Síntesis y caracterización de complejos metálicos de Cu(II), Zn(II) y Sm(II) con ácido itacónico
Resumen
En este trabajo, se presentan los resultados de la síntesis en solución alcohólica y la caracterización de complejos metálicos de Cu (II), Zn (II) y Sm (III) con el ácido itacónico. Todos estos materiales se caracterizaron por espectroscopía FT-IR y de UV-visible, análi-sis termogravimétrico (TGA), análisis de volatilización térmica (TVA), conductimetría y difracción de polvo. Los análisis FT-IR y UV sugieren una coordinación monodentada para los complejos de zinc y cobre y los resultados termogravimétri-cos sugieren que existen dos moléculas de agua coordinadas en la estructura y cuya estequiometría sería Zn(C5H4O4)·2H2O y Cu(C5H4O4)·2H2O, respectivamente, donde el ligando es el carboxilato de ácido (C5H4O4). Para el complejo de samario se sugiere una estructura iónica con una estequiometría Sm2(C5H4O4)3·4H2O. El estudio de difracción de rayos-X indica que los complejos de Cu y Zn cristalizan en celdas monoclínicas con grupo espacial P21/c.
Palabras clave
Texto completo:
PDFReferencias
JL Velada, E Hernández, LC Cesteros, I Katime, A study of the thermal degradation of several poly(monoalkylaryl itaconates). Polym. Degrad. Stab., 52, 273-282 (1996).
CT Calam, PW Clutterbuck, AE Oxford, H Raistrick. Studies in the biochemistry of micro-organisms. Biochem. J., 33, 1488 (1939).
M Carrillo, A Martínez de Ilarduya, ML Arnal, C Torres, F López-Carrasquero. Synthesis, caracterization and thermal be-havior of Poly (methyl-n-octadecyl itaconate) a comb-like poly-mer with crystallizable side chain. Polym. Bull., 48, 59-66 (2002).
JMG Cowie, SAE Henshall, I c wen, elic ovi . Poly (alkyl itaconates): 4. Glass and sub-glass transitions in the di-alkyl ester series, methyl to hexyl. Polymer, 18, 612-616 (1977).
JMG Cowie, Z Haq. Poly (alkyl itaconates) part v copolymers of selected mono-and di-alkyl esters. Eur. Polym. J., 13, 745-750 (1977).
JMG Cowie, Z Haq. Poly (mono n‐alkyl itaconic acid esters): Their preparation and some physical properties. Br. Polym. J., 9, 241-245 (1977).
JMG Cowie, Z Haq. Some aspects of the thermal stability of poly (alkyl
itaconic acid esters). Br. Polym. J., 9, 246-250 (1977).
J G Cowie, I c wen, elič ovi . Dynamic mechanical spectra of poly (itaconic acid esters) containing phenyl and cyclohexyl rings. Polymer, 16, 869-872 (1975).
JR Allan, JG Bonner, AR Werninck, HJ Bowley, DL Gerrard. Thermal studies on itaconic acid compounds of some transition metal ions. Thermochim. Acta, 122, 295-303 (1987).
H El-Hamshary. Synthesis and water sorption studies of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. Eur. Po-lym. J., 4, 4830-4838 (2007).
A El-Halah, F López-Carrasquero, J Contreras. Applications of hydrogels in the adsorption of metallic ions. Cien. & Ing., 39, 57-70 (2018).
A El-Halah, J Contreras, L Rojas-Rojas, M Rivas, M Romero, F López-Carrasquero, New superabsorbent hydrogels synthesized by copolymerization of acrylamide and N-2-hydroxyethyl acrylamide with itaconic acid or itaconates containing ethylene oxide units in the side chain. J. Polym. Res., 22, 233 (2015).
A El-Halah, D Machado, N González, J Contreras, F López-Carrasquero. Use of super absorbent hydrogels derivative from acrylamide with itaconic acid and itaconates to remove metal ions from aqueous solutions. J. Appl. Polym. Sci., 136, 46999 (2019).
M Yasuda, K Yamasaki, H Ohtaki. Stability of Complexes of Several Carboxylic Acids Formed with Bivalent Metals. Bull. Chem. Soc. Jap., 33, 1067–1070 (1960).
AA El Behini. Kinetics of the non-isothermal decomposition of Cu-and Co-itaconato complexes. J. Thermal Anal., 41, 191-200 (1994).
AH Wibowo, Y Suryandari, A Masykur, S Perez-Yanez, A Rodriguez-Dieguez, J Cepeda. Zinc/Itaconate coordination pol-ymers as first examples with long-lasting phosphorescence based on acyclic ligands. J. Mater. Chem., 6, 10870-10880 (2018).
L Mezzaroba, D Frizon Alfieri, AN Colado Simão, EM Vissoci Reiche. The role of zinc, copper, manganese and iron in neuro-degenerative diseases. Neurotoxic., 74, 230-241 (2019).
T Walsh, H Sandstead, AS Prasad, P Newberne, PJ Fraker. Zinc: health effects and research priorities for the 1990s. Environ. Health Perspect., 102, 5-46 (1994).
Z Pan, S Choi, H Ouadid-Ahidouch, J M Yang, J H Beattie, I Korichneva. Zinc transporters and dysregulated channels in can-cers. Front. Biosci., 22, 623-643 (2017).
EG Ferrer, LL López Tévez, N Baeza, MJ Correa, N Okulik, L Lezama, T Rojo, EE Castellano, OE Piro, PAM Williams. Mo-lecular structure, bioavailability and bioactivity of [Cu(o-phen)2(cnge)](NO3)2·2H2O and [Cu(o-phen)(cnge)(H2O)(NO3)2] complexes. J. Inorg. Biochem., 101, 741-749 (2007).
JE Contreras, B Ramírez, G Díaz de Delgado. Structure of dia-qua(itaconato) cadmium(II), [Cd(C5H4O4)(OH2)2]. J. Chem. Cryst., 27, 391-395 (1997).
A Briceño, G Díaz de Delgado, B Ramírez, WO Velásquez, A Bahsas. Crystal chemistry and thermal behavior of metal salts and complexes of unsaturated dicarboxylic acids: aquabis(hydrogen itaconato)barium(II), [Ba(C5H4O4)2(OH2)2]. J. Chem. Cryst., 29, 785-791 (1999).
RM Nair, MR Sudarsanakumar, S Suma, MRP Kurup. Crystal structure and characterization of a novel luminescent 2D metal-organic framework, poly[aquaitaconato calcium(II)] possessing an open framework structure with hydrophobic channels. J. Mol. Struct., 1105, 316-321 (2016).
ZY Li, B Zhai, SZ Li, GX Cao, FQ Zhang, XF Zhang, FL Zhang, C Zhang. Two series of lanthanide coordination polymers with 2-methylenesuccinate: Magnetic refrigerant, slow magnetic relaxation, and luminescence properties. Cryst. Growth Des., 16, 4574-4581 (2016).
ZY Li, C Zhang, B Zhai, JC Han, MC Pei, JJ Zhang, FL Zhang, SZ Li, GX Cao. Linking heterometallic Cu-Ln chain unit with 2-methylenesuccinate bridge to form 2D network exhibiting large magnetocaloric effect. CrysEngComm, 19, 2702-2810 (2017).
JQ Liu, ZD Luo, Y Pan, A Kumar Singh, M Trivedi, A Kumar. Recent developments in luminescent coordination polymers: De-signing strategies, sensing application and theoretical evidences, Coord. Chem. Rev., 406, 213145 (2020).
GB Deacon,RJ Phillips. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylic coordination. Coord. Chem. Rev., 33, 227-250 (1980).
H Saha, S Mitra. Thermal decomposition reactions of metal carboxylato complexes in the solid state. III. Thermographic and differential thermal studies of metal oxalato, malonato and succinato complexes. Thermochim. Acta, 116, 53-64 (1987).
K Patil, G Chandrashekhar, M George, C Rao. Infrared and thermal decompositions of metal acetates and dicarboxylates. Can. J. Chem., 46, 257-265 (1968).
G Hussein, D Buttrey, P DeSanto, A Abd-Elgaber, H Roshdy, A Myhoub. Formation and characterization of samarium oxide generated from different precursors. Thermochim. Acta, 402, 27-36 (2003).
LJ Rojas, A El-Halah, J Contreras, M Romero, E Rangel, F López-Carrasquero. Estudio preliminar de la copolimerización de acrilamida con el itaconato de mono y dimetoxietilo. Av. Quím., 6, 21-28 (2011).
M Monsalve, J Contreras, E Cardozo, RR Contreras. Evaluación de la actividad de complejos de samario (III) con ácido L-aspártico, ácido L-glutámico, glicina y o-fenantrolina, como ini-ciadores en la polimerización de carbonatos cíclicos. Av. Quím., 10, 129 (2015).
CR Groom, IJ Bruno, MP Lightfoot, SC Ward. The Cambridge Structural Database, Acta Cryst., B72, 171-179 (2016).
A Boultif, D Louër. Powder pattern indexing with the dichotomy method. J. Appl. Cryst., 37, 724 (2004).
A Le Bail. Whole powder pattern decomposition methods and applications: a retrospection. Powder Diffr. 20, 316-326 (2005).
J Rodriguez-Carvajal, Fullprof, version 6.3, LLB, CEA-CNRS, France (2019).
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.