Cell encapsulation using chitosan: chemical aspects and applications

Maura Rojas Pirela, Verónica Rojas, Elizabeth Pérez Pérez, Cristóbal Lárez Velásquez


In this work, the main approaches for the preparation of encapsulating matrices using chitosan-containing formulations have been reviewed. Various methodologies have been considered, such as physical intermolecular bonds and chemical cross-linking reactions, including the click reactions which have become novel in the cross-linking of systems containing this biopo-lymer. Likewise, the formation of different macroscopic assemblies such as spheroids, vesicles, layer by layer polycomplexes, etc., has been addressed. In the final part of the work, the main achievements reported with these matrices in the encapsulation of cells, both eukaryotic and prokaryotic, are discussed, emphasizing their potential applications and perspectives in different fields as medicine (treatment of traumatic diseases, diabetes, venous diseases, tissue regeneration, transplantation and toler-ance); food (administration of probiotics); industrial applications (bioethanol production); etc.

Recibido: 07/10/2021
Revisado: 14/11/2021
Aceptado: 03/12/2021

Palabras clave

Cell encapsulating matrices; Click reaction; chemical crosslinking; ionotropic gelation

Texto completo:



TM Chang, Semipermeable microcapsules. Science, 146, 524–525 (1964)

T Wang, J Adcock, W Kühtreiber, D Qiang, KJ Salleng, I Trenary, P Williams. Successful allotransplantation of en-capsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression. Transplantation, 85, 331–337 (2008).

Espona-Noguera, J Ciriza, A Cañibano-Hernández, G Orive, RM Hernández, L Saenz del Burgo et al. Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Deli-very in Type 1 Diabetes Mellitus. Pharmaceutics, 11(11), ar-ticle number 597, 28 pages (2019).

M Hashemi, F Kalalinia. Application of encapsulation technol-ogy in stem cell therapy. Life Sciences, 143, 139–146 (2015).

M Farina, JF Alexander, U Thekkedath, M Ferrari, A Grattoni. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Advanced drug delivery reviews, 139, 92-115 (2019).

P De Vos, HA Lazarjani, D Poncelet, MM Faas. Polymers in cell encapsulation from an enveloped cell perspective. Advanced Drug Delivery Reviews, 67(68), 15–34 (2014).

JE Park, J Lee, ST Lee, E Lee E. In vitro maturation on ovarian granulosa cells encapsulated in agarose matrix im-proves developmental competence of porcine oocytes. The-riogenology, 1(164), 42–50 (2021).

G Fundueanu, M Constantin, S Bucatariu, A Nicolescu, P Ascenzi, LG Moise et al. Simple and dual cross-linked chito-san millicapsules as a particulate support for cell culture. In-ternational Journal of Biological Macromolecules, 143, 200-212 (2020).

A Blocki, F Löper, N Chirico, AT Neffe, F Jung, C Stamm et al. Engineering of cell-laden gelatin-based microgels for cell delivery and immobilization in regenerative therapies. Clinical Hemorheology and Microcirculation, 67(3-4), 251–259 (2017).

S Riedel, P Hietschold, C Krömmelbein, T Kunschmann, R Konieczny, W Knolle et al. Design of biomimetic collagen ma-trices by reagent-free electron beam induced crosslinking: Structure-property relationships and cellular response. Mate-rials & Design, 168, 107606 (2019).

J Cheng, D Park, Y Jun, J Lee, J Hyun, S Lee. Biomimetic spinning of silk fibers and in situ cell encapsulation. Lab. Chip, 16(14), 2654-2661 (2016).

T Gao, T Chen, C Feng, X He, C Mu, J Anzai et al. Design and fabrication of flexible DNA polymer cocoons to encapsulate live cells. Nat. Commun., 10, 2946 (2019).

MS Mohammadi, MN Bureau, SN Nazhat. Polylactic acid (PLA) biomedical foams for tissue engineering. In: Biomed-ical Foams for Tissue Engineering Applications. Woodhead Publishing Limited, Chapter 11, pages 313–334 (2014).

E González, C Herencias, MA Prieto. A polyhydroxyalka-noate-based encapsulating strategy for ?bioplasticizing? mi-croorganisms. Microbial Biotechnology, 13(1), 185– 198 (2020).

J Sebastian, T Rouissi, SK Brar. Fungal chitosan: prospects and challenges. In: Handbook of Chitin and Chitosan. Vo-lume 1: Preparation and Properties. Elsevier. Chapter 14, pages 419-452 (2020).

H Abdelkader, SA Hussain, N Abdullah, S Kmaruddin. Re-view on micro-encapsulation with Chitosan for pharmaceuti-cals applications. MOJ Curr. Res. Rev., 1(2), 77?84 (2018).

J Lizardi-Mendoza, W Argüelles-Monal, F Goycoolea-Valencia. Chemical characteristics and functional properties of chitosan. In: Chitosan in the preservation of agricultural com-modities. Eds.: S Bautista-Baños, G Romanazzi, A Jiménez-Aparicio. Academic Press. Chapter 1 (2016).

C Lárez-Velásquez Chitosan-based nanomaterials on con-trolled bioactive agents delivery: a review. J. Anal. Pharm. Res., 7(4), 484-489 (2018).

N Boucard, C Viton, A Domard. New Aspects of the Forma-tion of Physical Hydrogels of Chitosan in a Hydroalcoholic Medium. Biomacromolecules, 6, 3227-3237 (2005).

J Berger, M Reist, JM Mayer, O Felt, R Gurny. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Bio-pharm., 57, 35–52 (2004).

J Berger, M Reist, JM Mayer, O Felt, NA Peppas, R Gurny. Structure and interactions in covalently and ionically cros-slinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm., 57, 19–34 (2004).

KV HarishK,RN Tharanathan. Crosslinked chitosan — prepa-ration and characterization. Carbohydrate Research, 341(1), 169-173 (2006).

Y Hong, H Song, Y Gong, Z Mao, C Gao, J Shen. Cova-lently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomate-rialia, 3(1), 23–31 (2007).

VX Truong, MP Ablett, HT Gilbert, J Bowen, SM Richard-son, JA Hoyland, AP Dove. In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering. Bioma-ter. Sci., 2, 167-175 (2014).

Crescenzi, D Imbriaco, C Lárez-Velàsquez, M Dentini, A Ciferri. Novel types of polysaccharidic assemblies. Macromo-lecular Chemistry and Physics, 196(9), 2873-2880 (1995).

Yu, DJ O'Sullivan. Immobilization of whole cells of Lactococ-cus lactis containing high levels of a hyperthermostable ß-galactosidase enzyme in chitosan beads for efficient galacto-oligosaccharide production. J. Dairy Sci., 101(4), 2974-2983 (2018).

YF Poon, Y Cao, Y Liu, V Chan, M Chan-Park. Hydrogels Based on Dual Curable Chitosan-graft-Polyethylene Glycol-graft-Methacrylate: Application to Layer-by-Layer Cell Encap-sulation. ACS Applied Materials & Interfaces, 2(7), 2012–2025 (2010).

SA Young, SE Sherman, T Cooper, C Brown, F Anjum, DA Hess et al. Mechanically resilient injectable scaffolds for intramuscular stem cell delivery and cytokine release. Bioma-terials, 159, 146-160 (2018).

MA Azagarsamy, KS Anseth. Bioorthogonal Click Chemistry: An Indispensable Tool to Create Multifaceted Cell Culture Scaffolds. ACS Macro Letters, 2, 5-9 (2013)

JP Chen, TH Cheng. Thermo-Responsive Chitosan-graft-poly(N-isopropylacrylamide) Injectable Hydrogel for Cultiva-tion of Chondrocytes and Meniscus Cells. Macromol. Biosci., 6, 1026–1039 (2006).

C Lárez–Velásquez. Quitosano y nanopartículas. En: Nanopar-ticulas: fundamentos y aplicaciones, Capítulo 8. Editores: C Lárez-Velásquez, S Koteich, F López. Comisión de Publica-ciones del Departamento de Química, Universidad de Los An-des, Venezuela. Pags. 203–222 (2015).

Y Luo, Q Wang. Recent development of chitosan-based polye-lectrolyte complexes with natural polysaccharides for drug de-livery. Int. J. Biol. Macromol., 64, 353–367 (2014).

SR Bhatia, SF Khattak, SC Roberts. Polyelectrolytes for cell encapsulation. Current Opinion in Colloid & Interface Science, 10, 45–51 (2005).

M Thanou, BI Florea, M Geldof, HE Junginger, G Borchard. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 23(1), 153–159 (2002).

K Romøren, S Pedersen, G Smistad, Ø Evensen, BJ Thu. The influence of formulation variables on in vitro transfection effi-ciency and physicochemical properties of chitosan-based po-lyplexes. International Journal of Pharmaceutics, 261(1-2), 115–127 (2003).

M Sahin, N Kocak, G Arslan, HI Ucan. Synthesis of cros-slinked chitosan with epichlorohydrin possessing two novel po-lymeric ligands and its use in metal removal. J. Inorganic & Organometallic Polymers and Materials, 21(1), 69-80 (2011).

WM Argüelles-Monal, J Lizardi-Mendoza, D Fernández-Quiroz, MT Recillas-Mota, M Montiel-Herrera. Chitosan de-rivatives: Introducing new functionalities with a controlled mo-lecular architecture for innovative materials. Polymers, 10(3), article number 342, 23 pages (2018).

Y Chen, Y Ye, R Li, Y Guo, H Tan. Synthesis of chitosan 6-OH immobilized cyclodextrin derivates via click chemistry. Fibers & Polymers, 14, 1058–1065 (2013).

N Nishi, Y Maekita, SI Nishimura, O Hasegawa, S Tokura. Highly phosphorylated derivatives of chitin, partially deacety-lated chitin and chitosan as new functional polymers: metal binding property of the insolubilized materials. Int. J. Biol. Macromol., 9(2), 109-114 (1987).

N R Kil’deeva, PA Perminov, LV Vladimirov, VV Novikov, SN Mikhailov. About Mechanism of Chitosan Cross-Linking with Glutaraldehyde. Russian J. Bioorganic Chemistry, 35(3), 360–369 (2009).

L Wang, JP Stegemann. Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Bio-materialia, 7(6), 2410-2417 (2011).

RAA Muzzarelli. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Poly-mers, 77, 1–9 (2009).

Q Zou, J Li, Y Li. Preparation and characterization of vanillin-crosslinked chitosan therapeutic bioactive microcarriers. Int. J. Biol. Macromol., 79, 736-747 (2015).

K Wegrzynowska-Drzymalska, P Grebicka, DT Mlynarczyk, D Chelminiak-Dudkiewicz, H Kaczmarek, T Goslinski, M Ziegler-Borowska. Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications. Materials, 13, 3413, 27 pages (2020).

LCR Carvalho, F Queda, C Almeida-Santos, MB Marques. Selective modification of chitin and chitosan: on the route to tailored oligosaccharides. Chemistry–An Asian Journal, 11(24), 3468-3481 (2016).

AS Kritchenkova, YA Skorika. Click reaction in chitosan chemistry. Russian Chemical Bulletin, International Edi-tion, 66(5), 769—781 (2017).

BA Zielinski, P Aebischer. Chitosan as a matrix for mammal-ian cell encapsulation. Biomaterials, 15, 1049–1056 (1994).

M Boido, M Ghibaudi, P Gentile, E Favaro, R Fusaro, C Ton-da-Turo. Chitosan-based hydrogel to support the paracrine ac-tivity of mesenchymal stem cells in spinal cord injury treat-ment. Sci. Rep., 9, 6402 (2019).

K Roshanbinfar, S Salahshour Kordestani. Encapsulating Beta Islet Cells in Alginate, Alginate-Chitosan and Alginate-Chitosan-PEG Microcapsules and Investigation of Insulin Se-cretion. J. Biomat. & Tissue Eng., 3, 185–189 (2013).

V Chander, AK Singh, G Gangenahalli. Cell encapsulation potential of chitosan-alginate electrostatic complex in prevent-ing natural killer and CD8+ cell-mediated cytotoxicity: an in vitro experimental study. J. Microencapsul., 35, 522–532 (2018).

A Vossoughi, HWT Matthew. Encapsulation of mesenchymal stem cells in glycosaminoglycans-chitosan polyelectrolyte microcapsules using electrospraying technique: Investigating capsule morphology and cell viability. Bioeng. Transl. Med., 3, 265–274 (2018).

S Itai, K Suzuki, Y Kurashina, H Kimura, T Amemiya, K Sato, M Nakamura, H Onoe. Cell-encapsulated chitosan-collagen hydrogel hybrid nerve guidance conduit for peripheral nerve regeneration. Biomed. Microdevices, 22, 81 (2020).

S Ramesh, K Rajagopal, D Vaikkath, PD Nair, V Madhuri. Enhanced encapsulation of chondrocytes within a chito-san/hyaluronic acid hydrogel: a new technique. Biotechnol. Lett., 36, 1107–1111 (2014).

SM Oliveira, G Turner, PS Rodrigues, MA Barbosa, M Ali-khani, C Teixeira. Spontaneous chondrocyte maturation on 3D-chitosan scaffolds. J. Tissue Science & Engineering, 4, (2012).

JS Choi, HS Yoo. Chitosan/Pluronic Hydrogel Containing bFGF/Heparin for Encapsulation of Human Dermal Fibro-blasts. J. Biomaterials Science, Polymer Edition, 24, 210–223 (2013).

RW Nurhayati, RD Cahyo, K Alawiyah, G Pratama, G Agustina, RD Antarianto, AR Prijanti, W Mubarok, AJ Ra-hyussalim. Development of double-layered alginate-chitosan hydrogels for human stem cell microencapsulation. AIP Con-ference Proceedings, 2193, 020004 (2019).

A Mora-Boza, LM Mancipe Castro, RS Schneider, WM Han, AJ García, B Vázquez-Lasa, J San Román. Microfluidics gen-eration of chitosan microgels containing glycerylphytate crosslinker for in situ human mesenchymal stem cells encapsu-lation. Materials Science and Engineering, C 120, 111716 (2021).

S Durkut, AE Elçin, YM Elçin. In vitro evaluation of encapsu-lated primary rat hepatocytes pre- and post-cryopreservation at -80°C and in liquid nitrogen. Artif. Cells Nanomed. Biotech-nol., 43, 50–61 (2015).

S Mansouri, Y Merhi, FM Winnik, M Tabrizian. Investigation of Layer-by-Layer Assembly of Polyelectrolytes on Fully Functional Human Red Blood Cells in Suspension for Attenu-ated Immune Response. Biomacromolecules, 12, 585–592 (2011).

M Sobol, A Bartkowiak, B de Haan, P de Vos. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules. J. Biomed. Ma-ter. Res., A 101, 1907–1914 (2013).

Y Yeo, W Geng, T Ito, DS Kohane, JA Burdick, M Radisic. Photocrosslinkable hydrogel for myocyte cell culture and injec-tion. J. Biomed. Mater. Res. B Appl. Biomater., 81, 312–322 (2007).

M Yang, S He, Z Su, Z Yang, X Liang, Y Wu. Thermosensi-tive Injectable Chitosan/Collagen/ß-Glycerophosphate Com-posite Hydrogels for Enhancing Wound Healing by Encapsu-lating Mesenchymal Stem Cell Spheroids. ACS Omega, 5, 21015–21023 (2020).

J Lin, W Yu, X Liu, H Xie, W Wang, X Ma. In vitro and in vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells. J. Biosci. Bioeng., 105, 660–665 (2008).

X Luo, H Song, J Yang, B Han, Y Feng, Y Leng, Z Chen. Encapsulation of Escherichia coli strain Nissle 1917 in a chito-san?alginate matrix by combining layer-by-layer assembly with CaCl2 cross-linking for an effective treatment of inflam-matory bowel diseases. Colloids and Surfaces B: Biointer-faces, 189, 110818 (2020).

M Kurakula, S Gorityala, DB Patel, P Basim, B Patel, S Kumar Jha. Trends of Chitosan Based Delivery Systems in Neu-roregeneration and Functional Recovery in Spinal Cord Inju-ries. Polysaccharides, 2, 519–537 (2021).

W Zhang, S Zhao, W Rao, J Snyder, JK Choi, L Wang et al. A novel core–shell microcapsule for encapsulation and 3D cul-ture of embryonic stem cells. J. Materials Chemistry B, 1(7), 1002-1009 (2013).

KC Yang, CC Wu, YH Cheng, TF Kuo, FH Lin. Chito-san/Gelatin Hydrogel Prolonged the Function of Insuli-noma/Agarose Microspheres In Vivo During Xenogenic Trans-plantation. Transplantation Proceedings, 40, 3623–3626 (2008).

YM Elçin, AE Elçin, RG Bretzel, T Linn. Pancreatic Islet Culture and Transplantation Using Chitosan and PLGA Scaf-folds. In: Tissue Engineering, Stem Cells, and Gene Therapies. Ed YM Elçin, Springer USA. pp. 255–264 (2003).

S Graff, S Hussain, JC Chaumeil, C Charrueau. Increased intestinal delivery of viable Saccharomyces boulardii by en-capsulation in microspheres. Pharm. Res., 25, 1290–1296 (2008).

MT Cook, G Tzortzis, VV Khutoryanskiy, D Charalampopou-los. Layer-by-layer coating of alginate matrices with chitosan-alginate for the improved survival and targeted delivery of pro-biotic bacteria after oral administration. J. Mater. Chem., B 1, 52–60 (2013).

W Krasaekoopt, B Bhandari, H Deeth. The influence of coat-ing materials on some properties of alginate beads and surviv-ability of microencapsulated probiotic bacteria. Int. Dairy Journal, 14, 737–743 (2004).

DC Vodnar, C Socaciu. Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions. Chem. Cent. J., 6, 61 (2012).

M Chávarri, I Marañón, R Ares, FC Ibáñez, F Marzo, M Vi-llarán. Microencapsulation of a probiotic and prebiotic in algi-nate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiology, 142, 185–189. (2010).

SM Koo, YH Cho, CS Huh, YJ Baek, J Park. Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsu-lation using alginate and chitosan. J. Microbiology and Bio-technology, 11, 376–383 (2001).

A Bepeyeva, JMS de Barros, H Albadran, AK Kakimov, ZK Kakimova, D Charalampopoulos, VV Khutoryanskiy. Encap-sulation of Lactobacillus casei into Calcium Pectinate-Chitosan

Beads for Enteric Delivery. J. Food Sci., 82, 2954–2959 (2017).

M Boido, D Garbossa, M Fontanella, A Ducati, A Vercelli. Mesenchymal Stem Cell Transplantation Reduces Glial Cyst and Improves Functional Outcome After Spinal Cord Com-pression. World Neurosurgery, 81, 183–190. (2014).

FE Ezquer, MEEzquer, JM Vicencio, SD Calligaris. Two complementary strategies to improve cell engraftment in mes-enchymal stem cell-based therapy: Increasing transplanted cell resistance and increasing tissue receptivity. Cell Adh. Migr., 11, 110–119 (2017).

Ai Arno, S Amini-Nik, PH Blit, M Al-Shehab, C Belo, E Herer, CH Tien, MG Jeschke. Human Wharton’s jelly mes-enchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res. Ther., 5, 28 (2014).

DF Emerich, BR Frydel, TR Flanagan, M Palmatier, SR Winn, L Christenson. Transplantation of Polymer Encapsu-lated PC12 Cells: Use of Chitosan as an Immobilization Matrix. Cell Transplant, 2, 241–249 (1993).

CM Grau, LA Greene. Use of PC12 Cells and Rat Superior Cervical Ganglion Sympathetic Neurons as Models for Neu-roprotective Assays Relevant to Parkinson’s Disease. Methods Mol. Biol., 846, 201–211 (2012).

D Offen, I Ziv, A Barzilai, S Gorodin, E Glater, A Hochman, E Melamed. Dopamine-melanin induces apop-tosis in PC12 cells; possible implications for the etiology of Parkinson’s disease. Neurochem. Int., 31, 207–216 (1997).

P Belujon, AA Grace. Dopamine System Dysregulation in Major Depressive Disorders. Int. J. Neuropsychopharma-col., 20, 1036–1046 (2017).

E Dobryakova, HM Genova, J DeLuca, GR Wylie. The Dopamine Imbalance Hypothesis of Fatigue in Multiple Sclerosis and Other Neurological Disorders. Frontiers in Neurology, 6, 52 (2015).

W Zhang. Encapsulation of Transgenic Cells for Gene Therapy. In: Gene Therapy-Principles and Challenges. In-techOpen (2015).

J Goldstein, G Siviglia, R Hurst, L Lenny, L Reich. Group B erythrocytes enzymatically converted to group O survive normally in A, B, and O individuals. Science, 215, 168–170 (1982).

P Rahfeld, SG Withers. Toward universal donor blood: Enzymatic conversion of A and B to O type. J. Biol. Chem., 295, 325–334 (2020).

R Mitra, N Mishra, GP Rath. Blood groups systems. Indian J. Anaesth., 58, 524–528 (2014).

O Jahanpour, JJ Pyuza, EO Ntiyakunze, A Mremi, ER Shao. ABO and Rhesus blood group distribution and frequency among blood donors at Kilimanjaro Christian Medical Cen-ter, Moshi, Tanzania. BMC Research Notes, 10(1), 1-5 (2017).

J Rosenberg, J Huang. CD8+ T Cells and NK Cells: Parallel and Complementary Soldiers of Immunotherapy. Curr. Opin. Chem. Eng., 19, 9–20 (2018).

P Pontrelli, F Rascio, G Castellano, G Grandaliano, L Ge-sualdo, G Stallone. The Role of Natural Killer Cells in the Immune Response in Kidney Transplantation. Front Im-munol., 11, 1454 (2020).

V Bueno, JOM Pestana. The role of CD8+ T cells during allograft rejection. Braz. J. Med. Biol. Res., 35, 1247–1258 (2002).)

M Rodríguez-Vázquez, B Vega-Ruiz, R Ramos-Zúñiga, DA Saldaña-Koppel, LF Quiñones-Olvera. Chitosan and Its Po-tential Use as a Scaffold for Tissue Engineering in Regen-erative Medicine. BioMed Research Int., 2015, e821279 (2015).

Y Hong, H Song, Y Gong, Z Mao, C Gao, J Shen. Cova-lently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Acta Bioma-ter., 3, 23–31 (2007).

H Park, B Choi, J Hu, M Lee. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Bio-mater., 9, 4779–4786 (2013).

H Tan, CR Chu, KA Payne, KG Marra. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hy-drogels for cartilage tissue engineering. Biomaterials, 30, 2499–2506 (2009).

H Sá-Lima, SG Caridade, JF Mano, RL Reis. Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 6, 5184–5195 (2010).

TC Tseng, L Tao, FY Hsieh, Y Wei, IM Chiu, S Hsu. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Adv. Mater., 27, 3518–3524 (2015).

FY Hsieh, TC Tseng, SH Hsu. Self-healing hydrogel for tissue repair in the central nervous system. Neural Regen-eration Research, 10(12), 1922 (2015).

HK Jahromi, A Farzin, E Hasanzadeh, SE Barough, N Mahmoodi, MRH Najafabadi, J Ai. Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nano-tube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat. Mat. Sci. Eng.: C, 109, 110564 (2020).

K Bhatheja, J Field. Schwann cells: Origins and role in axonal maintenance and regeneration. Int. J. Biochem. Cell Biology, 38, 1995–1999 (2006).

Sp Frostick, Q Yin, GJ Kemp. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery, 18, 397–405 (1998).

R Li, D Li, C Wu, L Ye, Y Wu, Y Yuan, J Xiao. Nerve growth factor activates autophagy in Schwann cells to en-hance myelin debris clearance and to expedite nerve regen-eration. Theranostics, 10(4), 1649 (2020).

J Tello Velasquez, L Nazareth, RJ Quinn, J Ekberg, JA St John. Stimulating the proliferation, migration and lamelli-podia of Schwann cells using low-dose curcumin. Neuro-science, 324, 140–150 (2016).

IH Liu, SH Chang, HY Lin. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast prolif-eration and mineralization. Biomed. Mater., 10, 035004 (2015).

VJ Nelson, MFK Dinnunhan, PR Turner, JM Faed, JD Cabral. A chitosan/dextran-based hydrogel as a delivery ve-hicle of human bone-marrow derived mesenchymal stem cells. Biomed. Mater., 12, 035012 (2017).

L Dong, SJ Wang, XR ZhaoR, YF Zhu, JK Yu. 3D- Printed Poly(e-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering. Sci. Rep., 7, 13412 (2017).

H Naderi-Meshkin, H Naderi-Meshkin, MM Matin, A Hei-rani-Tabasi, M Mirahmadi, M Irfan-Maqsood, MA Edalat-manesh et al. Injectable hydrogel delivery plus precondi-tioning of mesenchymal stem cells: exploitation of SDF-1/CXCR4 axis toward enhancing the efficacy of stem cells’ homing. Cell Biol. Int., 40, 730–741 (2016).

W Jin, X Liang, A Brooks, K Futrega, X LiuX, MR Doran et al. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. PeerJ, 6, e6072 (2018).

B Cui, Y Zheng, L Sun, T Shi, Z Shi, L Wang et al. Heart regeneration in adult mammals after myocardial damage. Acta Cardiológica Sinica, 34(2), 115 (2018).

L Xi. The use of chitosan to increase the stability of calcium alginate beads with entrapped yeast cells. Biotechnology and Applied Biochemistry, 23(3), 269-272 (1996).

S Namthabad, R Chinta. Robust Encapsulation of Yeast for Bioethanol Production. Master Thesis, Engineering School, Industrial Biotechnology University of Boras, Sweden (2012).

M Guslandi, G Mezzi, M Sorghi, PA Testoni. Saccharomy-ces boulardii in maintenance treatment of Crohn’s disease. Dig. Dis. Sci., 45, 1462–1464 (2000).

LV McFarland, CM Surawicz, RN Greenberg, GW Elmer, KA Moyer KA, SA Melcher et al. Prevention of beta-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. Am. J. Gastroenterol., 90, 439– (1995).

JP Buts, G Corthier, M Delmee. Saccharomyces boulardii for Clostridium difficile-associated enteropathies in infants. J. Pediatr. Gastroenterol. Nutr., 16, 419–425 (1993).

LF Calinoiu, BE Stefanescu, ID Pop, L Muntean, DC Vod-nar. Chitosan Coating Applications in Probiotic Microen-capsulation. Coatings, 9, 194 (2019).

A De Prisco, G Mauriello. Probiotication of foods: A focus on microencapsulation tool. Trends in Food Science & Technology, 48, 27–39 (2016).

MT Cook, G Tzortzis, D Charalampopoulos, VV Khutory-anskiy. Microencapsulation of probiotics for gastrointestinal delivery. J. Controlled Release, 162, 56–67 (2012).

R Gheorghita, L Anchidin-Norocel, R Filip, M Dimian, M Covasa. Applications of Biopolymers for Drugs and Probi-otics Delivery. Polymers, 13, 2729 (2021).

J Mirtic, T Rijavec, S Zupancic, A Zvonar Pobirk, A La-panje, J Kristl. Development of probiotic-loaded microcap-sules for local delivery: Physical properties, cell release and growth. Eur. J. Pharm. Sci., 121, 178–187 (2018).

A Mortazavian, SH Razavi, MR Ehsani, S Sohrabvandi. Principles and Methods of Microencapsulation of Probiotic Microorganisms. Iranian J. Biotechnology, 5, 1–18 (2007).

MT Cook, G Tzortzis, DCharalampopoulos, VV Khutory-anskiy. Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. Int. J. Pharm., 466, 400–408 (2014).

IM Enache, AM Vasile, E Enachi, V Barbu, N Stanciuc, C Vizireanu. Co-Microencapsulation of Anthocyanins from Black Currant Extract and Lactic Acid Bacteria in Bio-polymeric Matrices. Molecules, 25, 1700 (2020).

S Jantarathin, C Borompichaichartkul, R Sanguandeekul. Microencapsulation of probiotic and prebiotic in alginate-chitosan capsules and its effect on viability under heat proc-ess in shrimp feeding. Materials Today: Proceedings, 4, 6166–6172 (2017).

M de Araújo-Etchepare, GC Raddatz, EM de Moraes-Flores, LQ Zepka, E Jacob-Lopes et al. Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT - Food Sci-ence and Technology, 65, 511–517 (2016).

YA Ghouri, DM Richards, EF Rahimi, JT Krill, A Jelinek, AW DuPont. Systematic review of randomized controlled trials of probiotics, prebiotics, and symbiotics in inflamma-tory bowel disease. Clin. Exp. Gastroenterol., 7, 473–487 (2014).

F Cristofori, VN Dargenio, C Dargenio, VL Miniello, M Barone, R Francavilla. Anti-Inflammatory and Immuno-modulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Frontiers in Immunology, 12, 178 (2021).

MAK Azad, M Sarker, D Wan. Immunomodulatory Effects of Probiotics on Cytokine Profiles. BioMed Research Int., 2018, e8063647 (2018).

SC Li, WF Hsu, JS Chang, CK Shih. Combination of Lac-tobacillus acidophilus and Bifidobacterium animalis subsp. lactis Shows a Stronger Anti-Inflammatory Effect than In-dividual Strains in HT-29 Cells. Nutrients, 11, E969 (2019).

MAR Vinolo, HG Rodrigues, E Hatanaka, FT Sato, SC Sampaio, R Curi. Suppressive effect of short-chain fatty ac-ids on production of proinflammatory mediators by neutro-phils. J. Nutr. Biochem., 22, 849–855 (2011).

JS Park, EJ Lee, JC Lee, WK Kim, HS Kim. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells:

involvement of NF-kappa B and ERK signaling pathways. Int. Immunopharmacol., 7, 70–77 (2007).

Council of Europe. European Pharmacopeia 6.0 1774. Chi-tosan Hydrochloride; Council of Europe: Strarsburg, Ger-many (2008).

United States Pharmacopeial Convection. United States Pharmacopeia 34/National Formulary. Chitosan; The United States Pharmacopeial Convection: Rockville, MD, USA (2011).

Depósito Legal: PPI200602ME2232
ISSN: 1856-5301

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.