Nanoelectroquímica en nanomedicina: una revisión

Olga P. Márquez, Elkis Weinhold, Keyla Márquez, Jairo Márquez P.

Resumen


Existe una exitosa y fructífera interrelación y apoyo, entre los campos de la nanociencia, la nanotecnología y sus diversas ramas científicas y tecnológicas; y su expansión ocurre en forma tan rápida, variada, necesaria y exitosa, que se hace también necesario, la delimitación, el financiamiento, la implementación física, así como la investigación y el desarrollo. En este trabajo se pretende presentar, a modo de ejemplo, alguna información sobre la actividad en una subárea de la Química, la nanoelectroquímica y cómo se genera esa interrelación, intercambio, mutuo apoyo y éxito comun, entre dos subáreas científicas tales como la nanoelectroquímica y la nanomedicina. Es obvio entonces, la amplitud y composición de los campos de la nanociencia y nanotecnología, y lo valiosa de la actividad conjunta, multidisciplinaria, variada, para diversas soluciones científico-tecnicas requeridas.

Recibido: 14-07-2022 Aceptado: 30-08-2022

Palabras clave


Nanoelectroquímica; Electroanálisis; Nanomedicina; Biosensores; Sensores electroquímicos.

Texto completo:

PDF

Referencias


- Nanoscience and Nanotechnologies. (2004). The Royal Society & The Royal Academy of Engineering. Science Policy Section. The Royal Society 6–9 Carlton House Terrace. London SW1Y 5AG email nano@royalsoc.ac.uk ISBN 0 85403 604 0.

- Márquez J, Márquez OP. (2015). Nanotecnología y Electroquímica (Cap.5) (en Nanotecnología: Fundamentos y Aplicaciones). Revista de Química-Universidad de los Andes-Mérida, Venezuela.

- Murray RW. (2008). Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes and Nanopores. Chem. Rev., 108, 2688-2720.

- Velmurugan J, Mirkin MV. (2010). Fabrication of Nanoelectrodes and Metal Clusters by Electrodeposition. Chem. Phys. Chem., 11, 3011–3017.

- Penner RM, Martin CR. (1987). Preparation and Electrochemical Characterization of Ultramicroelectrode Ensembles. Anal. Chem., 59, 2625-2530.

- Riveros G, Green S, Gómez H, Marotti RE, Dalchiele EA. (2006). Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology, 17(2), 561–570.

- Doescher MS, Evans U, Colavita PE, Miney PG, Myrick ML. (2003). Construction of a Nanowell Electrode Array by Electrochemical Gold Stripping and Ion Bombardment. Electrochem. Solid-State Lett., 6, C112-C115.

- Drummen GPC. (2010). Quantum Dots—From Synthesis to Applications in Biomedicine and Life Sciences. Int. J. Mol. Sci., 11, 154-163; doi:10.3390/ijms11010154.

- Kalska-Szostko B. (2012). Electrochemical Methods in Nanomaterials Preparation. Recent Trent in Electrochemical Science and Technology, Dr. Ujjal Kumar Sur (Ed.), ISBN: 978- 953-307-830-4, InTech.

- Romero PG, Sanchez C. (2003). Functional hybrid materials. Wiley Weinheim pag 86. Wu Y, Xiang J, Yang C, Lu W, Liber MC. (2004). Nature 430, 61.

- Szczepaniak W. (2012). Manual de galvanoplastia. Métodos instrumentales en el análisis químico, 8ª ed. Editorial científica PWN W-wa., {Varsovia} ISBN 978-83-01-14210-0.

- Méndez BA, Muñoz CP. (2012). Nanochips y nanosensores para el diagnóstico temprano de cáncer oral: una revisión. Univ Odontol. 31(67): 131-147.

- Márquez E, Hernández D, Prado M, Soler F, Pérez M. (2021). Las Nanopartículas y sus Aplicaciones Biomédicas. Universidad de Extremadura. Servicio de publicaciones. Cáceres España. pp 1-76 I.S.B.N.: 978-84-09-25218-3 (edición digital)

- Márquez J, Márquez OP. (2012). Electrochemical synthesis of micro- and nano-electrodes and arrays. Analytical applications. In: Recent Advances in Electrochemical Research. Cap 1, R. Tremont (Ed.), Transworld Research Network, India. Cap 1, 1-37.

- Murray RW. (2008). Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes and Nanopores. Chem. Rev. 108, 2688-2720.

- Penner RM, Heben MJ, Longin TL, Lewis NS. (1990). Fabrication and use of nanometersized electrodes in Electrochemistry. Science. 250, 1118-1121.

- Wang ZL. (2003). Nanobelts, Nanowires and Nanodiskettes of Semiconducting Oxides – from materials to nanodevices. Adv. Mater. 15, 432-436.

- Núñez RO, Jáuregui Haza UJ. (2012). Las Nanopartículas como portadores de fármacos: Características y perspectivas. CENIC. 3(43), 43-68.

Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012). Noble Metal Nanoparticles for Biosensing Applications. Sensors 12(2):1657-87.

- Bruls DM, Evers TH, Kahlman JAH, van Lankvelt PJW, Ovsyanko M, Pelssers EGM, Schleipen JHB, de Theije FK, Verschuren CA, van der Wijk T, van Zon JBA, Dittmer WU, Immink AHJ, Nieuwenhuis JH, Prins MWJ. (2009). Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab. Chip. 9, 3504–3510.

- Boo H, Kim H. (2001). Electrochemical preparation of nanosize porous platinum films and their properties. Anal. Sci. (17), A77-A80.

- Meng G, Cao A, Cheng JY, Vijayaraghavan A, Jung YJ, Shima M, Ajayan PM. (2005). Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template. J. Appl. Phys. 97(6), 064303-064305.

- Gómez H, Riveros G, Cortés A, Marotti RE, Dalchiele EA. (2005). Crystallographicallyoriented single crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Applied Physics A. 81, 17-24.

- Riveros G, Green S, Gómez H, Marotti RE, Dalchiele EA. (2006). Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology. 17 (2), 561–570.

- Márquez OP, Salazar E, Márquez J, Martínez Y, Manfredy L. (2016). Evaluación de nanopartículas de Pt/Rh/Ru depositadas sobre carbón vítreo como catalizador para la electrooxidación de metanol. Equilibrium 1:39-63.

- Márquez OP, Mubita T, Márquez J. (2012). Preparación de electrocatalizadores Ru/Pd/Mo para La oxidación de moléculas orgánicas pequeñas. Editorial Académica Española. Alemania. ISBN-13: 978-3847364634, ISBN-10: 3847364634. 84 pags.

- Márquez OP, Márquez J. (2018). Solid Catalysts for Renewable Energy production. Chapter 11 in Synthesis of electrocatalysts for electrochemistry in energy. IGI-global, (S González & F Imbert, Eds.), PA, USA.

- Barin CS, Correia AN, Machado SA, Avaca LA. (2000). The Effect of Concentration on the Electrocrystallization Mechanism for Copper on Platinum Ultramicroelectrodes. J. Braz. Chem. Soc. 11(2), 175-181.

- Arrigan DWM. (2004). Nanoelectrodes, nanoelectrode arrays and their applications. Analyst. 129, 1157-1165.

- Gong K, Yan Y, Zhang M, Su L, Xiong S, Mao L. (2005). Electrochemistry and Electroanalytical Applications of Carbon Nanotubes: A Review. Analytical Science. 21, 1383-1393.

- Thostenson ET, Ren ZF, Chou TW. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912.

- Tian JH, Yang Y, Zhou XS, Schçllhorn B, Maisonhaute E, Chen ZB, Yang FZ, Chen Y, Amatore C, Mao BW, Tian ZQ. (2010) Electrochemically Assisted Fabrication of Metal AtomicWires and Molecular Junctions by MCBJ and STM-BJ Methods. Chem. Phys. Chem. 11,

– 2755.

- Kalska-Szostko B, & Brancewicz E, Olszewski W, Szymański, K, Sidor A, Sveklo J, Mazalski, P (2009). Electrochemical Preparation of Magnetic Nanowires. Solid State Phenomena. 151. 190-196.

- Drbohlavova J, Adam V, Kizek R, Hubalek J. (2009). Puntos cuánticos: caracterización, preparación y uso en sistemas biológicos. Int. J. Mol. Sci. 10, 656-673.35.- Mahler B, Spinicelli P, Buil S, Quelin X, Hermier JP, Dubertret B. (2008). Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659-664.

- Shi YF, He P, Zhu XY. (2008). Photoluminescence-enhanced biocompatible quantum dots by phospholipid functionalization. Mater. Res. Bull. 43, 2626-2635.

- Bodas D, Khan-Malek, C. (2007). Direct patterning of quantum dots on structured PDMS surface. Sens. Actuator B-Chem. 128, 168-172.

- Yokota H, Tsunashima K, Iizuka K, Okamoto H. (2008). Direct electron beam patterning and molecular beam epitaxy growth of InAs: Site definition of quantum dots. J. Vac. Sci. Technol. B, 26, 1097-1099.

- Pan ZW, Dai ZR, Wang ZL. (2002)."Synthesis, structure and growth mechanism of oxide nanowires, nanotubes and nanobelts". In Quantum Dots and Nanowires. Edited by S. Bandyopadhyay and N.S. Nalwa, American Scientific Publishers, Chap 5, 193-218.

- Pan R, Wu Y, Liew K. (2008). Investigation of growth mechanism of nano-scaled cadmium sulfide within titanium dioxide nanotubes via solution deposition method. Applied Surface Science. 6564-6568.

- Medintz IL, Mattoussi H, Clapp AR. (2008) Potential clinical applications of quantum dots. Int. J. Nanomed. 3, 151-167.

- Murcia MJ, Shaw DL, Long EC, Naumann CA. (2008). Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings. Opt. Commun. 281, 1771-1780.

- Ghanem MA, Bartlett PN, de Groot P, Zhukov A. (2004). A double templated electrodeposition method for the fabrication of arrays of metal nanodots. Electrochem. Commun. 6, 447-453.

- Chen PL, Kuo CT, Pan FM, Tsai TG. (2004). Preparation and phase transformation of highly ordered TiO2 nanodot arrays on sapphire substrates. Appl. Phys. Lett. 84, 3888-3890.

- Arrigan DWM. (2004). Nanoelectrodes, nanoelectrode arrays and their applications. Analyst. 129, 1157-1165.

- Woo DH, Kang H, Park SM, (2003). Fabrication of nanoscale gold disk electrodes using ultrashort pulse etching. Anal. Chem. 75, 6732-6736.

- Mirkin MV, Fan FRF, Bard AJ. (1992). Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. J. Electroanal. Chem. 328 (1-2), 47-62.

- Watkins JJ, Chen JY, White HS, Abruna HD, Maisonhaute E, Amatore C. (2003). Electron transfer rate measurements and voltammetric detection of zeptomoles using platinum electrodes of nanometer dimensions. Anal. Chem. 75(16) 3962-3971.

- Chen S, Kucernak A, (2002). Fabrication of carbon microelectrodes with an effective radius of 1 nm Fabrication of carbon microelectrodes with an effective radius of 1 nm. Electrochem. Commun. 4(1) 80-85.

- Ugo P, Moretto LM, Vezza F. (2002). Ionomer-coated electrodes and nanoelectrodes. Assemblies as electrochemical environment. Sensors: recent advances and perspectives. 3(11):917-925.

- Falah H. Hussein, Firas H. Abdulrazzak (2022). Synthesis of Carbon Nanotubes by Chemical Vapor Deposition. Chapter 4 in Nanomaterials: Biomedical, Environmental, and Engineering Applications. 10.1002/9783527832095, (353-388) Editor(s):

Suvardhan Kanchi, Shakeel Ahmed, Myalowenkosi I. Sabela, Chaudhery Mustansar Hussai. Wiley online library. Print ISBN:9781119370260 |Online ISBN:9781119370383|DOI:10.1002/9781119370383.

- Cheng W, Dong S, Wang E. (2002). Colloidal chemical approach for highly controllable active area fraction nanoelectrode arrays- nal. Chem. 2002, 74 (15) 3599–3604.

- Koehne J, Li J, Cassell AM, Chen H, Ye Q, Ng HT, Han J, Meyyappan M. (2004). The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. Journal of materials chemistry.14(4) 676-684.

- Brevnov DA, Rowen AM, Yelton WG, López GP, Atanassova PB. (2021). Fabrication of an Array of Nanoelectrodes by Electrodeposition of Gold into Pores of Anodic Aluminum Oxide. University of New Mexico and Sandia National Laboratories. Alburquerque, NM,

USA.

- Mendiola TG. Tesis Doctoral. (2009). Biosensores selectivos de ADN basados en un Nuevo indicador electroquímico y nanopartículas de oro. UAM (España).

- Cui Y, Wei Q, Park H, Leiver CM. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293 (5533):1289-1292.

- Tans, SJ, Verschueren, ARM, Dekker, C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52.

- Collins PG, Arnold MS, Avouris P. (2001). Engineering of carbon nanotubes and nanotube circuits by electrical breakdown. Science. 292 (5517) 706-709.

- Duan X, Huang Y, Cui Y, Wang J, Lieber CM. (2001). Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69.

- Cao G, Brinker J (Edit.) (2008). Annual Review of Nanoresearch V2. World Scientific Publishing Co. Singapore 596284.

- Pingang H, Ying X, Yuzhi F. (2006). Application of carbon nanotubes in electrochemical DNA biosensor. Microchim. Acta, 152, 175-186.

- González MB; Costa A (2010). Los biosensores electroquímicos: herramientas de la analítica y del diagnóstico clínico. Biomarcadores: Analítica, diagnóstico y terapéutica. Madrid: Real Academia Nacional de Farmacia, pp. 197-222. ISBN: 9788493738938.

- Menolasina S. (2015). Aplicaciones de la nanotecnología en el campo de las ciencias de la salud. Capítulo 10 en Nanopartículas: fundamentos y aplicaciones – Eds: Lárez VC, Koteich KS, López GF. SABER-ULA, Venezuela. ISBN 978-980-12-8382-9.

- Putzbach W, Ronkainen N. (2013). Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors, 13, 4811–4840.

- Merkoçi A, Aldavert M, Alegret S, Marín S. (2005). New materials for electrochemical sensing V: Nanoparticles for DNA labeling. Trends in Analytical Chemistry, 24(4), 341-349.

- Ajayan PM, Zhou OZ. (2001). Applications of Carbon Nanotubes. En: Carbon Nanotubes. Serie Topics in Applied Physics, Vol. 80, pág. 391-425.

- Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A. (2013). Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv. Drug Deliv. Rev., 65, 1899–1920.

- Cosnier S, Le Goff A, Holzinger Mr. (2014) Enzymatic fuel cells: from design to implantation in mammals. En: Implantable Bioelectronics. E Katz (Ed.). Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 347–362.

-Torrente Rodríguez RM. (2019). Tesis Doctoral: Bioplataformas electroanalíticas versátiles para diagnóstico temprano y fiable de cáncer a diferentes niveles moleculares. Universidad Complutense de Madrid. Facultad de Ciencias Químicas. Departamento de Química Analítica.

- Espinosa Lumbreras JR. (2016) Tesis Doctoral: Biosensores electroquímicos de ADN para la detección del Virus del Papiloma humano (VPH) basados en las metodologías: “Frecuencia característica” y “Corriente de relajación”. Universidad Autónoma de Zacatecas “Francisco García Salinas”. Mexico.

- Alfonso AS, Pérez-López B, Faria RC, Mattoso LHC, Hernández-Herrero M, Roig-Sagués AX, Maltez-da Costa M, Merkoçi A. (2013). Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics. 40 (1) 121-126.

- Li Q, Cheng W, Zhang D, Yu T, Yin Y, Ju H, Ding, S. (2012). Rapid and Sensitive Strategy for Salmonella Detection Using an InvA Gene-Based Electrochemical DNA Sensor. Int. J. Electrochem. Sci. 7: 844-856 .

- Luo C, Lei Y, Yan L, Yu T, Li Q, Zhang D, Ding S, Ju H. (2012) A Rapid and Sensitive Aptamer-Based Electrochemical Biosensor for Direct Detection of Escherichia Coli O111. Electroanal. 24 (5)1186-1191.

- Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, Lin X, Chen Y. (2012). Development of electrochemical DNA biosensors. Trends Anal. Chem. 37,101–111,

- Radi AE, O’Sullivan CK. (2006). Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chemical communications, 32, 3432-3434.

- Mahon Helguero M. (2019). Tesis Doctoral: Biosensores electroquímicos en la detección de microARN en cáncer. Facultad de Farmacia Universidad Complutense. Madrid.

- Pividori MI. (2002). Tesis Doctoral. Nuevos Genosensores Amperométricos Diseño y Construcción. Universitat Autònoma de Barcelona, Bellaterra.

- Mikkelsen SR. (1996). Electrochemical Biosensors for DNA Sequence Detection. Electroanalysis 15–19.

- Gao ZD, Guan FF, Li CY, Liu H-F, Song Y-Y. (2013). Signal-amplified platform for electrochemical immunosensor based on TiO2 nanotube arrays using a HRP tagged antibody-Au nanoparticles as probe. Biosens. Bioelectron. 41, 771–775.

- Martínez Rojas FJ. Desarrollo de un inmunosensor electroquímico para la detección de biomarcador específico de cáncer. Pontificia Universidad católica de Chile. https:// repositorio.uc.cl/handle/11534/45381 0000-0002-2479-6280.

- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. (2002). Molecular Biology of the Cell, 4th edition. New York: Garland Science. SBN-10: 0-8153-3218-1.

-Wang Y, Xu H, Zhang J, Li G. (2008) Electrochemical sensors for clinic analysis. Sensors. 8: 2043-2081.

- Gómez MB. (2019). Estudio in vitro de implantes temporarios de aleación de magnesio (AZ91) modificados superficialmente mediante anodizado. Ingeniería en Materiales, Trabajo de tesis UNMdP. pp. 1-61 - Argentina.

- Tavarez Martínez GdeM. (2017). Tesis de Maestría. Evaluación de recubrimientos TiO2-CeO2 sobre la aleación Ti6A14V, mediante técnicas electroquímicas convencionales y de campo próximo en presencia de células vivas. Centro de Investigación de Ciencia Aplicada. Instituto Politécnico Nacional. Altamira, México.

- Valverde A, Montero-Calle A, Arévalo B, Segundo-Acosta P, Serafín V, Alonso-Navarro M, Solís-Fernández G, Pingarrón JM, Campuzano S, Bardera R. (2021). “Phage-Derived and Aberrant HaloTag Peptides Immobilized on Magnetic Microbeads for Amperometric Biosensing of Serum Autoantibodies and Alzheimer's Disease Diagnosis”. Analysis

and Sensing DOI: 10.1002/anse.202100024.

- Shinkai S and Takeuchi M. (2004). “Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions,” Biosens. Bioelectron., vol. 20, no. 6, pp. 1250– 1259.

- Sellergren C. J. Allender, (2005). “Molecularly imprinted polymers: A bridge to advanced drug delivery,” Adv. Drug Deliv. Rev., 57 (12) 1733–1741.

- Liu YZ, Yao QQ, Zhang XM, Li MN, Zhu AW, Shi GY. (2015). Development of gold nanoparticlesheathed glass capillary nanoelectrodes for sensitive detection of cerebral dopamine. Biosens Bioelectron. 63: 262–268.

- Hu KK, Gao Y, Wang YX, et al. (2013). Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. Journal of Solid State Electrochemistry. 17(12):2971–2977.

- Takahashi Y, Shevchuk AI, Novak P, et al. (2011). Multifunctional Nanoprobes for Nanoscale Chemical Imaging and Localized Chemical Delivery at Surfaces and Interfaces. Angewandte Chemie. 50 (41):9638–9642.

- Danis L, Snowden ME, Tefashe UM, Heinemann CN, Mauzeroll J. (2016). Chap.3: Development of Nano-Disc electrodes for Application as Shear Force Sensitive. PhD thesis. McGill University, Montreal.

- Putzbach W, Ronkainen NJ. (2013). Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors. 13(4):4811–4840.

- Dawson K, Baudequin M, O’Riordan A. (2011). Single on-chip gold nanowires for electrochemical biosensing of glucose. Analyst. 136(21):4507–4513.

- Carrara S, Bolomey L, Boero C, et al. (2011). Single-Metabolite Bio-NanoSensors and System for Remote Monitoring in Animal Models. IEEE Sensors Journal. 716–719.

- Wang HH, Bu Y, Dai WL, Li K, Wang HD, Zuo X. (2015). Well-dispersed cobalt phthalocyanine nanorods on graphene for the electrochemical detection of hydrogen peroxide and

glucose sensing. Sensors and Actuators B: Chemical. 216:298–306.

- Li G, Wang X, Liu L, et al. (2015). Controllable synthesis of 3D Ni(OH)(2) and NiO nanowalls on various substrates for high-performance nanosensors. Small. 11(6):731–739.

- Wang G, Zhu Y, Nan H, Ma W, Zhang X. (2013). Study on porous Cu-based enzyme-free glucose electrochemical sensor with different entrapping agents. Micro and Nano Letters. 8(8):395–399.

- Li H, Xu B, Wang DQ, et al. (2015). Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles. J Biotechnol. 203:97–103.

- Liu GZ, Liu JQ, Davis TP, Gooding JJ. (2011). Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody. Biosens Bioelectron. 26(8):3660–3665.

- Yang ZJ, Jian ZQ, Chen X, et al. (2015). Electrochemical impedance immunosensor for sub-picogram level detection of bovine interferon gamma based on cylinder-shaped TiO2 nanorods. Biosens Bioelectron. 63:190–195.

-Chang YT, Huang JH, Tu MC, Chang P, Yew TR. (2013). Flexible direct-growth CNT biosensors. Biosens Bioelectron. 41:898–902.

- Bonanni A, Loo AH, Pumera M. (2012). Graphene for impedimetric biosensing. TrAC Trends in Analytical Chemistry. 37:12–21.

- Jin B, Wang P, Mao HJ, et al. (2014). Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers. Biosens. Bioelectron. 55: 464 - 469.

- NCI Alliance for Nanotechnology in Cancer. (2007). Understanding nanotechnology [Internet]. Bethesda: National Cancer Institute URL: http:// nano.cancer.gov/learn/ understanding/. (Archived by WebCite® at http://www. webcitation.org/5rkwguKLi). 105.- Huihui Li, Songqin Liu, Zhihui Dai, Jianchun Bao, Xiaodi Yang. (2009). Sensors 9, 8547-

- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. (2008). Electrochemical Biosensors - Sensor Principles and Architectures. Sensors. 8, 1400–1458, doi:10.3390/s80314000.

- Thevenot DR, Toth K, Durst RA, Wilson GS. (2001). Electrochemical biosensors: recommended definitions and classification. Biosensors & Bioelectronics. 16(1-2), 121–131.

- Ching T, YCH Toh, Michinao Hashimoto M (2022) Design and fabrication of micro/ nanofluidics devices and systems. Progress in Molecular Biology and Translational Science 186 (1):15-58

- Elnathan, R., Barbato, M.G., Guo, X, Mariano A, Wang Z, Santoro F, Shi P, Voelcker NH, Xie X, Jennifer L. Young, Zhao Y, Zhao W, Chiappini C. Biointerface design for vertical nanoprobes. Nat Rev Mater (2022). In press. https://doi.org/10.1038/s41578-022-00464-7.

- Vicario AL. (2018). tesis doctoral. Desarrollo de metodologías analíticas modernas destinadas a la determinación de sustancias prohibidas y/o restringidas, para el control de calidad de productos cosméticos. Universidad Nacional de San Luis, Facultad de Quimica, Bioquimica y Farmacia.

- Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W, (2012). Electrochemically synthesized polymers in molecular imprinting for chemical sensing, Anal. Bioanal. Chem., vol. 402, no. 10, pp. 3177–3204.

- Shinkai S, Takeuchi M, (2004). Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions. Biosens. Bioelectron., vol. 20, no. 6, pp. 1250–1259.

- Sellergren, B., & Allender, C. J. (2005). Molecularly imprinted polymers: A bridge to advanced drug delivery. Advanced drug delivery reviews, 57(12), 1733-1741.

- Wang W, Chen C, Lin K-H, Fang Y, Lieber CM. (2007). Nanosensors. US 2007/0264623 A1.

- Chin, B.L.F., Juwono, F.H., Yong, K.S.C. (2022). Nanotechnology and Nanomaterials for Medical Applications. In: Mubarak, N.M., Gopi, S., Balakrishnan, P. (eds) Nanotechnology for Electronic Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-6022-1_4. pp 63-87. Print ISBN978-981-16-6021-4, Online ISBN978-981-16-6022-1.

- Hu X, Mutus B. (2013). Electrochemical detection of sulfide. Rev. Anal. Chem. 32(3):247–256.

- Xu T, Scafa N, Xu L, Zhou S, Al-Ghanem KA, Mahboob S, Fugetsu B, Zhang X. (2016). Biosensores electroquímicos de sulfuro de hidrógeno. Analista. 14, 1185-1195.

- Li M, Chen T, Gooding JJ, Liu J. (2019). Revisión de puntos cuánticos de carbono y grafeno para detección. Sensores ACS 4 (7); 1732-1748. doi:10.1021/acssensors.9b00514.

- Gregor PC. (2010). Drummen. Quantum Dots—From Synthesis to Applications in Biomedicine and Life Sciences. Int. J. Mol. Sci. 11, 154-163.

- Arakawa T, Dao DV, Kohji Mitsubayashi (2022) Biosensors and Chemical Sensors for Healthcare Monitoring: A Review. IEEJ Trans;17: 626 – 636.

- Sahoo S, Nayak A, Gadnayak A, Maheswata Sahoo M, Dave S, Mohanty P, Mohanty JN, Das J (2022). Quantum dots enabled point-of-care diagnostics: A new dimension to the nanodiagnosis. In Advanced Nanomaterials for Point of Care Diagnosis and Therapy (pp. 43-52). Elsevier. ISBN 978-0-323-85725-3.

- Stamplecoskie, K. G., Scaiano, J. C. (2010). Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 132(6), 1825-1827.

- Jing-Hua Tian, Yang Yang, Xiao-Shun Zhou, Bernd Schçllhorn, Emmanuel Maisonhaute, Zhao-Bin Chen, Fang-Zu Yang, Yong Chen, Christian Amatore, Bing-Wei Mao, Zhong-Qun Tian. (2010). Electrochemically Assisted Fabrication of Metal Atomic Wires and

Molecular Junctions by MCBJ and STM-BJ Methods. ChemPhysChem. 11, 2745 – 2755.

- Noima C (INTI-UNSAM (2010). Plataforma de nanosensores y bionanoinsumos para diagnóstico poc de enfermedades infecciosas (NANOPOC) https://studylib. es/doc/2658050/plataforma-de-nanosensores-y-bionanoinsumos-paradiagn%C3%B3st...

- Pradhan A, Lahare P, Sinha P, Singh N, Bhanushree G, Kamil K, Kallol KG, Ondrej K. (2021). Review Biosensors as Nano-Analytical Tools for COVID-19 Detection. Sensors, 21 (23), 7823- 7849.

- Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. (2020). Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 14, 17028–17045.

- Miripour, Z.S.; Sarrami-Forooshani, R.; Sanati, H.; Makarem, J.; Taheri, M.S.; Shojaeian, F.; Eskafi, A.H.; Abbasvandi, F.; Namdar, N.; Ghafari, H.; et al. Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this

pandemic. Biosens. Bioelectron. 2020, 165, 112435.

- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214.

- Mobed, A.; Shafigh, E.S. Biosensors promising bio-device for pandemic screening “COVID-19”. Microchem. J. 2021, 164, 106094.

- Gohel, H.A.; Upadhyay, H.; Lagos, L.; Cooper, K.; Sanzetenea, A. Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nucl. Eng. Technol. 2020, 52, 1436–1442.

- Lukas, H.; Xu, C.; Yu, Y.; Gao, W. Emerging Telemedicine Tools for Remote COVID-19 Diagnosis, Monitoring, and Management. ACS Nano 2020, 14, 16180–16193.

- Ting, D.S.W.; Carin, L.; Dzau, V.; Wong, T.Y. Digital technology and COVID-19. Nat. Med. 2020, 26, 459–461.

- Ting, D.S.W.; Carin, L.; Dzau, V.; Wong, T.Y. Digital technology and COVID-19. Nat. Med. 2020, 26, 459–461.

- Xue, Q.; Kan, X.; Pan, Z.; Li, Z.; Pan, W.; Zhou, F.; Duan, X. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens. Bioelectron. 2021, 186, 113286.

- Rabiee, N.; Bagherzadeh, M.; Ghasemi, A.; Zare, H. Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic. Int. J. Mol. Sci. 2020, 21, 5126.

- Ayankojo AG, Boroznjak R., Reut J, Öpik A, Syritski V (2022). Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein. Sensors and Actuators B: Chemical, 353 pp. 131160.




Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.

Se encuentra actualmente indizada en: