Polihidruros de cobre: una poderosa herramienta en síntesis química. El reactivo de Stryker en perspectiva

Ricardo R. Contreras

Resumen


https://doi.org/10.53766/AVANQUIM/2021.16.02.01

El reactivo de Stryker, octaedro-hexa-µ3-hidrohexaquis(trifenilfosfina-?P)hexacobre(I), [(Ph3P)CuH)]6, reportado por el Grupo de Osborn en 1971, y sistemáticamente estudiado en sus aplicaciones químicas desde 1988 por Jeffrey M. Stry-ker, constituye una poderosa herramienta en la síntesis química de sustancias que tienen alto valor para la química fina. Desde sustancias con propiedades farmacológicas hasta llegar a compuestos de interés en catálisis, agroquímica, ciencia de materiales o nanoquímica, el reactivo de Stryker, catalogado en 1991 como “reactivo del año”, y todos sus polihidru-ros análogos, ofrecen grandes oportunidades para desarrollar protocolos de síntesis one-pot basados en una gran varie-dad de fosfinas quirales sintetizadas en las últimas décadas. A partir de los resultados obtenidos en la revisión que se ha realizado, se puede concluir que el reactivo de Stryker ha dado impulso a la investigación de cúmulos polihidruros de cobre(I) de alta nuclearidad, brindando nuevas oportunidades de investigación en síntesis orgánica y asimétrica o en el campo de la química inorgánica y organometálica.

Recibido: 05/08/2020
Aceptado: 20/08/2021


Palabras clave


Reactivo de Stryker; cobre; hidruros; síntesis orgánica; síntesis asimétrica

Texto completo:

PDF

Referencias


RH Crabtree. The organometallic chemistry of the transition metals. (7th edition) Wiley, Hoboken, New Jersey (2019).

M Schlosser (Ed.). Organometallics in synthesis: third manual. John Wiley & Sons, Hoboken, New Jersey (2013).

M Bochmann. Organometallics and catalysis: an introduction. Oxford University Press, Oxford (2015).

D Astruc. Organometallic chemistry and catalysis. Springer, Berlin (2007).

R Franke, D Selent, A Börner. Applied Hydroformylation. Chem. Rev., 112(11), 5675–5732 (2012).

RR Contreras. Catálisis homogénea con metales de Transición. Transformado el mundo de la química. Parte 1. CDCHTA-ULA, Mérida (2021).

P Liu, C Ai. Olefin Metathesis Reaction in Rubber Chemistry and Industry and Beyond. Ind. Eng. Chem. Res., 57(11), 3807–3820 (2018).

A Debuigne, C Jérôme, C Detrembleur. Organometallic-mediated radical polymerization of “less activated monomers”: Fundamentals, challenges and opportunities. Polymer, 115, 285–307 (2017).

RR Contreras, E Cardozo, LOJ García-Molina. Transforman-do la catálisis homogénea: cincuenta años del catalizador de Wilkinson. Av. Quím.,12(2-3), 61-67 (2017).

RR Contreras, JA Urbina-Gutiérrez, PJ Rodríguez-Sulbarán. El catalizador de Crabtree. Una breve revisión. Ciencia e In-geniería, 41(1), 3-14 (2020).

RR Contreras, E Cardozo-Villalba, E Lacruz-Vielma, G Pa-paroni-Bruzual. El catalizador de Grubbs. Una breve revision. Ciencia e Ingeniería, 41(3), 323-336 (2020).

RR Contreras, E Cardozo-Villalba, B Fontal. El complejo de Vaska y la química organometálica. Novasinergia, 3(1), 96-110 (2020).

RR Contreras, F Bellandi Rullo, O Sánchez-Velasco. Quími-ca organometálica aplicada. El reactivo de Schwartz. Ciencia e Ingeniería, 42(2), 205-214 (2021).

M Beller, HU Blaser. Organometallics as catalysts in the fine chemical industry. Springer, Heidelberg (2012).

N Krause (Ed.). Modern organocopper chemistry. John Wiley & Sons, Weinheim (2002)

AJ, Jordan, G Lalic, JP Sadighi. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. Chem. Rev., 116(15), 8318–8372 (2016).

GA Lawrance. Introduction to coordination chemistry. John Wiley & Sons, Chichester, UK (2013).

DM Brestensky, DE Huseland, C McGettigan, JM Stryker. Simplified, “one-pot” procedure for the synthesis of [(Ph3P)CuH]6, a stable copper hydride for conjugate reduc-tions. Tetrahedron Lett., 29(31), 3749-3752 (1988).

C Deutsch, N Krause, BH Lipshutz. CuH-Catalyzed Reac-tions. Chem. Rev., 108(8), 2916–2927 (2008).

SA Bezman, MR Churchill, JA Osborn, J Wormald. Prepara-tion and crystallographic characterization of a hexameric tri-phenylphosphinecopper hydride cluster. J. Am. Chem. Soc., 93(8), 2063–2065 (1971).

MR Churchill, SA Bezman, JA, Osborn, J Wormald. Synthe-sis and molecular geometry of hexameric triphenylphosphinocopper(I) hydride and the crystal structure of H6Cu6(PPh3)6. HCONMe2 [hexameric triphenylphosphino copper(I) hydride dimethylformamide]. Inorg. Chem., 11(8), 1818–1825 (1972).

RR Schrock, JA Osborn. Catalytic hydrogenation using ca-tionic rhodium complexes. I. Evolution of the catalytic sys-tem and the hydrogenation of olefins. J. Am. Chem. Soc.,98(8), 2134-2143 (1976).

RR Schrock, JA Osborn. Catalytic hydrogenation using ca-tionic rhodium complexes. 3. The selective hydrogenation of dienes to monoenes. J. Am. Chem. Soc.,98(15), 4450–4455 (1976).

GV Goeden, KG Caulton. Soluble copper hydrides: solution behavior and reactions related to carbon monoxide hydroge-nation. J. Am. Chem. Soc.,103(24), 7354–7355 (1981).

TH Lemmen, K Folting, JC Huffman, KG Caulton. Copper polyhydrides. J. Am. Chem. Soc.,107(25), 7774–7775 (1985).

DM Brestensky, JM Stryker. Regioselective conjugate reduc-tion and reductive silylation of a,ß-unsaturated. Tetrahedron Lett., 30(42), 5677–5680 (1989).

RS Dhayal, WE van Zyl, CW Liu. Polyhydrido Copper Clus-ters: Synthetic Advances, Structural Diversity, and Nanoclus-ter-to-Nanoparticle Conversion. Acc. Chem. Res.,49(1), 86-95 (2015).

BH Lipshutz. Copper(I) mediated 1,2- and 1,4-Reductions. En: Modern Organocopper Chemistry. N Krause (Ed.), Wi-ley-VCH, Weinheim, Germany, p. 167-187 (2002).

H Auer, H Kohlmann. Reinvestigation of Crystal Structure and Non-Stoichiometry in Copper Hydride, CuH1-x(0=x=0.26). Z. Anorg. Allg. Chem., 640(15), 3159–3165 (2014).

YN Xu, WY Ching. Electronic, optical, and structural proper-ties of some wurtzite crystals. Phys. Rev. B Condens. Mat-ter, 48(7), 4335–4351 (1993).

JA Goedkoop, AF Andresen. The crystal structure of copper hydride. Acta Crystallogr., 8(2), 118–119 (1955).

RR Contreras, Y Rojas-Pérez. Ligandos tipo salen en química de coordinación. Una breve revision. Ciencia e Ingeniería, 39(3), 307-314 (2018).

C Sun, BK Teo, C Deng, J Lin, GG Luo, C-H Tung, D. Sun. Hydrido-coinage-metal clusters: Rational design, synthetic protocols and structural characteristics. Coord. Chem. Rev., 427, 213576 (2021)

TAD Nguyen, BR Goldsmith, HT Zaman, G Wu, B Peters, TW Hayton. Synthesis and Characterization of a Cu14 Hy-dride Cluster Supported by Neutral Donor Ligands. Chem. Eur. J., 21(14), 5341–5344 (2015).

AJ Edwards, RS Dhayal, PK Liao, JH Liao, MH Chiang, RO Piltz, S Kahlal, JY Saillard, CW Liu. Chinese Puzzle Mole-cule: A 15 Hydride, 28 Copper Atom Nanoball. Angew. Chem., 126(28), 7342–7346 (2014).

WS Mahoney, DM Brestensky, JM Stryker. Selective hy-dride-mediated conjugate reduction of alpha,beta-unsaturated carbonyl compounds using [(Ph3P)CuH]6. J. Am. Chem. Soc.,110(1), 291–293 (1988).

TM Koenig, JF Daeuble, DM Brestensky, JM Stryker. Con-jugate reduction of polyfunctional a,ß-unsaturated carbonyl compounds using [(Ph3P)CuH]6. Compatibility with halogen, sulfonate, and ?-oxygen and sulfur substituents. Tetrahedron Lett., 31(23), 3237–3240 (1990).

AI Meyers, TR Elworthy. Chiral formamidines. The total asymmetric synthesis of (-)-8-azaestrone and related (-)-8-aza-12-oxo-17-desoxoestrone. J. Org. Chem., 57(17), 4732–4740 (1992).

DM Brestensky. I. Reductions of organic carbonyl com-pounds using soluble copper(I) hydride complexes. Doctoral dissertation, Indiana University, Bloomington (1992).

WS Mahoney, JM Stryker. Hydride-mediated homogeneous catalysis. Catalytic reduction of alpha,beta-unsaturated ke-tones using [(Ph3P)CuH]6 and H2. J. Am. Chem. Soc.,111(24), 8818–8823 (1989).

JF Daeuble, JM Stryker. Hexa – µ– hydrohex-akis(triphenylphosphine)hexacopper. Encycl. Reagents Org. Synth., 2001, 1–3 (2001).

JF Daeuble. I. Stoichiometric and hydride-mediated catalytic reductions of organic functionality using soluble copper(I) hydrides. Doctoral dissertation, Indiana University, Bloo-mington (1993).

JX Chen, JF, Daeuble, JM Stryker. Phosphine Effects in the Copper(I) Hydride-Catalyzed Hydrogenation of Ketones and Regioselective 1,2-Reduction of a,ß-Unsaturated Ketones and Aldehydes. Hydrogenation of Decalin and Steroidal Ketones and Enones. Tetrahedron, 56(18), 2789–2798 (2000).

BH Lipshutz, W Chrisman, K Noson. Hydrosilylation of aldehydes and ketones catalyzed by [Ph3P(CuH)]6. J. Orga-nomet. Chem., 624(1-2), 367–371 (2001).

S Díez-González, SP Nolan. Copper, Silver, and Gold Com-plexes in Hydrosilylation Reactions. Acc. Chem. Res, 41(2), 349–358 (2008).

P Chiu, SK Leung. Stoichiometric and catalytic reductive aldol cyclizations of alkynediones induced by Stryker’s rea-gent. Chem. Commun., 2004(20), 2308–2309 (2004).

JF Daeuble, C McGettigan, JM Stryker. Selective reduction of alkynes to cis-alkenes by hydrometallation using [(Ph3P)CuH]6. Tetrahedron Lett.,31(17), 2397–2400 (1990).

FA Luzzio. The Henry reaction: recent examples. Tetrahe-dron, 57(6), 915–945. (2001).

 De Fátima. Synthetic Applications of Stryker’s Reagent. Synlett,2005(11), 1805–1806 (2005).

P Chiu, W Chung. Reductive Intramolecular Henry Reactions Induced by Stryker’s Reagent. Synlett, 2004(01), 55–58 (2004).

M Miesch, C Heinrich, C Peter, L Miesch, P Geoffroy. Dias-tereo- and Enantioselective Synthesis of Polyfunctionalized Diquinanes, Hydrindanes, and Decalins Bearing a Hydroxyl Group at the Ring Junction. Synthesis, 48(11), 1607–1615 (2016).

L Villaescusa Castillo, AMD Lanza, R Faure, L Debrauwer, R Elias, G Balansard. Two sesquiterpenoids, lucinone and glutinone, from Jasonia glutinosa. Phytochemistry, 40(4), 1193–1195 (1995).

P Chiu, CP Szeto, Z Geng, KF Cheng. Application of the tandem Stryker reduction–aldol cyclization strategy to the asymmetric synthesis of lucinone. Tetrahedron Lett., 42(24), 4091–4093 (2001).

P Ramesh, D Suman, K Reddy. Asymmetric Synthetic Strat-egies of (R)-(–)-Baclofen: An Antispastic Drug. Synthesis, 50(2), 211–226 (2017).

P Kraft, J Ahlin, M Büchel, P Sutter. On the Crossroad of Dienone Musks and Cassyrane: Synthesis and Olfactory Properties of New High-Impact Orris Odorants. Synthesis, 44(19), 2985–2998 (2012).

J Tanuwidjaja, S-S Ng, TF Jamison. Total Synthesis ofent-Dioxepandehydrothyrsiferol via a Bromonium-Initiated Epoxide-Opening Cascade. J. Am. Chem. Soc., 131(34), 12084–12085 (2009).

CP Manri´quez, ML Souto, JA Gavi´n, M Norte, JJ Fernández. Several new squalene-derived triterpenes from Laurencia. Te-trahedron, 57(15), 3117–3123. (2001).

S Diethelm, EM Carreira. Total Synthesis of Gelsemoxonine through a Spirocyclopropane Isoxazolidine Ring Contraction. J. Am. Chem. Soc., 137(18), 6084–6096 (2015).

R Skoda-Földes, L Kollár. Transition-Metal-Catalyzed Reac-tions in Steroid Synthesis. Chem. Rev., 103(10), 4095–4130 (2003).

WR Roush, CK Wada. Application of eta.4-Diene Iron Tri-carbonyl Complexes in Acyclic Stereocontrol: Asymmetric Synthesis of the as-Indacene Unit of Ikarugamycin (A Formal Total Synthesis). J. Am. Chem. Soc.,

(5), 2151–2152 (1994).

T Nakata. Total Synthesis of Marine Polycyclic Ethers. Chem. Rev., 105(12), 4314–4347 (2005).

Y Hayashi. Pot economy and one-pot synthesis. Chem. Sci., 7(2), 866–880 (2016).

B Lipshutz. Rediscovering Organocopper Chemistry Through Copper Hydride. It’s All About the Ligand. Synlett, 2009(4), 509–524 (2009).

R Schmid, J Foricher, M Cereghetti, P Schönholzer. Axially Dissymmetric Diphosphines in the Biphenyl Series: Synthesis of (6,6'-Dimethoxybiphenyl-2,2'-diyl) bis(diphenylphosphine)(“MeO-BIPHEP”) and Analogues via an ortho-Lithiation/Iodination Ullmann-Reaction Approach. Helv. Chim. Acta, 74(2), 370–389 (1991).

HU Blaser, W Brieden, B Pugin, F Spindler, M Studer, A Togni. Solvias Josiphos ligands: from discovery to technical applications. Top. Catal., 19(1), 3–16 (2002).

T Saito, T Yokozawa, T Ishizaki, T Moroi, N Sayo, T Miura, H Kumobayashi. New chiral diphosphine ligands designed to have a narrow dihedral angle in the biaryl backbone. Adv. Synth. Catal., 343(3), 264-267 (2001).

(a) BH Lipshutz, K Noson, W Chrisman, A Lower. Asymme-tric Hydrosilylation of Aryl Ketones Catalyzed by Copper Hydride Complexed by Nonracemic Biphenyl Bis-phosphine Ligands. J. Am Chem. Soc., 125(29), 8779–8789 (2003). (b) BH Lipshutz, N Tanaka, BR Taft, C-T Lee. Chiral Silanes via Asymmetric Hydrosilylation with Catalytic CuH. Org. Lett., 8(10), 1963–1966 (2006). (c) BH Lipshutz, C-T Lee, JM Servesko. Asymmetric CuH-Catalyzed Hydrosilylations en Route to the C-9 Epimer of Amphidinoketide ?. Org. Lett., 9(23), 4713–4716 (2007). (d) BA Baker, ŽV Boškovic, BH Lipshutz. (BDP) CuH: A “Hot” Stryker’s Reagent for Use in Achiral Conjugate Reduc-tions. Org. Lett., 10(2), 289–292 (2008). (e) RTH Linstadt, CA Peterson, CI, Jette, ZV Boskovic, BH Lipshutz. Control of Chemo-, Regio-, and Enantioselectivity in Copper Hydride Reductions of Morita-Baylis-Hillman Ad-ducts. Org. Lett., 19(2), 328–331 (2017). (f) BH Lipshutz, BA Frieman, CuH in a Bottle: A Convenient Reagent for Asymmetric Hydrosilylations. Angew. Chem, 117(39), 6503–6506 (2005). (g) BH Lipshutz, J Keith, P Papa, R Vivian. A convenient, ef-ficient method for conjugate reductions using catalytic quan-tities of Cu(I). Tetrahedron Lett., 39(26), 4627–4630 (1998).

BH Lipshutz, JM Servesko, BR Taft. Asymmetric 1,4-Hydrosilylations of a,ß-Unsaturated Esters. J. Am. Chem. Soc., 126(27), 8352–8353 (2004).

DA Ekanayake, A Chakraborty, JA Krause, H Guan. Steric Effects of HN(CH2CH2PR2)2 on the Nuclearity of Copper Hydrides. Inorg. Chem., 59(17), 12817–12828 (2020).

TAD Nguyen, ZR Jones, DF Leto, G Wu, SL Scott, TW Hayton. Ligand-exchange-induced growth of an atomically precise Cu29 nanocluster from a smaller cluster. Chem. Ma-ter., 28(22), 8385–8390 (2016).

J Wu, ASC Chan. P-Phos: A Family of Versatile and Effec-tive Atropisomeric Dipyridylphosphine Ligands in Asymme-tric Catalysis. Acc. Chem. Res., 39(10), 711–720 (2006).

DW Li, HX Tan, DL Zhu, HY Li, DJ Young, JL Yao, JP Lang. Ligand-Controlled Copper(I)-Catalyzed Cross-Coupling of Secondary and Primary Alcohols to a-Alkylated Ketones, Pyridines, and Quinolines. Org Lett., 20(3), 608–611. (2018).

GQ Lin, YM Li, AS Chan. Principles and applications of asymmetric synthesis. John Wiley & Sons, New York (2001).

M Gross. Significance of Drug Stereochemistry in Modern Pharmaceutical Research and Development. Annu. Rep. Med. Chem., 1990, 323–331 (1990).

L Hu, Y Zhang, GQ Chen, BJ Lin, QW Zhang, Q Yin, X Zhang. CuH-Catalyzed Atropoenantioselective Reduction of Bringmann’s Lactones via Dynamic Kinetic Resolution. Or-ganic Letters.Org. Lett., 21(14), 5575-5580 (2019).

MW Gribble, MT Pirnot, JS Bandar, RY Liu, SL Buchwald. Asymmetric Copper Hydride-Catalyzed Markovnikov Hydro-silylation of Vinylarenes and Vinyl Heterocycles. J. Am. Chem. Soc., 139(6), 2192–2195 (2017).

S Feng, H Hao, P Liu, SL Buchwald. Diastereo- and Enanti-oselective CuH-Catalyzed Hydroamination of Strained Tri-substituted Alkenes. ACS Catal., 10(1), 282-291 (2019).

YY Gui, N Hu, XW Chen, L Liao, T Ju, JH Ye, Z Zhang, J Li, DG Yu. Highly Regio- and Enantioselective Copper-Catalyzed Reductive Hydroxymethylation of Styrenes and 1,3-Dienes with CO2. J. Am. Chem. Soc., 139(47), 17011–17014 (2017).

E Ascic, SL Buchwald, Highly Diastereo- and Enantioselec-tive CuH-Catalyzed Synthesis of 2,3-Disubstituted Indolines. J. Am. Che. Soc., 137(14), 4666–4669 (2015).

J Ding, JCH Lee, DG Hall. Stereoselective Preparation of ß-Aryl-ß-Boronyl Enoates and Their Copper-Catalyzed Enanti-oselective Conjugate Reduction. Org. Lett., 14(17), 4462–4465 (2012).

H Ito, A Watanabe, M Sawamura. Versatile Dehydrogenative Alcohol Silylation Catalyzed by Cu (I)-Phosphine Complex. Org. Lett., 7(9), 1869–1871 (2005).




Depósito Legal: PPI200602ME2232
ISSN: 1856-5301

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.