Efectos de dos tratamientos químicos sobre las propiedades ópticas de la fase cristalina de rutilo
Resumen
Las propiedades ópticas de los fotocatalizadores están relacionadas con la brecha de energía, ya que impacta en los resultados de efectividad de remoción de contaminantes durante la irradiación. Entre los fotocatalizadores, la anatasa se ha estudiado más que el rutilo. En el presente trabajo se realizaron tratamientos químicos en rutilo con el objetivo de desplazar la brecha de energía hacia la zona visible del espectro electromagnético. Los resultados sugieren que la impregnación incipiente con sales de Fe desplaza efectivamente la brecha de energía a la zona visible, con una disminución significativa en los niveles máximos de absorbancia. Mientras la reducción parcial del rutilo aumenta la absorbancia, cuando se realiza a una temperatura de 250 °C.
Recibido: 06/09/2022 Revisado: 07/10/2022 Aceptado: 18/10/2022
Palabras clave
Texto completo:
PDFReferencias
F Parrino,M Bellardita,EI García-López,G Marcì,V Loddo,L Palmisano.Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules:Some Chemical and Engineering Aspects.ACS Catalysis,8(12),11191-11225(2018).
MC Nevárez-Martínez,PJ Espinoza-Montero,FJ Quiroz-Chávez,B Ohtani.Fotocatálisis:inicio, actualidad y perspectivas a través del TiO2.Avances en Química,12(2-3),45-59(2017).
MS Prévot,N Guijarro,K Sivula.Enhancing the Performance of a Robust Sol-Gel-Processed p-Type Delafossite CuFeO2 Photocathode for Solar Water Reduction.ChemSusChem,8(8),1359-1367(2015).
K Sivula,R Van De Krol.Semiconducting materials for photoelectrochemical energy conversion.Nature Reviews:Materials,1(2),artículo número 15010,17 páginas(2016).
D Chen,Y Cheng,N Zhou,P Chen,Y Wang,K Li,et al.Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts:A review.Journal of Cleaner Production,268, artículo número 121725,14 páginas(2020).
S Zhang,P Gu,R Ma,C Luo,T Wen,G Zhao,et al.Recent developments in fabrication and structure regulation of visiblelight-driven g-C3N4-based photocatalysts towards water purification:A critical review.Catalysis Today,335,65-77(2019).
Y Du,H Sheng,D Astruc,M Zhu.Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts:A Bridge between Structure and Properties.Chemical Reviews,120(2),526-622(2020).
F Wang,A Yan,H Zhao.Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst.En:Semiconductor Photocatalysis Materials,Mechanisms and Applications.Ed.WCao.Chapter 2.©London:IntechOpen,676 p(2016).
D Ravelli,D Dondi,M Fagnoni,A Albini.Photocatalysis.Amulti-faceted concept for green chemistry.Chemical Society Reviews,38(7),1999-2011(2009).
M Antonopoulou,I Konstantinou.Photocatalytic degradation and mineralization of tramadol pharmaceutical in aqueous TiO2 suspensions:Evaluation of kinetics, mechanisms and ecotoxicity.Applied Catalysis A:General,515,136-143(2016).
R Pereira-Cavalcante,D Martins-De-Oliveira,L De-Melo-DaSilva,J Giménez,S Esplugas,SC De-Oliveira,et al.Evaluation of the main active species involved in the TiO2 photocatalytic degradation of ametryn herbicide and its by-products.Journal of Environmental Chemical Engineering,9(2),artículo número 105109,13 páginas(2021).
H Zeghioud,A Amine-Assadi,N Khellaf,H Djelal,A Amrane,S Rtimi.Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights:Dynamics and mechanism.Journal of Photochemistry and Photobiology A:Chemistry. 65(July),94-102(2018).
V Etacheri,C Di Valentin,J Schneider,D Bahnemann,SC Pillai.Visible-light activation of TiO2 photocatalysts:Advances in theory and experiments.Journal of Photochemistry and Photobiology C:Photochemistry Reviews,25,1-29(2015).
S Yang,N Huang,YM Jin,HQ Zhang,YH Su,HG Yang.Crystal shape engineering of anatase TiO2 and its biomedical applications.CrystEngComm,17(35),6617-6631(2015).
R Kaplan,B Erjavec,G Drazic,J Grdadolnik,A Pintar.Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants.Applied Catalysis B:Environmental,181,465-474(2016).
Z Ambrus,K Mogyorósi,Á Szalai,T Alapi,K Demeter,A Dombi,et al.Low temperature synthesis, characterization and substrate-dependent photocatalytic activity of nanocrystalline TiO2 with tailor-made rutile to anatase ratio.Applied Catalysis A:General.340(2),153-161(2008).
G Deo,AM Turek,IE Wachs,T Machej,J Haber,N Das,et al.Physical and chemical characterization of surface vanadium oxide supported on titania:influence of the titania phase (anatase, rutile,brookite and B).Applied Catalysis A:General,91(1),27-42(1992).
G Veréb,L Manczinger,G Bozsó,A Sienkiewicz,L Forró, K Mogyorósi,et al.Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E.coli inactivation.Applied Catalysis B:Environmental,129,566-574(2013).
J Zhang,P Zhou,J Liu,J Yu.New understanding of the difference of photocatalytic activity among anatase,rutile and brookite TiO2.Physical Chemistry Chemical Physics,16(38),20382-20386(2014).
R Rousseau,VA Glezakou,A Selloni.Theoretical insights into the surface physics and chemistry of redox-active oxides.Nature Reviews Materials,5(6),460-475(2020).
H Lin,CP Huang,W Li,C Ni,SI Shah,YH Tseng.Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol.Applied Catalysis B:Environmental,68(1-2),1-11(2006).
A Zaleska.Doped-TiO2:A Review.Recent Patents on Engineering,(2),157-164(2008).
SA Bakar,C Ribeiro.Nitrogen-doped titanium dioxide:An overview of material design and dimensionality effect over modern applications.Journal of Photochemistry and Photobiology C:Photochemistry Reviews,27,1-29(2016).
K Biernat,A Malinowski,M Gnat.The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy.En:Biofuels-Economy, Environment and Sustainability,Ed.Z Fang.Chapter5.©INTECH.396 p(2013).
M Crisan,M Raileanu,N Dragan,D Crisan,A Ianculescu,I Nitoi,et al.Sol–gel iron-doped TiO2 nanopowders with photocatalytic activity.Applied Catalysis A:General,504,130-142(2015).
AS Ganeshraja,K Rajkumar,K Zhu,X Li,S Thirumurugan,W Xu, et al.Facile synthesis of iron oxide coupled and doped titania nanocomposites:tuning of physicochemical and photocatalytic properties.RSC Advances,6(76),72791-72802(2016).
NC Birben,CS Uyguner-Demirel,SS Kavurmaci,YY Gürkan,N Turkten,Z Cinar,et al.Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid.Catalysis Today,281,78-84(2016).
A Samokhvalov.Hydrogen by photocatalysis with nitrogen codoped titanium dioxide.Renewable and Sustainable EnergyReviews,72(November),981-1000(2016).
R Asahi,T Morikawa,T Ohwaki,K Aoki,Y Taga.VisibleLight Photocatalysis in Nitrogen-Doped Titanium Oxides.Science,293,269-271(2001).
C Di Valentin,E Finazzi,G Pacchioni,A Selloni,S Livraghi,MC Paganini,et al.N-doped TiO2:Theory and experiment.Chemical Physics,339(1-3),44-56(2007).
R Jaiswal,J Bharambe,N Patel,A Dashora,DC Kothari,A Miotello.Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity.Applied Catalysis B:Environmental,168-169,333-341(2015).
Y Sakatani,H Ando,K Okusako,H Koike,J Nunoshige,T Takata,et al.Metal ion and N codoped TiO2 as a visible-light photocatalyst.Journal of Material Research,19(07),2100-2108(2004).
M Janus,J Zatorska,A Czyzewski,K Bubacz,E KusiakNejman,AW Morawski.Self-cleaning properties of cement plates loaded with N,C-modified TiO2 photocatalysts.Applied Surface Science,330,200-206(2015).
T Wang,G Yang,J Liu,B Yang,S Ding,Z Yan,et al.Orthogonal synthesis,structural characteristics,and enhanced visible light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres.Applied Surface Science,311,314-323(2014).
OF Suleiman-Khasawneh,P Palaniandy.Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation:A review.Environmental Technology & Innovation,21,artículo número 101230,20 páginas(2021).
TC Bhagya,SA Rajan,SMA Shibli.In situ tuning of band gap of Sn doped composite for sustained photocatalytic hydrogen generation under visible light irradiation. International Journal Hydrogen Energy,46(30),16360-16372(2021).
C Retamoso,N Escalona,M González,L Barrientos,P AllendeGonzález,S Stancovich, et al.Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. Journal of Photochemistry & Photobiology A:Chemistry,378(April),136-141(2019).
RBP Marcelino,CC Amorim.Towards visible-light photocatalysis for environmental applications:band-gap engineering versus photons absorption—a review.Environmental Science and Pollution Research,26(5),4155-4170(2019).
X Chen,L Liu,PY Yu,SS Mao.Increasing solar absorption forphotocatalysis with black hydrogenated titanium dioxide nanocrystals.Science,331(February),746-750(2011).
GS Pozan,M Isleyen,S Gokcen.Transition metal coated TiO2 nanoparticles:Synthesis,characterization and their photocatalytic activity.Applied Catalysis B:Environmental.140-141,537-545(2013).
MA Majeed Khan,R Siwach,S Kumar,AN Alhazaa.Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue.Optics and Laser Technology,118(March),170-178(2019).
MA Behnajady,H Eskandarloo.Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity.Chemical Engineering Journal,228,1207-1213(2013).
W Yao,B Zhang,C Huang,C Ma,X Song,Q Xu.Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions.Journal of Materials Chemistry,22(9),4050-4055(2012).
G Wang,H Wang,Y Ling,Y Tang,X Yang,RC Fitzmorris,et al.Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting-Supporting Information.Nano Letters,11(7),3026-3033(2011)
SA Zaim, A Raza, JY Lu, D Choi, NX Fang, T Zhang. Enhancing Visible Light Photocatalysis with Hydrogenated TitaniumDioxide for Anti-Fouling Applications. MRS Advances, 3(53),3181-3187 (2018).
R Dewil,D Mantzavinos,I Poulios,MA Rodrigo.New perspectives for Advanced Oxidation Processes. J Journal of Environmental Management,195,93-99(2017).
J Tauc.Electronic properties of amorphous materials.Science,158(3808),1543-1548(1967).
Sigma-Aldrich.Titanium (IV) oxide,rutile-nanopowder product specification.Disponible en:http://www.sigmaaldrich.com/specification-sheets/859/504/637262-BULK_ALDRICH__.pdf
C Herrera,J Pinto-Neira,D Fuentealba,C Sepúlveda,A Rosenkranz,M González.Biomass-derived furfural conversion over Ni / CNT catalysts at the interface of water-oil emulsion droplets.Catalysis Communications,144(March),artículo número 106070,5 páginas(2020).
DA Skoog,FJ Holler,TA Nieman,Principios de Análisis Instrumental.Editorial McGraw Hill,Interamericana de España(2001).
A Dolgonos,TO Mason,KR Poeppelmeier,Direct optical band gap measurement in polycrystalline semiconductors:A critical look at the Tauc method.Journal of Solid State Chemistry,240,páginas 43–48(2016).
N Rathore,A Kulshreshtha, K Shukla,D Shukla,Optical,structural and morphological properties of Fe substituted rutile phase TiO2 nanoparticles.Physica B:Physics of Condensed Matter,600(September 2020),artículo número 412609,11 páginas(2021).
M Sorescu,T Xu,L Diamandescu.Synthesis and characterization of xTiO2.(1-x)a-Fe2O3 magnetic ceramic nanostructure system.Materials Characterization,61(11),1103-1118(2010).
CM Weinert.Gaussian deconvolution method for identification of impairments in optical signal transmission.Journal of Optical Networking,3(6),381-387(2004).
VN Kuznetsov,N Serpone,Visible light absorption by various titanium dioxide specimens. Journal of Physical Chemistry B,110(50),25203–25209(2006).
S Akshatha,S Sreenivasa,K Yogesh-Kumar,S Archana,MK Prashanth,BP Prasanna,et al.Rutile, mesoporous ruthenium oxide decorated graphene oxide as an efficient visible light driven photocatalyst for hydrogen evolution reaction and organic pollutant degradation. Materials Science in Semiconductor Processing,116(September 2019),artículo número 105156,11 páginas(2020).
L Yang,Z Li, H Jiang,W Jiang,R Su,S Luo,et al.Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO2/graphene/Cu2O.Applied Catalysis B:Environmental,183,75-85(2016).
Z Yang,Z He,W Wu,Y Zhou.Preparation of graphene-TiO2 photocatalysis materials by laser-induced hydrothermal method.Colloids and Interface Science Communications,42,artículo número 100408,14 páginas(2021).
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.