Edición génica con el sistema CRISPR/Cas9: historia de su descubrimiento y alcances en agricultura
Resumen
La conversión del sistema inmune procariota CRISPR/Cas9 en una herramienta molecular para edición génica representa el avance tecnológico más destacado de la última década, y ha revolucionado tanto la investigación básica como el desarrollo de aplicaciones en diversas áreas de las ciencias de la vida. Los alcances de esta tecnología han sido reconocidos con el Premio Nobel en Química del año 2020. En las especies vegetales, CRISPR/Cas9 permite la modificación de secuencias genómicas con una eficiencia y especificidad sin precedentes, lo que permite la creación de genotipos con caracteres beneficiosos que permiten afrontar la creciente demanda global de alimentos en un marco de adversidades crecientes da-das por el cambio climático. La creación de esta herramienta y los avances obtenidos con su empleo, no hubiesen sido posibles sin el fundamental aporte de las investigaciones pioneras que permitieron el des-cubrimiento de los sistemas CRISPR en procariotas. En este artículo, abordamos la historia del descu-brimiento de CRISPR hasta el punto de inflexión en su adopción como sistema para edición génica y discutimos su potencial como herramienta en el mejoramiento de los cultivos y sus perspectivas a futuro.
Recibido: 13/04/2021
Aceptado: 27/04/2021
Palabras clave
Texto completo:
PDFReferencias
D Zhang, A Hussain, H Manghwar, K Xie, S Xie, S Zhao et al. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol. J., 18, 1651-1669 (2020).
H Puchta. The repair of double-strand breaks in plants: Mecha-nisms and consequences for genome evolution. J. Exp. Bot., 56,1-14 (2005).
C Schmidt, M Pacher, H Puchta. DNA Break Repair in Plants and Its Application for Genome Engineering. En: Transgenic Plants: Methods and Protocols. Kumar S, Barone P, Smith M (Eds.). Springer New York: New York, NY, pp 237-266 (2019).
TK Huang, H Puchta. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recom-bination. Plant Cell Rep., 38, 443-453 (2019).
S Arnould, C Delenda, S Grizot, C Desseaux, F Pâques, GH Silva et al. The I-CreI meganuclease and its engineered derivati-ves: applications from cell modification to gene therapy. Protein Eng. Des. Sel., 24, 27-31 (2011).
D Carroll. Genome Editing: Past, Present, and Future. Yale J. Biol. Med., 90, 653-659 (2017).
JA Doudna, E Charpentier. The new frontier of genome engineering with CRISPR-Cas9. Science, 346 (6213), Article Number 1258096, 9 pages (2014).
F Jiang, JA Doudna. CRISPR–Cas9 Structures and Mechanisms. Ann. Rev. Biophys., 46, 505-529 (2017).
M Jinek, K Chylinski, I Fonfara, M Hauer, JA Doudna, E Charpentier. A Programmable Dual-RNA – Guided. Science, 337, 816-822 (2012).
Y Ishino, H Shinagawa, K Makino, M Amemura, A Nakata. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identifi-cation of the gene product. J. Bacteriol., 169, 5429-5433 (1987).
FJM Mojica, G Juez, F Rodriguez-Valera. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol., 9, 613-621 (1993).
M Morange. What history tells us XXXVII. CRISPR-Cas: The discovery of an immune system in prokaryotes. J. Biosci., 40, 221-223 (2015).
R Jansen, JDA van Embden, W Gaastra, LM Schouls. Identifica-tion of genes that are associated with DNA repeats in pro-karyotes. Mol. Microbiol., 43, 1565-1575 (2002).
KS Makarova, L Aravind, NV Grishin, IB Rogozin, EV Koonin. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res., 30, 482-496 (2002).
FJM Mojica, C Díez-Villaseñor, J García-Martínez, E Soria. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J. Mol. Evol., 60, 174-182 (2005).
C Pourcel, G Salvignol, G Vergnaud. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolu-tionary studies. Microbiology, 151, 653-663 (2005).
A Bolotin, B Quinquis, A Sorokin, SD Ehrlich. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561 (2005).
R Barrangou, C Fremaux, H Deveau, M Richards, P Boyaval, S Moineau et al. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 315, 1709-1712 (2007).
SJJ Brouns, MM Jore, M Lundgren, ER Westra, RJH Slijkhuis, APL Snijders et al. Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science, 321, 960-964 (2008).
R Sapranauskas, G Gasiunas, C Fremaux, R Barrangou, P Horvath, V Siksnys. The Streptococcus thermophilus CRISPR/ Cas system provides immunity in Escherichia coli. Nucleic Acids Res., 39, 9275-9282 (2011).
E Deltcheva, K Chylinski, CM Sharma, K Gonzales, Y Chao, ZA Pirzada et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471, 602-607 (2011).
L Cong, FA Ran, D Cox, S Lin, R Barretto, N Habib et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339, 819-823 (2013).
Q Shan, Y Wang, J Li, Y Zhang, K Chen, Z Liang et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 31, 686-688 (2013).
JF Li, JE Norville, J Aach, M McCormack, D Zhang, J Bush et al. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol., 31, 688-691 (2013).
V Nekrasov, B Staskawicz, D Weigel, JDG Jones, S Kamoun. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol., 31, 691-693 (2013).
S Shmakov, A Smargon, D Scott, D Cox, N Pyzocha, W Yan et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol., 15, 169-182 (2017).
K Belhaj, A Chaparro-Garcia, S Kamoun, V Nekrasov. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39 (2013).
L Arora, A Narula. Gene Editing and Crop Improvement Using CRISPR-Cas9 System. Front. Plant Sci., 8, 1932 (2017).
K Chen, Y Wang, R Zhang, H Zhang, C Gao. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Ann. Rev. Plant Biol., 70, 667-697 (2019).
SS Nadakuduti, CR Buell, DF Voytas, CG Starker, DS Douches. Genome Editing for Crop Improvement – Applications in Clonally Propagated Polyploids With a Focus on Potato (Solanum tuberosum L.). Front. Plant Sci., 9, 1-11 (2018).
CL Soyars, BA Peterson, CA Burr, ZL Nimchuk. Cutting edge genetics: Crispr/cas9 editing of plant genomes. Plant Cell Physiol., 59, 1608-1620 (2018).
F Wolter, P Schindele, H Puchta. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol., 19, 176 (2019).
Y Zhang, M Pribil, M Palmgren, C Gao. A CRISPR way for accelerating improvement of food crops. Nat. Food, 1, 200-205 (2020).
H Zhu, C Li, C Gao. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol., 21, 661–677 (2020).
LT Hickey, A N. Hafeez, H Robinson, SA Jackson, SCM Leal-Bertioli, M Tester et al. Breeding crops to feed 10 billion. Nat. Biotechnol., 37, 744-754 (2019).
D Rodríguez-Leal, ZH Lemmon, J Man, ME Bartlett, ZB Lippman. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell, 171, 470-480 (2017).
R Mishra, RK Joshi, K Zhao. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. Front. Plant Sci., 9, 1361 (2018).
J Zhou, X Xin, Y He, H Chen, Q Li, X Tang et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep., 38, 475-485 (2019).
MN González, GA Massa, M Andersson, H Turesson, N Olsson, AS Fält et al. Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleo-protein Complexes Delivery of the CRISPR/Cas9 System. Front. Plant Sci., 10, 1-12 (2020).
A Tuncel, KR Corbin, J Ahn-Jarvis, S Harris, E Hawkins, MA Smedley et al. Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol. J., 17, 2259-2271 (2019).
X Zhao, S Jayarathna, H Turesson, AS Fält, G Nestor, MN González et al. Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated muta-genesis of two starch branching enzymes in potato. Sci. Rep., 11, 4311 (2021).
S Sánchez-León, J Gil-Humanes, CV Ozuna, MJ Giménez, C Sousa, DF Voytas et al. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J., 16, 902-910 (2018).
J Shi, H Gao, H Wang, HR Lafitte, RL Archibald, M Yang et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotech-nol. J., 15, 207-216 (2017).
NP Kieu, M Lenman, ES Wang, BL Petersen, E Andreasson. Mutations introduced in susceptibility genes through CRISPR/ Cas9 genome editing confer increased late blight resistance in potatoes. Sci. Rep., 11, 4487 (2021).
R Mishra, RK Joshi, Z Zhao. Base editing in crops: current advances, limitations and future implications. Plant Biotechnol. J., 18, 20-31 (2020).
TK Huang, H Puchta. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Res. (2021). doi:10.1007/s11248-021-00238-x.
DS Aliaga Goltsman, LM Alexander, AE Devoto, JB Albers, J Liu, CN Butterfield et al. Novel Type V-A CRISPR Effectors Are Active Nucleases with Expanded Targeting Capabilities. Cris. J., 3, 454-461 (2020).
MN González, GA Massa, M Andersson, CA Décima Oneto, H Turesson, L Storani et al. Comparative potato genome editing: Agrobacterium tumefaciens-mediated transformation and protoplasts transfection delivery of CRISPR/Cas9 components directed to StPPO2 gene. Plant Cell, Tissue Organ. Cult. (2021). doi:10.1007/s11240-020-02008-9.
Y Ran, Z Liang, C Gao. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci., 60, 490-505 (2017).
JW Woo, J Kim, S Il Kwon, C Corvalán, SW Cho, H Kim et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol., 33: 1162-1164 (2015).
M Andersson, H Turesson, N Olsson, AS Fält, P Ohlsson, MN Gonzalez et al. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant, 164, 378-384 (2018).
CS Lin, CT Hsu, LH Yang, LY Lee, JY Fu, QW Cheng et al. Application of protoplast technology to CRISPR/Cas9 muta-genesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J., 16, 1295-1310 (2018).
SS Nadakuduti, F Enciso-Rodríguez. Advances in Genome Editing With CRISPR Systems and Transformation Technolo-gies for Plant DNA Manipulation. Front. Plant Sci., 11, 2267 (2021).
Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H. Plants Developed by New Genetic Modification Techniques—Comparison of Existing Regulatory Frameworks in the EU and Non-EU Countries. Front. Bioeng. Biotechnol., 7, 26 (2019).
R Lassoued, DM Macall, SJ Smyth, PWB Phillips, H Hesseln. How should we regulate products of new breeding techniques? Opinion of surveyed experts in plant biotechnology. Biotechnol. Reports, 26, e00460 (2020).
T Ishii, M Araki. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food, 8, 44-56 (2017).
HD Jones. Challenging regulations: Managing risks in crop biotechnology. Food Energy Secur., 4, 87-91 (2015).
SE Feingold, V Bonnecarrère, A Nepomuceno, P Hinrichsen, L Cardozo Tellez, H Molinari et al. Edición génica: una oportuni-dad para la región. Rev. Investig. Agrop., 44, 424-427 (2018).
D Eriksson, D Kershen, A Nepomuceno, BJ Pogson, H Prieto, K Purnhagen et al. A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, conse-quences for international trade and potential steps forward. New Phytol., 222, 1673-1684 (2019).
MA Lema. Regulatory aspects of gene editing in Argentina. Transgenic Res., 28, 147-150 (2019).
https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-07/cp180111en.pdf
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.