Grafeno: obtención, tipos y su aplicación como sensor para detección de gases y sensor de presión
Resumen
El grafeno, un material bidimensional (2D) de espesor atómico, que presenta extraordinarias propiedades electrónicas, mecánicas y elevada área superficial, ha despertado un gran interés en la fabricación de sensores. En la presente revisión se revisan los avances en sensores basados en grafeno con potencial de aplicación en el ámbito medioambiental para la detec-ción de gases tóxicos. Además se muestra el auge de los sensores de presión basados en grafeno como sensores “wearable” en el ámbito de la salud humana, el Internet of Things o la inteligencia artificial.
Palabras clave
Texto completo:
PDFReferencias
C Shi, H Ye, H Wang, DE Ioannou, Q Li. Precise gas discrimi-nation with cross-reactive graphene and metal oxide sensor ar-rays. Applied Physics Letters, 113(22), 222102 (2018).
G Domènech-Gil, S Barth, J Samà, P Pellegrino, I Gràcia, C Cané, et al. Gas sensors based on individual indium oxide nanowire. Sensors and Actuators B Chemistry, 238, 447–454 (2017).
A Shokri, N Salami. Gas sensor based on MoS2 monolayer. Sensors and Actuators B: Chemistry, 236, 378–385 (2016).
M Makoto, F Shu, E Takashi. Demonstration of NOx gas sens-ing for Pd/ZnO/GaN heterojunction diodes. Journal of Vacuum Science and Technology, 33(1), 013001 (2015).
V Georgakilas, JN Tiwari, KC Kemp, JA Perman, AB Bour-linos, KS Kim, et al. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chemical Reviews, 116(9), 5464-5519 (2016).
MAH Khan, MV Rao, Q Li. Recent Advances in Electrochemi-cal Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors, 19(4), 905 (2019).
S Novikov, N Lebedeva, A Satrapinski, J Walden, V Davydov, A Lebe. Graphene based sensor for environmental monitoring of NO2. Sensors and Actuators B: Chemical, 236, 1054-1060 (2016).
Q Zheng, JH Lee, X Shen, X Chen, JK Kim. Graphene-based wearable piezoresistive physical sensors. Materials Today, 36, 158-179 (2020).
H Huang, S Su, N Wu, H Wan, S Wan, H Bi. Graphene-Based Sensors for Human Health Monitoring. Frontiers in Chemistry, 7:00339 (2019).
T Yang, X Zhao, Y He, H Zhu. Graphene based sensors. En: Graphene: Fabrication, Characterizations, Properties and Ap-plications. Eds. H Zhu, Z Xu, D Xie, Y Fang. Chapter 6. Elsevier Inc. (2018).
A Nag, A Mitra, SC Mukhopadhyay. Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physi-cal, 270, 177-194 (2018).
EW Hill, A Vijayaragahvan, K Novoselov. Graphene Sensors. IEEE Sensors Journal, 11(12), 3161-3170 (2011).
S Ammu. Graphene based chemical sensors. Science Letters, 4, 162 (2015).
SS Varghese, S Lonkar, KK Singh, S Swaminathan, A Abdala. Recent advances in graphene based gas sensors. Sensors and Actuators B: Chemical, 218, 160-183 (2015).
MSA Bhuyan, MN Uddin, MM Islam, FA Bipasha, SS Hossain. Synthesis of graphene. International Nano Letters, 6, 65-83 (2016).
C Soldano, A Mahmood, E Dujardin. Production, properties and potential of graphene. Carbon, 48(8), 2127-2150 (2010).
J Yang, S Luo, X Zhou, J Li, J Fu, W Yang, et al. Flexible, Tun-able, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes. Applied Materials and Interfaces, 11(16), 14997-15006 (2019).
KS Novoselov, AK Geim, SV Morozov, D Jiang, Y Zhang, SV Dubonos, et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669 (2004).
Y Zhu, S Murali, W Cai, X Li, JW Suk, JR Potts, et al. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924 (2010).
T Mahmoudi, Y Wang, YB Hahn. Graphene and its derivatives for solar cells application. Nano Energy, 47, 51-65 (2018).
M Ye, Z Zhang, Y Zhao, L Qu. Graphene Platforms for Smart Energy Generation and Storage. Joule, 2(2), 245-268 (2018).
J Liu, HJ Choi, LY Meng. A review of approaches for the design of high-performance metal/graphene electrocatalysts for fuel cell applications. J. Industrial and Engineering Chemistry, 64, 1-15 (2018).
IV Tudose, E Koudoumas, C Pachiu, F Comanescu, V Dinca, L Rusen, et al. Graphene-based materials and their biomedical and environmental applications: Recent advances. En: Functional Nanostructured Interfaces for Environmental and Biomedical Applications. Eds. V Dinca y MP Suchea. Chapter 9. Elsevier Inc. (2019).
AA Balandin. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10, 569-581 (2011).
KI Bolotin, KJ Sikes, Z Jiang, M Klima, G Fudenberg, J Hone, et al Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9), 351-355 (2008).
C Lee, X Wei, JW Kysar, J Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321(5887), 385-388 (2008).
F Niu, LM Tao, YC Deng, QH Wang, WG Song. Phosphorus doped graphene nanosheets for room temperature NH3 sensing. New Journal of Chemistry, 38(6), 2269-2272 (2014).
F Niu, JM Liu, LM Tao, W Wang, WG Song. Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J. Materials Chemistry A, 1(20), 6130-6133 (2013).
H Terrones, R Lv, M Terrones, MS Dresselhaus. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 75(6), 62501 (2012).
L Shao, G Chen, H Ye, Y Wu, Z Qiao, Y Zhu, et al. Sulfur dioxide adsorbed on graphene and heteroatom-doped graphene: a first-principles study. The European Physical Journal B, 86(2), 54 (2013).
X Wang, A Narita, K Mullen. Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2, 0100 (2018).
Y Hernandez, V Nicolosi, M Lotya, FM Blighe, Z Sun, S De, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563-568 (2008).
U Khan, A O’Neill, M Lotya, S De, JN Coleman. High-Concentration Solvent Exfoliation of Graphene. Small, 6(7), 864-871 (2010).
WS Hummers, RE Offeman, Preparation of Graphitic Oxide. J. American Chemical Society, 80(6), 1339 (1958).
A Kumar, CH Lee. Synthesis and Biomedical Applications of Graphene: Present and Future Trends. En: Advances in graphene science. Eds. M Aliofkhazraei. Chapter 3. Ed. Rijeka: IntechOpen. (2013).
J Hermann, RA DiStasio, A Tkatchenko. First-Principles Models for van der Waals Interactions in Molecules and Materials: Con-cepts, Theory, and Applications. Chemical Reviews, 117(6), 4714-4758 (2017).
F Huttmann, AJ Martínez-Galera, V Caciuc, N Atodiresei, S Schumacher, S Standop, et al. Tuning the van der Waals Interac-tion of Graphene with Molecules via Doping. Physical Review Letters, 115, 236101 (2015).
S Kim, J Park, DL Duong, S Cho, SW Kim, H Yang. Proximity Engineering of the van der Waals Interaction in Multilayered Graphene. Applied Materials and Interfaces, 11(45), 42528-42533 (2019).
F Schedin, AK Geim, SV Morozov, EW Hill, P Blake, MI Katsnelson, et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6, 652–655 (2007).
TO Wehling, KS Novoselov, SV Morozov, EE Vdovin, MI Katsnelson, AK Geim, et al. Molecular Doping of Graphene. Nano Letters, 8(1), 173-177 (2008).
O Leenaerts, B Partoens, FM Peeters. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Physi-cal Review B, 77(12), 125416 (2008).
S Prezioso, F Perrozzi, L Giancaterini, C Cantalini, E Treossi, V Palermo, et al.Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. J. Physical Chemistry C, 117(20), 10683-10690 (2013).
L Ganhua, P Sungjin, Y Kehan, SR Rodney, EO Leonidas, R
Daniel, et al. Toward Practical Gas Sensing with Highly Re-duced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano, 5(2), 1154-1164 (2011).
JD Fowler, MJ Allen, VC Tung, Y Yang, RB Kaner, BH Weiller. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano, 3(2), 301–306 (2009).
F Yavari, E Castillo, H Gullapalli, PM Ajayan, N Koratkar. High sensitivity detection of NO2 and NH3 in air using chemical va-por deposition grown graphene. Applied Physics Letters, 100(20), 203120 (2012).
N Hu, Z Yang, Y Wang, L Zhang, Y Wang, X Huang, et al. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology, 25(2), 025502 (2014).
V Dua, SP Surwade, S Ammu, SR Agnihotra, S Jain, KE Rob-erts, et al. All-Organic Vapor Sensor Using Inkjet-Printed Re-duced Graphene Oxide. Angewandte Chemie International Edition, 49(12), 2154-2157 (2010).
A Fattah, S Khatami. Selective H2S Gas Sensing With a Gra-phene/n-Si Schottky Diode. IEEE Sensors Journal, 14(11), 4104-4108 (2014).
TV Cuong, VH Pham, JS Chung, EW Shin, DH Yoo, SH Hahn, et al. Solution-processed ZnO-chemically converted graphene gas sensor. Materials Letters, 64(22), 2479-2482 (2010).
Z Wang, T Zhang, C Zhao, T Han, T Fei, S Liu, et al. Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing. J. Colloid Interface Science, 514, 599–608 (2018).
Z Wang, T Zhang, T Han, T Fei, S Liu, G Lu. Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sensors and Actua-tors B Chemistry 266, 812–822 (2018).
Y Seekaew, S Lokavee, D Phokharatkul, A Wisitsoraat, T Kerd-charoen, C Wongchoosuk. Low-cost and flexible printed gra-phene-PEDOT:PSS gas sensor for ammonia detection. Organic Electronics, 15(11), 2971–2981 (2014).
Z Wang, C Zhao, T Han, Y Zhang, S Liu, T Fei, et al. High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nano-particles and nitrogen doping approach. Sensors and Actuators B: Chemical, 242, 269-279 (2017).
H Zhang, Q Li, J Huang, Y Du, SC Ruan. Reduced Graphene Oxide/Au Nanocomposite for NO2 Sensing at Low Operating Temperature. Sensors, 16(7), 1152 (2016).
N Hu, Z Yang, Y Wang, L Zhang, Y Wang, X Huang, et. al. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology, 25(2), 025502 (2013).
BH Chu, J Nicolosi, CF Lo, W Strupinski, SJ Pearton, F Ren. Effect of coated platinum thickness on hydrogen detection sensi-tivity of graphene-based sensors. Electrochemical and Solid-State Letters, 14(7), 43–45 (2011)
DT Phan, GS Chung. Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Interna-tional Journal of Hydrogen Energy, 39(1), 620-629 (2014).
Y Ren, C Zhu, W Cai, H Li, H Ji, I Kholmanov, et. al. Detection of sulfur dioxide gas with graphene field effect transistor. Ap-plied Physical Letters, 100(16), 163114 (2012).
L Zhou, F Shen, X Tian, D Wang, T Zhang, W Chen. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale, 5(4), 1564-1569 (2013).
P Cataldi, L Ceseracciu, S Marras, A Athanassiou, IS Bayer. Electrical conductivity enhancement in thermoplastic polyure-thane-graphene nanoplatelet composites by stretch-release cy-cles. Applied Physical Letters, 110(12), 121904 (2017).
C Yan, J Wang, W Kang, M Cui, X Wang, CY Foo, et al. High-ly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors. Advanced Materials, 26(13), 2022-2027 (2014).
Z Luo, X Hu, X Tian, C Luo, H Xu, Q Li, et. al. Structure-Property Relationships in Graphene based strain and pressure sensors for potential artificial intelligence applications. Sensors, 19(5), 1250 (2019).
HB Yao, J Ge, CF Wang, X Wang, W Hu, ZJ Zheng, et al. A Flexible and Highly Pressure‐Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design. Advanced Materials, 25(46), 6692-6698 (2013).
Y Liu, LQ Tao, DY Wang, TY Zhang, Y Yang, TL Ren. Flexi-ble, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Applied Physics Letters, 110(12), 123508 (2017).
YA Samad, Y Li, A Schiffer, SM Alhassan, K Liao. Graphene Foam Developed with a Novel Two‐Step Technique for Low and High Strains and Pressure‐Sensing Applications. Samll, 11(20), 2380-2385 (2015).
H Tian, Y Shu, XF Wang, MA Mohammad, Z Bie, QY Xie, et al. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range. Scientific Reports, 5, 8603 (2015).
CS Boland, U Khan, G Ryan, S Barwich, R Charifou, A Harvey, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 354(6317), 1257-1260 (2016).
V Mirtrakos, L Macintyre, FC Denison, PJW Hands, MPY Desmulliez. Design, Manufacture and Testing of Capacitive Pressure Sensors for Low-Pressure Measurement Ranges. Mi-cromachines, 8(2), 41 (2017).
S Wan, H Bi, Y Zhou, X Xie, S Su, K Yin, et al. Graphene oxide as high-performance dielectric materials for capacitive pressure sensors. Carbon, 114, 209-216 (2017).
Z He, W Chen, B Liang, C Liu, L Yang, D Lu, et al. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dy-namic Interaction Based on Graphene and Porous Nylon Net-works. Applied Materials and Interfaces, 10(15), 12816-12823 (2018).
U Khan, TH Kim, H Ryu, W Seung, SW Kim. Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Advanced Materials, 29(1), 1603544 (2017).
H Zhong, J Xia, F Wang, H Chen, H Wu, S Lin. Graphene‐Piezoelectric Material Heterostructure for Harvesting Energy from Water Flow. Advanced Functional Materials, 27(5), 1604226 (2016).
N Yogeswaran, WT Navaraj, S Gupta, F Liu, V Vinciguerra, L Lorenzelli, et al. Piezoelectric graphene field effect transistor pressure sensors for tactile sensing. Applied Physics Letters, 113(1), 014102 (2018).
I Plesco, M Dragoman, J Strobel, L Ghimpu, F Schut, A Dinescu, et al. Flexible pressure sensor based on graphene aero-gel microstructures functionalized with CdS nanocrystalline thin film. Superlattices and Microstructures, 117, 418-422 (2018).
X Shi, S Liu, Y Sun, J Liang, Y Chen. Lowering Internal Fric-tion of 0D–1D–2D Ternary Nanocomposite‐Based Strain Sen-sor by Fullerene to Boost the Sensing Performance. Advanced Functional Materials, 28(22), 1800850 (2018).
Y Cheng, R Wang, J Sun, L Gao. A Stretchable and Highly Sensitive Graphene‐Based Fiber for Sensing Tensile Strain, Bending, and Torsion. Advanced Materials, 27(45), 7365-7371 (2015).
LQ Tao, KN Zhang, H Tian, Y Liu, DY Wang, YQ Chen, et al. Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano, 11(9), 8790–8795 (2017).
S Gong, DTH Lai, B Su, KJ Si, Z Ma, LW Yap, et al. Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials, 1(4), 1400063 (2015).
Z Lou, S Chen, L Wang, R Shi, L Li, K Jiang, et al. Ultrasensi-tive and ultraflexible e-skins with dual functionalities for weara-ble electronics. Nano Energy, 38, 28–35 (2017).
Y Pang, K Zhang, Z Yang, S Jiang, Z Ju, Y Li, et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano, 12(3), 2346–2354 (2018).
BW An, S Heo, S Ji, F Bien, JU Park, et al. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nature Communications, 9, 2458 (2018).
T Yang, X Jiang, Y Zhong, X Zhao, S Lin, J Li, et al. A Weara-ble and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring. ACS Sensors, 2(7), 967–974 (2017).
Q Li, Z Ullah, W Li, Y Guo, J Xu, R Wang, et al. Wide‐Range Strain Sensors Based on Highly Transparent and Supremely Stretchable Graphene/Ag-Nanowires Hybrid Structures. Small, 12(36), 5058-5065 (2016).
T Yang, W Wang, H Zhang, X Li, J Shi, Y He, et al. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application. ACS Nano, 9(11), 10867-10875 (2015).
Y Long, X Zhao, X Jiang, L Zhang, H Zhang, Y Liu, et al. A porous graphene/polydimethylsiloxane composite by chemical foaming for simultaneous tensile and compressive strain sensing. FlatChem, 10, 1-7 (2018).
Z Chen, Z Wang, X Li, Y Lin, N Luo, M Long, et al. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano, 11(5), 4507-4513 (2017).
Z Lou, S Chen, L Wang, K Jiang, G Shen. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 23, 7-14 (2016).
M Jian, K Xia, Q Wang, Z Yin, H Wang, C Wang, et al. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierar-chical Structures. Advanced Functional Materials, 27(9), 1606066 (2017).
S Chun, A Hong, Y Choi, C Ha, W Park. A tactile sensor using a conductive graphene-sponge composite. Nanoscale, 8(17), 9185-9192 (2016).
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.