13: 400-6. [PubMed] [Google Scholar]
Aslam A, Khan DA, Hassan SH, Ahmed B. Ceramic Fracture in Metal-Ceramic Restorations: The Aetiology. Dent Update. 2017; 44: 448-50, 453-4.
[PubMed] [Google Scholar]
Ozcan M. Fracture reasons in ceramicfused-to-metal restorations. J Oral Rehabil. 2003; 30: 265-9. [PubMed] [Google Scholar]
Eliasson A, Arnelund CF, Johansson A. A clinical evaluation of cobalt-chromium metal-ceramic fixed partial dentures and crowns: A three- to seven-year retrospective study. J Prosthet Dent. 2007; 98: 6-16. [PubMed] [Google Scholar]
Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications in fixed prosthodontics. J Prosthet Dent. 2003; 90: 31-41. [PubMed] [Google Scholar]
Pelaez J, Cogolludo PG, Serrano B, Serrano JF, Suarez MJ. A four-year prospective clinical evaluation of zirconia and metal-ceramic posterior
fixed dental prostheses. Int J Prosthodont. 2012; 25: 451-8. [PubMed] [Google Scholar]
Sailer I, Gottnerb J, Kanelb S, Hammerle CH. Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental
prostheses: a 3-year follow-up. Int J Prosthodont. 2009; 22: 553. [PubMed] [Google Scholar]
Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. The Journal of prosthetic dentistry. 1999; 81: 652-61. [PubMed] [Google Scholar]
Bakke M. Bite force and occlusion. InSeminars in orthodontics 2006 Jun 1 (Vol. 12, No. 2, pp. 120-126). WB Saunders.
Mansour RM, Reynik RJ. In vivo occlusal forces and moments: I. Forces measured in terminal hinge position and associated moments. J Dent Res.
; 54: 114-20. [PubMed] [Google Scholar]
Hellsing E, Hagberg C. Changes in maximum bite force related to extension of the head. Eur J Orthod. 1990; 12: 148-53. [PubMed] [Google
Scholar]
Helkimo E, Carlsson GE, Helkimo M. Bite force and state of dentition. Acta Odontol Scand. 1977; 35: 297-303. [PubMed] [Google Scholar]
Hagberg C, Agerberg G, Hagberg M. Regression analysis of electromyographic activity of masticatory muscles versus bite force. Scand J Dent Res. 1985; 93: 396-402. [PubMed] [Google Scholar]
Kikuchi M, Korioth TW, Hannam AG. The association among occlusal contacts, clenching effort, and bite force distribution in man. J Dent Res.
; 76: 1316-25. [PubMed] [Google Scholar]
Manoharan PS, Rajasimhan NV, Livingstone D, Arivarasan NK. Comparative analysis of fatigue resistance, fracture strength, and fracture
patterns in ceramic crowns with zirconia and direct metal laser-sintered cores-An in vitro study. J Advan Clin Res Insights. 2018; 5: 92. [Google Scholar]
Att W, Stamouli K, Gerds T, Strub JR. Fracture resistance of different zirconium dioxide three-unit all-ceramic fixed partial dentures. Acta Odontol Scand. 2007; 65: 14-21. [PubMed] [Google Scholar]
Dornhofer R, Arnetzl GV, Koller M, Arnetzl G. Comparison of the static loading capacity of all-ceramic bridge frameworks in posterior teeth using three hard core materials. Int J Comput Dent. 2007; 10: 315-28. [PubMed] [Google Scholar]
Kohorst P, Herzog TJ, Borchers L, StieschScholz M. Load-bearing capacity of allceramic posterior four-unit fixed partial dentures with different zirconia frameworks. Eur J Oral Sci. 2007; 115: 161-6. [PubMed] [Google Scholar]
Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconiabased three-unit fixed partial dentures: a laboratory study. Int J Prosthodont. 2001; 14: 231-8. [PubMed] [Google Scholar]
Rountree P, Nothdurft F, Pospiech P. Invitro investigations on the fracture strength of all-ceramic posterior bridge of ZrO2- ceramics. J. Dent. Res. 2001; 80:57. (abstract 173).
Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res. 1995; 74: 1253-8. [PubMed] [Google Scholar]
Tripodakis AP, Gousias HC, Andritsakis PD, Tripodaki EA. Evaluation of alternative approaches in designing CAD/CAM frameworks for fixed partial
dentures. Eur J Esthet Dent. 2013 Winter; 8: 546-56. [PubMed] [Google Scholar]
Porojan L, Topala F, Porojan S, Savencu C. Effect of frame design and veneering material on biomechanical behavior of zirconia dental crowns veneered with overpressing ceramics. Dent Mater J. 2017; 36: 275-81. [PubMed] [Google Scholar]
Beuer F, Steff B, Naumann M, Sorensen JA. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci. 2008; 116: 381-6. [PubMed] [Google Scholar]
Ha SR, Kim SH, Lee JB, Han JS, Yeo IS. Effects of coping designs on fracture modes in zirconia crowns: Progressive load test. Ceramics International. 2016; 42: 7380-9. [Google Scholar]
Ha SR, Kim SH, Lee JB, Han JS, Yeo IS, Yoo SH. Effects of coping designs on stress distributions in zirconia crowns: Finite element analysis. Ceramics International. 2016; 42: 4932-40.[Google Scholar]
Urapepon S, Taenguthai P. The effect of zirconia framework design on the failure of all-ceramic crown under static loading. J Adv Prosthodont. 2015; 7: 146-50. [PubMed] [Google Scholar]
Studart AR, Filser F, Kocher P, Gauckler LJ. In vitro lifetime of dental ceramics under cyclic loading in water. Biomaterials. 2007; 28: 2695-705. [PubMed] [Google Scholar]
Filser F, Kocher P, Weibel F, Lüthy H, Schärer P, Gauckler LJ. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int J Comput Dent. 2001; 4: 89-106. [PubMed] [Google Scholar]
Oh WS, Anusavice KJ. Effect of connector design on the fracture resistance of allceramic fixed partial dentures. J Prosthet Dent. 2002; 87: 536-42.. [PubMed] [Google Scholar]
Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.



