Actualización en el tratamiento molecular y farmacológico de la sintomatología motora en la enfermedad de Huntington
Update on molecular and pharmacological treatment of motor symptomatology in Huntington’s disease

Alexandra Dewdney, Esther Monsalve, Rosanna Bracho

Resumen


DOI: https://doi.org/10.53766/GICOS/2024.09.02.13

RESUMEN

La enfermedad de Huntington es un trastorno neurodegenerativo con un patrón de herencia autosómico dominante, de expresividad variable, caracterizado principalmente por alteraciones motoras, movimientos involuntarios de tipo coreico, alteraciones cognitivas, y del comportamiento, para lo cual no existe en la actualidad, un tratamiento curativo o que impida la evolución de la misma, el uso de fármacos, y la terapia molecular, está dirigido a la disminución de los síntomas, aunque no de manera definitiva. El uso de la tetrabenazina ha demostrado mayor eficacia a la hora del manejo de la sintomatología motora en los pacientes con enfermedad de Huntington. Sin embargo, en la actualidad, los abordajes genéticos directos prometen ser el avance de la terapéutica en el control multisintomático de esta enfermedad. Se presenta una revisión narrativa de la enfermedad de Huntington, incluyendo datos epidemiológicos, clínicos, fisiopatológicos, de diagnóstico y principales opciones terapéuticas moleculares y farmacológicas, para el manejo principalmente de la sintomatología motora, basado en recopilación de estudios y actualizaciones sobre el tema.

ABSTRACT
Huntington's disease is a neurodegenerative disorder with an autosomal dominant inheritance pattern, of variable expressiveness, characterized mainly by motor disorders, involuntary movements of the choreic type, cognitive and behavioral disorders, for which there is currently no treatment curative or that prevents its evolution, the use of drugs, and molecular therapy, aims to reduce symptoms, although not definitively. A general and systematic review of Huntington's disease is presented, including epidemiological, clinical, pathophysiological, diagnostic data and the main molecular and pharmacological therapeutic options, for the management mainly of motor symptoms, based on a compilation of studies and updates on the subject. The use of tetrabenazine has shown greater efficacy in the management of motor symptoms in these patients. However, at present, direct genetic approaches promise to be the advancement of therapy in the multisymptomatic control of this disease.

Recibido: 11-03-2024
Aprobado: 22-04-2024
Publicado: 25-05-2024


Palabras clave


Corea de Huntington; enfermedades neurodegenerativas; terapia genética; cuidados paliativos; Huntington Disease; neurodegenerative diseases; genetic therapy; palliative care;

Texto completo:

PDF

Referencias


Agostinho, L. A., dos Santos, S. R., Alvarenga, R. M. & Paiva, C. L. (2013). A systematic review of the intergenerational aspects and the diverse genetic profiles of Huntington's disease. Genetics and Molecular Research, 1974-1981. DOI: 10.4238/2013.

Antonazzo , M., Botta , M., Bengoetxea, H., Ruiz-Ortega, J. Á., y Morera-Herreras, T. (2019). Therapeutic potential of cannabinoids as neuroprotective agents for damaged cells conducing to movement disorders. International Review of Neurobiology, 229-257. DOI: 10.1016/bs.irn.2019.06.012

Ayala-Peña, S. (2013). Role of oxidative DNA damage in mitochondrial dysfunction and Huntington’s disease pathogenesis. Free Radical Biology and Medicine, 102-110. DOI: 10.1016/j.freeradbiomed.2013.04.017

Babačić, H., Mehta, A., Merkel, O. y Schoser., B. (2019). CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One, 1-32. DOI: 10.1371/journal.pone.0212198

Bamburg, J. R., Bernstein, B. W., Davis, R. C., Flynn, K. C., Goldsbury, C., Jensen, J. R., Maloney, M. T., Marsden, I. T., Minamide, L. S., Pak, C. W., Shaw, A. E., Whiteman, I. & Wiggan, O. (2010). ADF/Cofilin-Actin Rods in Neurodegenerative Diseases. Current Alzheimer Research., 7(3), 241-250. DOI: 10.2174/156720510791050902

Burgunder, J.M. (2019). International Guidelines for the Treatment of Huntington's Disease. Frontiers in Neurology, 1-18. DOI: 10.3389/fneur.2019.00710 https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2019.00710/full

Bachoud-Lévi, A. C., Massart, R. y Rosser, A. (2021). Cell therapy in Huntington’s disease: Taking stock of past studies to move the field forward. Stem Cells, 39(2), 144. https://doi.org/10.1002/STEM.3300

Bashir, H. y Jankovic, J. (2018). Deutetrabenazine for the treatment of Huntington’s chorea. Expert Review of Neurotherapeutics, 1-20. DOI: 10.1080/14737175.2018.1500178

Bilbao, A. y Spanagel, R. (2022). Medical cannabinoids: a pharmacology-based systematic review and meta-analysis for all relevant medical indications. BMC Medicine, 20(1). https://doi.org/10.1186/S12916-022-02459-1

Blázquez, C., Chiarlone, A., Bellocchio, L. Resel, E., Pruunsild, P., García-Rincón, D., Sendtner, M., Timmusk, T., Lutz, B., Galve-Roperh I., & Guzmán, M. (2015). The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNRF pathway. Cell Death and Differentiation, 1-12. DOI: 10.1038/cdd.2015.11.

Braun, R. J. & Westermann, B. (2017). With the Help of MOM: Mitochondrial Contributions to Cellular Quality Control. Trends in Cell Biology, 27. DOI: 10.1016/j.tcb.2017.02.007.

Burnipa, E., Wallacea, E., Gozdzikowska, K., y Huckabeea, M.-L. (2020). A Systematic Review of Rehabilitation for Corticobulbar Symptoms in Adults with Huntington’s Disease. Journal of Huntington’s Disease, 1-12. DOI: 10.3233/JHD-190384.

Caron, N. S., Dorsey, E. R., y Hayden, M. R. (2018). Therapeutic approaches to huntington disease: From the bench to the clinic. In Nature Reviews Drug Discovery (Vol. 17, Issue 10, pp. 729–750). Nature Publishing Group. https://doi.org/10.1038/nrd.2018.133

Castilhos R.M., A. M. (2016). Genetic aspects of Huntington’s disease in Latin America. A systematic review. Clinical Genetics, 295-303. DOI: 10.1111/cge.12641

Castilhos, R. M., Augustin, M. C., Dos Santos, J. A., Pedroso, J. L., Barsottini, O., Saba, R., Jardim, L. B. (2020). Free carnitine and branched chain amino acids are not good biomarkers in Huntington’s disease. Arq Neuropsiquiatr, 81-87. DOI: 10.1590/0004-282X20190152

Claassen, D. O., Philbin, M. & Car, B. (2019). Deutetrabenazine for tardive dyskinesia and chorea associated with Huntington’s disease: a review of clinical trial data. Expert Opinion on Pharmacotherapy, 1-14. DOI: 10.1080/14656566.2019.1674281.

Coppen, E. M. & Roos, R. A. (2017). Current Pharmacological Approaches to Reduce Chorea in Huntington’s Disease. Drugs, 77, 29-46. DOI: 10.1007/s40265-016-0670-4.

Cristino, L., Bisogno, T. & Di Marzo, V. (2019). Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nature Reviews Neurology, 9-29. DOI: 10.1038/s41582-019-0284-z

D’Souza, G. X. & Waldvogel, H. J. (2016). Targeting the Cholinergic Systemto Develop a Novel Therapy for Huntington’s Disease. Journal of Huntington’s Disease 5, 333–342. DOI: 10.3233/JHD-160200

Dauwan, M., Begemann, M. J., Slot, M. I., Lee, E. H., Scheltens, P. & Sommer, I. E. (2019). Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a transdiagnostic systematic review and meta‐analysis of randomized controlled trials. Journal of Neurology, 1-25. DOI: 10.1007/s00415-019-09493-9

Dean, M. & Sung, V. W. (2018). Review of deutetrabenazine: a novel treatment for chorea associated with Huntington’s disease. Drug Design, Development and Therapy, 313-319. DOI: 10.2147/DDDT.S138828

Develati, G., Furr, E. & Texeira, A. (2019). Stem cells in animal models of Huntington disease: A systematic review. Molecular and Cellular Neuroscience, 43-50. DOI: 10.1016/j.mcn.2019.01.006. m/science/article/abs/pii/S1044743118303919?via%3Dihub

Di Domenico, F., Tramutola, A. & Butterfield, A. (2016). Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected selected age-related neurodegenerative disorders. Free radicl biology and medicine. ELSEVIER, 253-261. DOI: 10.1016/j.freeradbiomed.2016.10.490. e/article/abs/pii/S0891584916309807?via%3Dihub

Dickey, A. S. & La Spada, A. R. (2018). Therapy development in Huntington disease: From current strategies to emerging opportunities. American Journal of Medical Genetics, Part A, 176(4), 842–861. https://doi.org/10.1002/AJMG.A.38494

Ehrlich, D. J. & Walker, R. H. (2017). Functional neuroimaging and chorea: a systematic review. Journal of Clinical Movement Disorders, 1-15. DOI: 10.1186/s40734-017-0056-0

Espinoza-Suárez, N. R., Palacios-García, J. y Morante-Osores, M. (2016). Cuidados paliativos en la enfermedad de Huntington: perspectivas desde la atención primaria de salud. Revista de Neuropsiquiatría, 230-238. DOI: 10.20453/rnp.v79i4.2977

Fathi, M., Vakili, K., Yaghoobpoor, S., Tavasol, A., Jazi, K., Hajibeygi, R., Shool, S., Sodeifian, F., Klegeris, A., McElhinney, A., Tavirani, M. R. & Sayehmiri, F. (2022). Dynamic changes in metabolites of the kynurenine pathway in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A systematic Review and meta-analysis. Frontiers in Immunology, 13. https://doi.org/10.3389/FIMMU.2022.997240/FULL

Fernández-Nogales, J, Santos-Galindo, M., Hoozemans, J., Ferrer, I., Annemieke, J., Rozemuller, M., Hernández, F., Avila, J. & Lucas, J. (2014). Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nature Medicine. DOI: 10.1038/nm.3617

Fernández-Ruiz, J., Romero, J. & Ramos, J. A. (2015). Endocannabinoids and Neurodegenerative Disorders: Parkinson’s Disease, Huntington’s Chorea, Alzheimer’s Disease, and Others. Springer International Publishing Switzerland, 235-253. DOI: 10.1007/978-3-319-20825-1_8

Frank, S. (2013). Treatment of Huntington's Disease. Neurotherapeutics, Jan. 11(1), 153–160. 1-8. DOI: 10.1007/s13311-013-0244-z

Garret, M., Du, Z., Chazalon, M., Cho, Y. H. & Baufreton, J. (2018). Alteration of GABAergic neurotransmission in Huntington’s disease. CNS Neuroscience y Therapeutics, 24(4), 292–300. https://doi.org/10.1111/CNS.12826

Gratuze, M., Cisbani, G., Cicchetti, F. & Planel, E. (2016). Is Huntington’s disease a tauopathy? BRAIN a journal of neurology, 1-12. DOI: 10.1093/brain/aww021

Green, K. M., Linsalata, A. E., y Todd, P. K. (2016). RAN translation-What makes it run? Brain research. ELSEVIER, 1-13. DOI: 10.1016/j.brainres.2016.04.003.

Haddad, M. S., Wenceslau, C. V., Pompeia, C. & Kerkis, I. (2016). Cell-based technologies for Huntington Disease. Dement Neuropsychol, 287-295. DOI: 10.1590/s1980-5764-2016dn1004006. https://www.ncbi.nlm.nih.gov/pmc/articles/P MC5619267/pdf/dn-10-04-0287.pdf

Jamwal, S. & Kumar, P. (2019). Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiology of Parkinson’s Disease and Huntington’s Disease: A Review. Current Neuropharmacology, 17(2), 165. https://doi.org/10.2174/1570159X16666180302115032

Jankovic, J. (2016). Dopamine Depleters in the Treatment of Hyperkinetic Movement Disorders. Expert Opinion on Pharmacotherapy, 1-37. DOI: 10.1080/14656566.2016.1258063

Jiang, A., Handley, R. R., Lehnert, K. & Snell, R. G. (2023). From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington’s Disease Research. International Journal of Molecular Sciences, 24(16), 13021. https://doi.org/10.3390/IJMS241613021

Jodeiri Farshbaf, M., y Ghaedi, K. (2017). Huntington’s Disease and Mitochondria. Neurotoxicity Research, 518–529. DOI: 10.1007/s12640-017-9766-1

Junger, W. G. (2011). Immune cell regulation by autocrine purinergic signalling. Nature Reviews Immunology, 201-212. DOI: 10.1038/nri2938

Kay, C., Tirado-Hurtado, I., Cornejo-Olivas, M., Collins, J. A., Wright, G., Inca-Martinez, M., Veliz-Otani, D., Ketelaar, M. E., Slama, R. A., Ross, C. J., Mazzetti, P. & Hayden, M. R. (2017). The targetable A1 Huntington disease haplotype has distinct Amerindian and European origins in Latin America. European Journal of Human Genetics, 25(3), 332. https://doi.org/10.1038/EJHG.2016.169

Kilb, W. & Kirischuk, S. (2022). GABA Release from Astrocytes in Health and Disease. International Journal of Molecular Sciences, 23(24). https://doi.org/10.3390/IJMS232415859

Kornfeld, O. S., Qvit, N., Haileselassie, B., Shamloo, M., Bernardi, P. & Mochly-Rosen, D. (2018). Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Scientific Reports, 1-9. DOI: 10.1038/s41598-018-32228-1

Krobitscha , S. & Kazantseva, A. G. (2010). Huntington’s disease: From molecular basis to therapeutic advances. The International Journal of Biochemistry y Cell Biology, 20-25. DOI: 10.1016/j.biocel.2010.10.014

Labbadia, J., Brielmann, R. M., Neto, M. F., Lin, Y.-F., Haynes, C. M. & Morimoto, R. I. (2017). Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging. Cell Reports, 21, 1481-1494. DOI: 10.1016/j.celrep.2017.10.038

Lee, C.-f. & Chern, Y. (2014). Adenosine Receptors and Huntington Disease. International Review of Neurobiology, 119, 195-232. DOI: 10.1016/B978-0-12-801022-8.00010-6

Leuchter, M. K., Donzis, E. J., Ceeda, C., Hunter, A. M., Estrada-Sánchez, A. M., Cook, I. A., Leuchter, A. F. (2017). Quantitative Electroencephalographic Biomarkers in Preclinical and Human Studies of Huntington's Disease: Are They Fit-for-Purpose for Treatment Development? Frontiers in Neurology. DOI: 10.3389/fneur.2017.00091

Li, Y., Hai, S., Zhou, Y. & Dong, B. (2015). Cholinesterase inhibitors for rarer dementias associated with neurological conditions (Review). Cochrane Database of Systematic Reviews, 1-53. DOI: 10.1002/14651858.CD009444.pub3

Lim, K., Mei See, Y. & Lee, J. (2017). A systematic review of the efectiveness of medical Cannabis for Psychiatric, Movement and Neurodegenerative Disorders. Clinical Psychopharmacology and Neuroscience, 301-312. DOI: 10.9758/cpn.2017.15.4.301

Liot , G., Valette, J., Pépin , J., Flament, J. & Brouille, E. (2017). Energy defects in Huntington's disease: Why "in vivo" evidence matters. Biochemical and Biophysical Research Communications, 4(483), 1084-4095. DOI: 10.1016/j.bbrc.2016.09.065

Liu, J. & Wang, L.-n. (2013). Mitochondrial Enhancement for Neudegenerative Movement Disorders: A Systematic Review of Trials Involving Creatine, Coenzyme Q10, Idebenone and Mitoquinone. CNS Drugs, 1-6. DOI: 10.1007/s40263-013-0124-4

Lokhande, S., Patra, B. N. & Ray, A. (2016). A link between chromatin condensation mechanisms and Huntington disease: connecting the dots. Molecular BioSystems, 1-15. DOI: 10.1039/C6MB00598E

Maiuri, T., Suart, C. E., Hung, C. K., Graham, K. J., Barba Bazan, C. A. & Truant, R. (2019). DNA Damage Repair in Huntington’s Disease and Other Neurodegenerative Diseases. Neurotherapeutics, 1 -9. DOI: 10.1007/s13311-019-00768-7

Manoharan, S., Guillemin , G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M. & Akbar, M. D. (2016). The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review. Hindawi Publishing Corporation, 1-15. DOI: 10.1155/2016/8590578

Manzanedo, M. y Ortiz, M. (2018). Depresión en la Enfermedad de Huntington. Rev Enf Salud Men, 7, 25-29. DOI: 10.33588/rn.7611.2022088

Mason, S. L. & Barker, R. A. (2016). Advancing pharmacotherapy for treating Huntington’s disease: a review of the existing literature. Expert Opinion on Pharmacotherapy, 41-52. DOI: 10.1517/14656566.2016.1109630

McColgan, P., y Tabrizi, S. J. (2018). Huntington’s disease: a clinical review. European Journal of Neurology, 25(1), 24–34. https://doi.org/10.1111/ENE.13413

Méndez-Herrera, C. R. (2011). El núcleo subtalámico en la fisiopatología de la enfermedad de Parkinson y su rol como diana quirúrgica. DOI: 10.4067/S0717-92272011000100008.

Mestre, T. A. (2018). Recent advances in the therapeutic development for Huntington disease. Parkinsonism and Related Disorders, 1-27. DOI: 10.1016/j.parkreldis.2018.12.003

Momtaz, S., Memariani, Z., El-Senduny, F. F., Sanadgol, N., Golab, F., Katebi, M., Abdolghaffari, A. H., Farzaei, M. H. & Abdollahi, M. (2020). Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Frontiers in Physiology, 11, 361. https://doi.org/10.3389/FPHYS.2020.00361

Morsy, S., Morsy, S., Fahmy, M., Gomaa, M., Mahmoud, D., Ahmed, H. & Tien, N. (2019). Efficacy of ethyl-EPA as a treatment for Huntington disease: A systematic review and meta-analysis. Acta Neuropsychiatrica, 1-38. DOI: 10.1017/neu.2019.11

Moulton, C. D., Hopkins, C., y Bevan-Jones, W. (2014). Systematic Review of Pharmacological Treatments for Depresive Symptoms in Huntington's Disease. Movement disorders, 1556-1561. DOI: 10.1002/mds.25980 https://movementdisorders.onl inelibrary.wiley.com/doi/10.1002/mds.25980

Müller, T. (2016). Investigational agents for the management of Huntington's disease. Expert Opinion on Investigational Drugs, 1-35. DOI: 10.1080/13543784.2017.1270266

Myers, R. H. (2004). Huntington’s Disease Genetics. The Journal of The American Society for Experimental NeuroTherapeutics, 255–262. DOI: 10.1602/neurorx.1.2.255

Nadal, X., Del Río, C., Casano, S., Palomares, B., Ferreiro-Vera, C., Navarrete, C. & Muñoz , E. (2017). Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol, 23, 4263-4276. DOI: 10.1111/bph.14019

Ojalvo-Pacheco, Sokhna, Yakhine-Diop, Fuentes, Paredes-Barquero & Niso-Santano. (2024). Role of TFEB in Huntington's Disease. Lysosomes and Diseases Associated with Its Dysfunction, 13(4). DOI: 10.1007/978-3-031-27681-1_46

Osuka, K., Watanabe, Y., Usuda, N., Nakazawa, A., Fukunaga, K., Miyamoto, E., Takayasu, M., Tokuda, M. & Yoshida, J. (2020). Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal. International Journal of Molecular Sciences, 21(22), 8750. https://doi.org/10.3390/IJMS21228750

Paul, B. D. (2022). Cysteine metabolism and hydrogen sulfide signaling in Huntington’s disease. Free Radical Biology y Medicine, 186, 93. https://doi.org/10.1016/J.FREERADBIOMED.2022.05.005

Petersén, Å. & Weydt, P. (2019). The psychopharmacology of Huntington disease. In Handbook of Clinical Neurology, 165, 179–189). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64012-3.00010-1

Pidgeon, C. & Rickards, H. (2013). The pathophysiology and pharmacological treatment of Huntington disease. Behavioural Neurology, 245-253. DOI: 10.3233/BEN-2012-120267

Ramos, M. (2023). Prevalencia de los factores relacionados con la enfermedad de Huntington, una revisión narrativa [Tesis de pregrado]. Lima: Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Escuela Profesional de Tecnología Médica. https://hdl.handle.net/20.500.12672/19842

Ribeiro, F. M., Piers, R. G. & Ferguson, S. S. (2011). Huntington’s Disease and Group I Metabotropic Glutamate Receptors. Mol Neurobiol, 1-11. DOI: 10.1007/s12035-010-8153-1

Richard, A. & Frank, S. (2019). Deutetrabenazine in the treatment of Huntongton's Disease. Drug evaluation. Neurodegenerative Disease Management, 9, 11-8. DOI: 10.2217/nmt-2018-0040

Rodrigues, F. B., Byrne, L. M. & Wild, E. J. (2018). Biofluid Biomarkers in Huntington’s Disease. Disease, Methods in Molecular Biology, 329-396. DOI: 10.1007/978-1-4939-7825-0_17

Ropper AH, Samuels Ma, Klein JP. (2014). Addams and Victor's Principles of Neurology. https://neupsykey.com/chapter-4-abnormalities-of-movement-and-posture-caused-by-disease-of-the-basal-ganglia/

Schneider, F., Stamler, D., Bradbury, M., Loupe, P. S., Hellriegel, E., Cox, D. S., Savola, J. M., Gordon, M. F. & Rabinovich-Guilatt, L. (2021). Pharmacokinetics of Deutetrabenazine and Tetrabenazine: Dose Proportionality and Food Effect. Clinical Pharmacology in Drug Development, 10(6), 647–659. https://doi.org/10.1002/CPDD.882

Serra, M., Pinna, A., Costa, G., Usiello, A., Pasqualetti, M., Avallone, L., Morelli, M., y Napolitano, F. (2021). Involvement of the Protein Ras Homolog Enriched in the Striatum, Rhes, in Dopaminergic Neurons’ Degeneration: Link to Parkinson’s Disease. International Journal of Molecular Sciences 22(10), 5326. https://doi.org/10.3390/IJMS22105326

Shan, L., Dauvilliers , Y., y Siegel, J. M. (2015). Interactions of the histamine and hypocretin systems in CNS disorders. Nature Reviews Neurology, 1-13. DOI: 10.1038/nrneurol.2015.99

Shannon, K. M. (2016). Pridopidine for the treatment of Huntington’s Disease. Expert Opinion on Investigational Drugs, 25(4), 485–492. DOI: 10.1517/13543784.2016.1153627

Shao, X., Jann, K., Jenny Ma, S., Yan, L., Montagne, A., Ringman, J. M. & Wang, D. J. (2020). Comparison between blood-brain barrier water exchange rate and permeability to gadolinium-based contrast agent in an elderly cohort. Frontiers in Neuroscience. DOI: 10.3389/fnins.2020.571480

Sharma, M. y Deogaonkar, M. (2014). Deep brain stimulation in Huntington’s disease: Assessment of potential targets. Journal of Clinical Neuroscience, 22(5), 812–817. https://doi.org/10.1016/j.jocn.2014.11.008

Sharma, P., Sharma, B. S., Raval, H. & Singh, V. (2023). Endocytosis of GABA receptor: Signaling in nervous system. Progress in Molecular Biology and Translational Science, 196, 125–139. https://doi.org/10.1016/BS.PMBTS.2022.06.032

Shefa, U., Kim, M. S., Jeong, N. Y. & Jung, J. (2018). Antioxidant and Cell-Signaling Functions of Hydrogen Sulfide in the Central Nervous System. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/1873962

Smaili, S. S., Ureshino, R. P., Rodriggues, L., Rocha, K. K., Carvalho, T. J., Oseki, K. T. & Hirata, H. (2011). The Role of Mitochondrial Function in Glutamate-Dependent Metabolism in Neuronal Cells. Current Pharmaceutical Design, 17(35), 3865-3877. DOI: 10.2174/138161211798357782

Soares, T. R., Reis, S. D., Pinho, B. R., Duchen, M. R. & Oliveira, J. M. A. (2019). Targeting the proteostasis network in Huntington’s disease. Ageing Research Reviews, 49, 92. https://doi.org/10.1016/J.ARR.2018.11.006

Soares, T. R., Reisa, S. D., Pinho, B. R., Duchen, M. R. & Oliveira, J. M. (2019). Targeting the proteostasis network in Huntington’s disease. Ageing research reviews, 92-103.

Sun, A., Xu , X., Lin, J., Cui, X. & Xu, R. (2014). Neuroprotection by Saponins. Wiley Online Library, 1-14. doi: 10.1016/j.arr.2018.11.006

Tabassum, R. & Jeong, N. Y. (2019). Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. International Journal of Medical Sciences, 16(10), 1386–1396. https://doi.org/10.7150/IJMS.36516

Termsarasab, P. (2019). Chorea. Continuum Journal, Lifelong Learning in Neurology, 25(4), 1001–1035. https://doi.org/10.1212/CON.0000000000000763

Tierney, T. S., Sankar , T. & Lozano, A. M. (2013). Some Recent Trends and Further Promising Directions in Functional Neurosurgery. Stereotactic in Functional Neurosurgery, Acta Neurochirurgica Supplement, 86-92. DOI: 10.1007/978-3-7091-1482-7_14

Tóth, F., Cseh, E. K. & Vécsei, L. (2021). Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. International Journal of Molecular Sciences, 22(1), 403. https://doi.org/10.3390/IJMS22010403

Trushina, E. & Mcmurray, C. T. (2007). Oxidative Stress and Mitochondrial Dysfunction In Neurodegenerative Diseases. Neuroscience, 145(4), 1233–1248. https://doi.org/10.1016/J.NEUROSCIENCE.2006.10.056

Tyebji, S., Saavedra, A., Canas, P. M., Pliassova, A., Delgado-García, J. M., Alberch , J. & Pérez-Navarro, E. (2015). Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease. Neurobiology of Disease, 41-57. DOI: 10.1016/j.nbd.2014.11.004

Tyebji, S. & Hannan, A. J. (2017). Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Progress in Neurobiology, 153, 18–45. https://doi.org/10.1016/J.PNEUROBIO.2017.03.008

Vallée, A., Lecarpentier, Y., Guillevin, R. & Vallée, J. N. (2018). Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington disease. Reviews in the Neurosciences, 29(5), 547–555. https://doi.org/10.1515/REVNEURO-2017-0075/XML

Vallée, A., Lecarpentier, Y., Guillevin, R., y Vallée, J.‐N. (2018). Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta‐Catenin Pathway–PPAR Gamma, Energy Metabolism and Circadian Rhythms. NeuroMolecular Medicine, 20(2), 174–204. https://doi.org/10.1007/S12017-018-8486-X

Varshini, M. (2024). Huntington's disease: A comprehensive case report. World Journal of Biology Pharmacy and Health Sciences 17(3), 252-253. DOI: 10.30574/wjbphs.2024.17.3.0139

Vázquez-Manrique, R. P., Farina, F., Cambon, K., Dolores Sequedo, M., Parker, A. J., Millán, J. M. & Neri, C. (2016). AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease. Human Molecular Genetics, 1043-1058. DOI: 10.1093/hmg/ddv513

Venuto, C. S., McGarry, A., Qing, M. & Kieburtz, K. (2012). Pharmacologic Approaches to the Treatment of Huntington’s Disease. Movement Disorders, 27(1), 31-42. DOI: 10.1002/mds.23953

Waters, S., Tedroff, J., Ponten, H., Klamer, D., Sonesson, C. & Watersc, N. (2018). Pridopidine: Overview of Pharmacology and Rationale for its Use in Huntington’s Disease. Journal of Huntington ’s disease, 7(1), 1. https://doi.org/10.3233/JHD-170267

Wiedau-Pazos, M., Wong, E., Solomon, E., Alarco, M. & Geschwind, D. H. (2009). Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice. Neurobiology of Aging, 30, 14-21. doi: 10.1016/j.neurobiolaging.2007.05.015

Yang, S.-H., Wenjun, L., Sumien, N., Forster, M., Simpkins, J. & Liu, R. (2015). Alternative Mitochondrial Electron Transfer for the Treatment of Neurodegenerative Diseases and Cancers: Methylene Blue Connets the Dots. Progress in Neurobiology, 157, 273. https://doi.org/10.1016/J.PNEUROBIO.2015.10.005

Yang, Y. R., Kang, D.-S., Lee, C., Seok, H., Follo, M. Y., Cocco, L. & Suh, P.-G. (2015). Primary phospholipase C and brain disorders. Advances in Biological Regulation. ELSEVIER, 1-6. DOI: 10.1016/j.jbior.2015.11.003

Yu, M. & Bega, D. (2019). A Review of the Clinical Evidence for Complementary and Alternative Medicine in Huntington’s Disease. Tremor and Other Hyperkinetic Movements, 1-9. doi: 10.7916/tohm.v0.678

Zanforlin, E., Zagotto, G. & Ribaudo, G. (2017). The Medicinal Chemistry of Natural and Semi-Synthetic Compounds Against Parkinson’s and Huntington’s Diseases. ACS Chemical Neuroscience, 1-20. DOI: 10.1021/acschemneuro.7b00283

Zhao, H., Bo, C., Kang, Y. & Li, H. (2017). What Else Can CD39 Tell Us? Frontiers in Immunology, 8, 727. https://doi.org/10.3389/FIMMU.2017.00727

Zhou, X., Li, G., Kaplan, A., Gaschler, M. M., Zhang, X., Hou, Z. & Duan, W. (2018). Small molecule modulator of protein disulfide isomerase attenuates mutant huntingtin toxicity and inhibits endoplasmic reticulum stress in a mouse model of Huntington's disease. Human Molecular Genetics, 27(9), 1545. https://doi.org/10.1093/HMG/DDY061


Enlaces refback

  • No hay ningún enlace refback.


 

Depósito Legal Electrónico: ME2016000090
ISSN Electrónico: 2610-797X

DOI: https://doi.org/10.53766/GICOS

Se encuentra actualmente registrada y aceptada en las siguientes base de datos, directorios e índices: 

 
 
   
    
    
   

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.