Copper(II) triflate in Catalysis: A benchmark tool for Organic Synthesis
Resumen
Copper(II) triflate (Cu(OTf)2), whose early mechanistic foundations were established by the pioneering studies of Jay K. Kochi in 1972 and subsequently popularized in the field of catalysis, has emerged as a powerful tool in modern synthetic chemistry. Its physicochemical properties, well-defined Cu(II)/Cu(I) redox behavior, stability in organic media, and compatibility with a wide range of functional groups make it a highly effective platform for homogeneous transformations. This review examines its prep-aration, reactivity profile, and role in a broad spectrum of transformations, including coupling reactions (Ullmann, Sonogashira, Chan–Lam), Friedel–Crafts reactions, Lewis-acid-mediated cyclizations, aminations, cycloadditions, and radical processes. In addition, its utility in multicomponent reactions (MCRs), asymmetric synthesis, and heterogeneous catalytic systems supported on silica, zeolites, or nanotubes (HTNT) is examined. Applications in unconventional media such as ionic liquids, deep eutectic solvents, and solvent-free conditions, as well as in microwave- and ultrasound-assisted reactions and in photocatalysis, further highlight its catalytic versatility. Recent bibliometric analyses indicate a steady rise in publications involving Cu(OTf)2, reinforc-ing its position as a benchmark catalyst. Moreover, its successful use in total syntheses and one-pot procedures, often consistent with green chemistry principles, underscores its potential as a valuable system for diverse catalytic transformations in contem-porary organic synthesis
Recibido: 23/09/2025
Aceptado: 30/12/2025
Palabras clave
Texto completo:
PDFReferencias
RR Contreras. Catálisis homogénea con metales de transición: transformando el mundo de la química. Parte 1. Mérida: Publi-caciones CDCHTA–ULA (2021). https://doi.org/10.53766/BA/ LIBULA/CatalisisI.2021
X Hu, AC Yip. Heterogeneous catalysis: enabling a sustainable future. Frontiers in Catalysis, 1, 667675 (2021) https://doi.org/ 10.3389/fctls.2021.667675
catalysis. Organic & Biomolecular Chemistry, 17(8), 2055−2069 (2019). https://doi.org/10.1039/ C8OB02856G
J Xu, X Zhang, Y Cao, X Jian, L Song, W Xie. Counter anions modulate selectivity in the divergent copper-catalyzed dehydro-genation of cyclohexanones. Cell Reports Physical Science, 5(7), 102050 (2024). https://doi.org/10.1016/j.xcrp.2024.102 050
S Colombo, C Loro, EM Beccalli, G Broggini, M Papis. Cu(OTf)2-catalyzed multicomponent reactions. Beilstein Jour-nal of Organic Chemistry, 21(1), 122−145 (2025). https:// doi.org/10.3762/bjoc.21.7
AS Paraskar, A Sudalai. Cu(OTf)2 or Et3N-catalyzed three-com-ponent condensation of aldehydes, amines and cyanides: a high yielding synthesis of α-aminonitriles. Tetrahedron Letters, 47(32), 5759−5762 (2006). https://doi.org/10.1016/j.tetlet.2006. 06.008
K Wu, L Xing, Y Ji. Synthesis and Applications of Copper-Based Catalysts. Catalysts, 13(6), 973 (2023). https://doi.org/ 10.3390/catal13060973
JP Fackler Jr. In memoriam−Jay K. Kochi (1927–2008). Com-ments on Inorganic Chemistry, 29(5–6), 130–131 (2008). https://doi.org/10.1080/02603590802518644
CL Jenkins, JK. Kochi. Homolytic and ionic mechanisms in the copper(II) trifluoromethanesulfonate catalyzed oxidation of ole-fins by peresters. Journal of the American Chemical Society, 94(3), 856–865 (1972). https://doi.org/10.1021/ja00758a025
L Grigorjeva, O Daugulis. Copper-Catalyzed C–H Functionali-zation Reactions. In: Q Liao (Ed.), Copper Catalysis in Organic Synthesis, Chapter 11. Weinheim: Wiley-VCH GmbH (2020). https://doi.org/10.1002/9783527826445.ch11
S Raju, PE Sheridan, AK Hauer, AE Garrett, DE McConnell, JA Thornton, et al. Cu-Catalyzed Chan–Evans–Lam Coupling Reactions of 2‐Nitroimidazole with Aryl Boronic Acids: An Ef-fort toward New Bioactive Agents against S. pneumoniae. Chemistry & Biodiversity, 19(8), e202200327 (2022). https:// doi.org/10.1002/cbdv.202200327
CMA Afsina, T Aneeja, M Neetha, G Anilkumar. Copper‐Cat-alyzed Cross‐Dehydrogenative Coupling Reactions. Euro-pean Journal of Organic Chemistry, 2021(12), 1776−1808. (2021). https://doi.org/10.1002/ejoc.202001549
K Zhou, RR Wu, XR Zhong, J Pu, X Yang, K Liu, et al. CH Functionalisation of [2.2] Paracyclophane under Copper cataly-sis. Chemical Communications, 61, 11665−11668 (2025). https://doi.org/10.1039/D5CC02283E
MY Bhat, S Ahmed, QN Ahmed. Tf2O-and Cu(OTf)2-Assisted Acylamination Reaction of Unactivated Alcohols with Nitriles: A One-Pot P(IV) Activation, Stereoretention in Cycloalkanols and Deprotection Approach. The Journal of Organic Chemis-try, 87(17), 11608−11624 (2022). https://doi.org/10.1021/acs. joc.2c01251
KF Wei, Q Liu, G Ma, XL Jiang, XH Zhu, GX Ru, et al. Regi-oselective access to polycyclic N−heterocycles via homogene-ous copper-catalyzed cascade cyclization of allenynes. Com-munications Chemistry, 6(1), 104 (2023). https://doi.org/ 10.1038/s42004-023-00910-9
R Sala, C Loro, F Foschi, G Broggini. Transition metal cata-lyzed azidation reactions. Catalysts, 10(10), 1173 (2020). https://doi.org/10.3390/catal10101173
ZY Mao, XD Nie, YM Feng, CM Si, BG Wei, GQ Lin. Cu(OTf)2 catalyzed Ugi−type reaction of N,O-acetals with iso-cyanides for the synthesis of pyrrolidinyl and piperidinyl 2-car-boxamides. Chemical Communications, 57(73), 9248− 9251 (2021). https://doi.org/10.1039/D1CC03113A
RR Contreras. Química Verde. Caracas: Fondo Editorial OPSU (2017).
VOSviewer (version 1.6.20, October 31, 2023). Centre for Sci-ence and Technology Studies, Leiden University, The Nether-lands. https://www.vosviewer.com
G Anilkumar, S Saranya (Eds.). Copper catalysis in organic syn-thesis. Weinheim, Germany: Wiley-VCH Verlag GmbH (2020).
V Motornov, M Procházka, N Alpuente, P Salvador, P Slavíček, B Klepetářová, et al. Introducing Weakly Ligated Tris (trifluoro-methyl) copper(III). ChemistryEurope, 2(2), e202400004 (2024). https://doi.org/10.1002/ceur.202400004
X Ribas, R Xifra, X Fontrodona. Bis-Phenoxo-CuII2 Com-plexes: Formal Aromatic Hydroxylation via Aryl-CuIII Inter-mediate Species. Molecules, 25(20), 4595 (2020). https://doi. org/10.3390/molecules25204595
IM DiMucci, JT Lukens, S Chatterjee, KM Carsch, CJ Titus, SJ Lee, et al. The myth of d8 copper(III). Journal of the American Chemical Society, 141(46), 18508−18520 (2019). https://doi. org/10.1021/jacs.9b09016
SJ Li, Y Lan. Is Cu(III) a necessary intermediate in Cu-mediated coupling reactions? A mechanistic point of view. Chemical Communications, 56(49), 6609−6619 (2020). https://doi.org/ 10.1039/D0CC01946A
FA Cotton, G Wilkinson, CA Murillo, M Bochmann. Advanced Inorganic Chemistry. Sixth Edition. New York: John Wiley & Son (1999).
L Zhang, G Zhang, M Zhang, J Cheng. Cu(OTf)2-mediated Chan−Lam reaction of carboxylic acids to access phenolic es-ters. The Journal of Organic Chemistry, 75(21), 7472− 7474 (2010). https://doi.org/10.1021/jo101558s
JC Vantourout, HN Miras, A Isidro-Llobet, S Sproules, AJ Wat-son. Spectroscopic studies of the Chan–Lam amination: A mechanism-inspired solution to boronic ester reactivity. Jour-nal of the American Chemical Society, 139(13), 4769−4779 (2017). https://doi.org/10.1021/jacs.6b12800
CE Elwell, NL Gagnon, BD Neisen, D Dhar, AD Spaeth, GM Yee, et al. Copper-oxygen complexes revisited: structures, spec-troscopy, and reactivity. Chemical Reviews, 117(3), 2059−2107 (2017). https://doi.org/10.1021/acs.chemrev.6b006 36
RR Contreras, Y. Rojas-Pérez. Ligandos tipo salen en química de coordinación. Una breve revisión. Revista Ciencia e Inge-niería, 39(3), 307‒314 (2018). http://erevistas.saber.ula.ve/ index.php/cienciaeingenieria/article/view/12994
IS Fomenko, MI Gongola, LS Shul’pina, GB Shul’pin, NS Ikon-nikov, YN Kozlov, et al. Copper(II) complexes with BIAN-type ligands: Synthesis and catalytic activity in oxidation of hydro-carbons and alcohols. Inorganica Chimica Acta, 565, 121990 (2024). https://doi.org/10.1016/j.ica.2024.121990
S Hazra, BG Rocha, MFC Guedes da Silva, A Karmakar, AJ Pombeiro. Syntheses, structures, and catalytic hydrocarbon oxi-dation properties of N-heterocycle-sulfonated Schiff base cop-per(II) complexes. Inorganics, 7(2), 17 (2019). https://doi. org/10.3390/inorganics7020017
RR Contreras. Polihidruros de cobre: una poderosa herramienta en síntesis química. El reactivo de Stryker en perspectiva. Avan-ces en Química, 16(2), 39‒48 (2021). https://doi.org/10.537 66/AVANQUIM/2021.16.02.01
AA Danopoulos, T Simler, P Braunstein. N-heterocyclic car-bene complexes of copper, nickel, and cobalt. Chemical Re-views, 119(6), 3730−3961 (2019). https://doi.org/10.1021/acs. chemrev.8b00505
CE Housecroft, AG Sharpe. Inorganic Chemistry (Fifth edition). Harlow, England: Pearson Education (2018).
JB Peng, FP Wu, XF Wu. First-row transition-metal-catalyzed carbonylative transformations of carbon electro-philes. Chemi-cal Reviews, 119(4), 2090–2127 (2018). https://doi.org/ 10.1021/acs.chemrev.8b00068
Y Kim, WJ Jang. Recent advances in electrochemical copper catalysis for modern organic synthesis. Beilstein Journal of Or-ganic Chemistry, 21(1), 155−178 (2025). https://doi.org/ 10.3762/bjoc.21.9
I Kostova. The role of complexes of biogenic metals in living organisms. Inorganics, 11(2), 56 (2023). https://doi.org/10. 3390/inorganics11020056
E Raamat, K Kaupmees, G Ovsjannikov, A Trummal, A Kütt, J Saame, et al. Acidities of strong neutral Brønsted acids in differ-ent media. Journal of Physical Organic Chemistry, 26(2), 162−170 (2013). https://doi.org/10.1002/poc.2946
OJ Stang, MR White. Triflic Acid and Its Derivatives. Al-drichimica Acta, 16(1), 15−22 (1983).
K Ritter. Synthetic transformations of vinyl and aryl triflates. Synthesis, 1993(08), 735−762 (1993). https://doi.org/10.105 5/s-1993-25931
B Dhakal, L Bohé, D Crich. Trifluoromethanesulfonate Anion as Nucleophile in Organic Chemistry. The Journal of Organic Chemistry, 82(18), 9263−9269 (2017). https://doi.org/10.1021/ acs.joc.7b01850
JS Sapsford, D Csokas, DJ Scott, RC Turnell-Ritson, AD Pias-cik, I Papai, et al. Establishing the role of triflate anions in H2 activation by a cationic triorganotin(IV) Lewis acid. ACS Ca-talysis, 10(14), 7573−7583 (2020). https://doi.org/10.1021/ acscatal.0c02023
S Kobayashi, K Manabe. Green Lewis acid catalysis in organic synthesis. Pure and Applied Chemistry, 72(7), 1373−1380 (2000). https://doi.org/10.1351/pac200072071373
T Hayashida, H Kondo, JI Terasawa, K Kirchner, Y Sunada, H Nagashima. Trifluoromethanesulfonate (triflate) as a modera-tely coordinating anion: Studies from chemistry of the cationic coordinatively unsaturated mono-and diruthenium amidinates. Journal of Organometallic Chemistry, 692(1−3), 382−394 (2007). https://doi.org/10.1016/j.jorganchem.2006.08.069
NE Dixon, GA Lawrance, PA Lay, AM Sargeson, H Taube. Tri-fluoromethanesulfonates and Trifluoromethanesulfonato‐O Complexes. Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses, 28, 70−76 (1990). https://doi.org/10.1002/9780470132593.ch16
T Cohen, I Cristea. Kinetics and mechanism of the copper(I)-induced homogeneous Ullmann coupling of o-bromo-nitroben-zene. Journal of the American Chemical Society, 98(3), 748−753 (1976). https://doi.org/10.1021/ja00419a018
RG Salomon, P Dauban, RH Dodd. Copper(I) Trifluoro-me-thanesulfonate. In: Encyclopedia of Reagents for Organic Syn-thesis. New York: John Wiley & Sons (2005). https://doi.org/10. 1002/047084289X.rc251
K Sonogashira, Y Tohda, N Hagihara. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromo-pyridines. Tetrahedron Letters, 16(50), 4467−4470 (1975). https://doi.org/10.1016/ S0040-4039(00)91094-3
CE Meyet, CJ Pierce, CH Larsen. A single Cu(II) catalyst for the three-component coupling of diverse nitrogen sources with aldehydes and alkynes. Organic Letters, 14(4), 964−967 (2012). https://doi.org/10.1021/ol2029492
TD Suja, RS Menon. Cu‐Catalyzed Multicomponent Reactions. In: G. Anilkumar, S. Saranya (Eds.). Copper Catalysis in Or-ganic Synthesis, Chapter 10 (209−237). Weinheim, Germany: Wiley‐VCH Verlag GmbH (2020). https://doi.org/10.1002/978 3527826445.ch10
R Shinohara, M Morita, N Ogawa, Y Kobayashi. Use of the 2- pyridinesulfonyloxy leaving group for the fast copper-catalyzed coupling reaction at secondary alkyl carbons with Grignard rea-gents. Organic Letters, 21(9), 3247−3251 (2019). https://doi. org/10.1021/acs.orglett.9b00976
S Mori, E Nakamura, K Morokuma. Mechanism of SN2 alkyla-tion reactions of lithium organocuprate clusters with alkyl hal-ides and epoxides. Solvent Effects, BF3 effects, and trans-diaxial epoxide opening. Journal of the American Chemical Society, 122(30), 7294−7307 (2000). https://doi.org/10.1021/ja0002060
PY Lam, CG Clark, S Saubern, J Adams, MP Winters, DM Chan, et al. New aryl/heteroaryl C−N bond cross-coupling reac-tions via arylboronic acid/cupric acetate arylation. Tetrahedron Letters, 39(19), 2941−2944 (1998). https://doi. org/10.1016/S0040-4039(98)00504-8
V Hardouin Duparc, A Thouvenin, F Schaper. Anion influences on the structures of pyridyl-iminosulfonate copper(II) com-plexes and their reactivity in Chan–Lam couplings. Canadian Journal of Chemistry, 98(9), 502−510 (2020). https://doi.org/10.1139/cjc-2020-0003
V Hardouin Duparc, GL Bano, F Schaper. Chan–Evans–Lam couplings with copper iminoarylsulfonate complexes: scope and mechanism. ACS Catalysis, 8(8), 7308−7325 (2018). https:// doi.org/10.1021/acscatal.8b01881
RJ Phipps, MJ Gaunt. A meta-selective copper-catalyzed C–H bond arylation. Science, 323(5921), 1593−1597 (2009). https:// doi.org/10.1126/science.1169975
A Casitas, X Ribas. The role of organometallic copper(III) com-plexes in homogeneous catalysis. Chemical Science, 4(6), 2301-2318 (2013). https://doi.org/10.1039/C3SC21818J
RJ Phipps, NP Grimster, MJ Gaunt. Cu(II)-catalyzed direct and site-selective arylation of indoles under mild conditions. Jour-nal of the American Chemical Society, 130(26), 8172-8174 (2008). https://doi.org/10.1021/ja801767s
B Chen, XL Hou, YX Li, YD Wu. Mechanistic understanding of the unexpected meta selectivity in copper-catalyzed anilide C−H bond arylation. Journal of the American Chemical So-ciety, 133(20), 7668−7671 (2011). https://doi.org/10.1021/ ja201425e
VA Motornov, AA Tabolin, YV Nelyubina, VG Nenajdenko, SL Ioffe. Copper-catalyzed [3+2]-cycloaddition of α-halonitro-alkenes with azomethine ylides: facile synthesis of multisubsti-tuted pyrrolidines and pyrroles. Organic & Biomolecular Chemistry, 19(15), 3413−3427 (2021). https://doi.org/10.1039/ D1OB00146A
C Loro, J Oble, F Foschi, M Papis, EM Beccalli, S Giofrè, et al. Acid-mediated decarboxylative C–H coupling between arenes and O-allyl carbamates. Organic Chemistry Frontiers, 9(6), 1711−1718 (2022). https://doi.org/10.1039/D2QO00114D
S Kobayashi, R Matsubara, Y Nakamura, H Kitagawa, M Su-giura. Catalytic, asymmetric Mannich-type reactions of N-acylimino esters: Reactivity, diastereo-and enantio-selectivity, and application to synthesis of N-acylated amino acid deriva-tives. Journal of the American Chemical Society, 125(9), 2507−2515 (2003). https://doi.org/10.1021/ja0281840
A Mandal, AT Khan. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Organic & Biomolecular Chemistry, 22(12), 2339−2358 (2024). https:// doi.org/10.1039/D4OB00034J
W Wu, Y Guo, X Xu, Z Zhou, X Zhang, B Wu, W Yi. One-pot regioselective synthesis of 2,4-disubstituted quinolines via cop-per(II)-catalyzed cascade annulation. Organic Chemistry Frontiers, 5(10), 1713−1718 (2018) https://doi.org/10.1039/ C8QO00052B
F Li, GA Zhang, Y Liu, B Zhu, Y Leng, J Wu. Cu-catalyzed dehydrogenative olefinsulfonation of alkyl arenes. Organic Letters, 22(22), 8791−8795 (2020). https://doi.org/10.1021/ acs.orglett.0c03146
E Tosi, K Spielmann, RM de Figueiredo, JM Campagne. Cop-per-Catalyzed Ring Expansion of Vinyl Aziridines under Mild Conditions. Synlett, 32(05), 517−520 (2021). https://doi.org/ 10.1055/s-0040-1706007
KK. Laali, VD. Sarca, T Ollevier. Copper(II) Trifluoro-me-thanesulfonate. In: Encyclopedia of Reagents for Organic Syn-thesis. New York: John Wiley & Sons (2016). https:// doi.org/10.1002/9780470842898.rc250.pub2
Q Yang, Y Zhao, D Ma. Cu-mediated Ullmann-type cross-cou-pling and industrial applications in route design, process devel-opment, and scale-up of pharmaceutical and agrochemical pro-cesses. Organic Process Research & Development, 26(6), 1690−1750 (2022). https://doi.org/10.1021/acs.oprd.2c00050
A Kumar, V Sridharan. Transition Metal‐Catalyzed Synthesis of 1,2‐Diketones: An Overview. Asian Journal of Organic Chemistry, 10(7), 1619−1637 (2021). https://doi.org/10.1002/ ajoc.202100307
K Aradi, Z Novák. Copper‐Catalyzed Oxidative Ring Closure of ortho‐Cyanoanilides with Hypervalent Iodonium Salts: Ary-lation–Ring Closure Approach to Imino-benzoxazines. Ad-vanced Synthesis & Catalysis, 357(2‐3), 371−376 (2015). https://doi.org/10.1002/adsc.201400763
JD Cope, HU Valle, RS Hall, , KM Riley, E Goel, S Biswas, et al. Tuning the Copper(II)/Copper(I) Redox Potential for More Robust Copper‐Catalyzed C–N Bond Forming Reactions. Eu-ropean Journal of Inorganic Chemistry, 2020(14), 1278−1285 (2020). https://doi.org/10.1002/ejic.201901269
SH Cho, J Yoon, S Chang. Intramolecular oxidative C−N bond formation for the synthesis of carbazoles: comparison of reac-tivity between the copper-catalyzed and metal-free conditions. Journal of the American Chemical Society, 133(15), 5996−6005 (2011). https://doi.org/10.1021/ja111652v
AE King, LM Huffman, A Casitas, M Costas, X Ribas, SS Stahl. Copper-catalyzed aerobic oxidative functionalization of an arene C−H bond: evidence for an aryl-copper (III) intermediate. Journal of the American Chemical Society, 132(34), 12068−12073 (2010). https://doi.org/10.1021/acs.jpca.5c06066
A Casitas, M Canta, M Sola, M Costas, X Ribas. Nucleophilic aryl fluorination and aryl halide exchange mediated by a CuI/CuIII catalytic cycle. Journal of the American Chemical Society, 133(48), 19386−19392 (2011). https://doi.org/10.1021/ ja2058567
LM Huffman, SS Stahl. Carbon−nitrogen bond formation in-volving well-defined aryl−copper (III) complexes. Journal of the American Chemical Society, 130(29), 9196−9197 (2008). https://doi.org/10.1021/ja802123p
SV Ley, AW Thomas. Modern Synthetic Methods for Copper‐Mediated C(aryl)−O, C(aryl)−N, and C(aryl)−S Bond Forma-tion. Angewandte Chemie International Edition, 42(44), 5400−5449 (2003). https://doi.org/10.1002/anie.200300594
T Cohen, I Cristea. Copper (I)-induced reductive dehalogena-tion, hydrolysis, or coupling of some aryl and vinyl halides at room temperature. The Journal of Organic Chemistry, 40(25), 3649−3651 (1975). https://doi.org/10.1021/jo00913a0 07
MM Heravi, N Abedian‐Dehaghani, V Zadsirjan, Y Rangraz. Catalytic Function of Cu(I) and Cu(II) in Total Synthesis of Al-kaloids. ChemistrySelect, 6(34), 9230−9287 (2021). https:// doi.org/10.1002/slct.202101130
J Mihelcic, KD Moeller. Oxidative cyclizations: The asym-met-ric synthesis of (−)-alliacol A. Journal of the American Chem-ical Society, 126(29), 9106−9111 (2004). https://doi.org/ 10.1021/ja048085h
R Lavernhe, Q Wang, J Zhu. Terminal Alkynes as One‐Carbon Donors in [5+1] Heteroannulation: Synthesis of Pyridines via Ynimine Intermediates and Application in the Total Synthesis of Anibamine B. Angewandte Chemie International Edition, 62(22), e202303537 (2023) https://doi.org/10.1002/anie.20230 3537
S Nicolai, J Waser. (4+3) Annulation of Donor‐Acceptor Cyclo-propanes and Azadienes: Highly Stereoselective Synthesis of Azepanones. Angewandte Chemie, 134(36), e202209006 (2022). https://doi.org/10.1002/ange.202209006
Z Wang, C Hui. Contemporary advancements in the semi-syn-thesis of bioactive terpenoids and steroids. Organic & Bio-molecular Chemistry, 19(17), 3791−3812 (2021). https://doi. org/10.1039/D1OB00448D
FM Ippoliti, LG Wonilowicz, NJ Adamson, ER Darzi, JS Don-aldson, DJ Nasrallah, et al. Total synthesis of lisso-dendoric acid A. Angewandte Chemie, 136(32), e202406676 (2024). https:// doi.org/10.1002/anie.202406676
E Messé, A Labrunie, V Servajean, C Rubéru, L Jeanne‐Julien, JF Gallard, S Norsikian. Successive β‐Glycosylations of Ti-acumicinone: Formal Total Synthesis of Tiacumicin B and Ac-cess to ad‐Mannoside Analog. European Journal of Organic Chemistry, 27(7), e202301098 (2024). https://doi.org/10. 1002/ejoc.202301098
C Lim, J Ahn, J Sim, H Yun, J Hur, H An, et al. Total synthesis of (+)-brasilenyne via concise construction of an oxonane framework containing a 1, 3-cis, cis-diene. Chemical Commu-nications, 54(5), 467−470 (2018). https://doi.org/10.1039/ C7CC08329G
N David, R Pasceri, RR Kitson, A Pradal, CJ Moody. Formal total synthesis of diazonamide A by indole oxidative rearrange-ment. Chemistry–A European Journal, 22(31), 10867−10876 (2016). https://doi.org/10.1002/chem.201601605
J Zhong, K Chen, Y Qiu, H He, S Gao. A unified strategy to construct the tetracyclic ring of calyciphylline A alkaloids: Total synthesis of himalensine A. Organic Letters, 21(10), 3741−3745 (2019). https://doi.org/10.1021/acs.orglett.9b01184
Y Nakamura, AM Burke, S Kotani, J W Ziller, SD Rychnovsky. Total synthesis of (−)-lycoperine A. Organic Letters, 12(1), 72−75 (2010). https://doi.org/10.1021/ol902389e
W He, J Huang, X Sun, AJ Frontier. Total synthesis of (±)-mer-rilactone A. Journal of the American Chemical Society, 130(1), 300−308 (2008). https://doi.org/10.1021/ja0761986
K Ichikawa, SX Lin, T Söhnel, J Sperry. Support studies toward the alkaloids mescengricin and lysiformine focused on oxazole-olefin cycloadditions. Tetrahedron, 158, 133992 (2024). https://doi.org/10.1016/j.tet.2024.133992
C Wu, J Liu, D Kui, Y Lemao, X Yingjie, X Luo, et al. Efficient multicomponent synthesis of spirooxindole derivatives cata-lyzed by copper triflate. Polycyclic Aromatic Compounds, 42(1), 277−289 (2021). https://doi.org/10.1080/10406638.2020. 1726976
B Du, C Yuan, T Yu, L Yang, Y Yang, B Liu, et al. Asymmetric total synthesis of onoseriolide, bolivianine, and isobolivianine. Chemistry–A European Journal, 20(9), 2613−2622 (2014). https://doi.org/10.1002/chem.201304378
BS Reddy, RN Rao, B Kumaraswamy, JS Yadav. Stereoselec-tive total synthesis of oplopandiol, oploxyne A, and oploxyne B. Tetrahedron Letters, 55(33), 4590−4592 (2014). https://doi. org/10.1016/j.tetlet.2014.06.054
M Zeng, SK Murphy, SB Herzon. Development of a modular synthetic route to (+)-pleuromutilin, (+)-12-epi-mutilins, and re-lated structures. Journal of the American Chemical Society, 139(45), 16377−16388 (2017). https://doi.org/10.1021/jacs. 7b09869
L Massi, J. F Gal, E Duñach. Metal triflates as catalysts in or-ganic synthesis: determination of their Lewis acidity by mass spectrometry. ChemPlusChem, 87(6), e202200037 (2022). https://doi.org/10.1002/cplu.202200037
G Rakesh, VV Reddy, A Vinaykumar, BS Reddy. AgOTf-cata-lyzed three-component coupling for the synthesis of C-alkynyl iminosugars. Tetrahedron Letters, 152, 155326 (2024). https://doi.org/10.1016/j.tetlet.2024.155326
S Lauzon, M Li, H Keipour, T Ollevier. Fe(OTf)2‐Catalyzed Thia‐Michael Addition Reaction: A Green Synthetic Approach to β‐Thioethers. European Journal of Organic Chemistry, 2018(33), 4536−4540 (2018). https://doi.org/10.1002/ejoc.2018 00780
Z Li, Y Zhang, M Sun, Y Zhang, Z Lu, Y Deng, et al. La(OTf)3-Catalyzed [3+2] cycloaddition reactions for the synthesis of benzo[d]oxazoles/benzofurans. The Journal of Organic Chemistry, 89(6), 3809−3820 (2024). https://doi.org/10.1021/ acs.joc.3c02641
LS Longo Jr, FA Siqueira, NS Anjos, GF Santos. Scandium(III)‐Triflate‐Catalyzed Multicomponent Reac-tions for the Synthesis of Nitrogen Heterocycles. ChemistrySelect, 6(20), 5097−5109 (2021). https://doi.org/10.1002/slct.202101032
S Yorimoto, A Tsubouchi, H Mizoguchi, H Oikawa, Y Tsu-nekawa, T Ichino, et al. Zn(OTf)2-mediated annulations of N-propargylated tetrahydrocarbolines: divergent synthesis of four distinct alkaloidal scaffolds. Chemical Science, 10(22), 5686−5698 (2019). https://doi.org/10.1039/C9SC01507H
J Zhang, J. Y Su, H Zheng, H Li, WP Deng. In(OTf)3-Catalyzed (3+3) Dipolar Cyclization of Bicyclo [1.1.0] butanes with N-Nu-cleophilic 1,3-Dipoles: Access to 2,3-Diazabicyclo [3.1.1]hep-tanes, 2,3-Diazabicyclo[3.1.1] hepte-nes, and Enantiopure 2-Azabicyclo[3.1.1]heptanes. ACS Catalysis, 14(23), 17837− 17849 (2024). https://doi.org/10.1021/acscatal.4c05622
ED Anderson, JJ Ernat, MP Nguyen, AC Palma, RS Mohan. Environment friendly organic synthesis using bismuth com-pounds. An efficient method for carbonyl-ene reactions cata-lyzed by bismuth triflate. Tetrahedron Letters, 46(45), 7747−7750 (2005). https://doi.org/10.1016/j.tetlet.2005.09.035
YH Wu, LY Zhang, NX Wang, Y Xing. Recent advances in the rare-earth metal triflates-catalyzed organic reactions. Catalysis Reviews, 64(4), 679−715 (2022). https://doi.org/10.1080/016 14940.2020.1831758
V Sage, J H Clark, DJ Macquarrie. Supported copper triflate as catalyst for the cationic polymerization of styrene. Journal of Catalysis, 227(2), 502−511 (2004). https://doi.org/10.1016/ j.jcat.2004.08.013
SD Dindulkar, VG Puranik, YT Jeong. Supported copper triflate as an efficient catalytic system for the synthesis of highly func-tionalized 2-naphthol Mannich bases under solvent free condi-tion. Tetrahedron Letters, 53(33), 4376−4380 (2012). https:// doi.org/10.1016/j.tetlet.2012.06.022
M Ahuja, GK Reen, A Kumar, P Sharma. A typical NEDDA cycloaddition strategy between C-3-and N-substituted indoles and butadienes using silica-supported copper triflate as an effi-cient catalytic system: A correlative experimental and theoreti-cal study. Chemistry Letters, 45(7), 752−754 (2016). https:// doi.org/10.1246/cl.160155
L Jeffs, D Arquier, B Kariuki, D Bethell, PCB Page, GJ Hutch-ings. On the enantioselectivity of aziridination of styrene cata-lysed by copper triflate and copper-exchanged zeolite Y: conse-quences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenyl-aziridines. Organic & Biomolecular Chemistry, 9(4), 1079−1084 (2011). https://doi.org/10.1039/ C0OB00724B
BRP Reddy, SS Reddy, PVG Reddy. Cu(OTf)2 loaded proto-nated trititanate nanotubes catalyzed reaction: a facile method for the synthesis of furo[2,3-b] quinoxalines. New Journal of Chemistry, 42(8), 5972−5977 (2018). https://doi.org/10.1039/ C8NJ00287H
AR Akhmetov, AR Tuktarov, UM Dzhemilev. Cycloaddition of alkyl azides to fullerene C60 in the presence of Cu(OTf)2. Men-deleev Communications, 25(5), 346−347 (2015). https://doi. org/10.1002/chin.201548110
M Jha, GM Shelke, K Pericherla, A Kumar. Microwave assisted copper triflate-catalyzed rapid hydration of aryl acetylenes. Tet-rahedron Letters, 55(34), 4814−4816 (2014). https://doi.org/ 10.1016/j.tetlet.2014.06.116
MJ Gronnow, DJ Macquarrie, JH Clark, P Ravenscroft. A study into the use of microwaves and solid acid catalysts for Friedel−Crafts acetylations. Journal of Molecular Catalysis A: Chemical, 231(1-2), 47−51 (2005). https://doi.org/10.1016/ j.molcata.2004.12.030
K Turhan, A Ozturkcan, M Uluer, Z Turgut. One-pot synthesis of indenonaphthopyrans catalyzed by copper(II) triflate: a com-parative study of reflux and ultrasound methods. Acta Chimica Slovenica, 61(3), 623−628 (2014).
B Karimi, M Tavakolian, M Akbari, F Mansouri. Ionic liquids in asymmetric synthesis: An overall view from reaction media to supported ionic liquid catalysis. ChemCatChem, 10(15), 3173−3205 (2018). https://doi.org/10.1002/cctc.201701919
PH Tran, HQ Phung, PE Hansen, HN Tran, TN Le. Efficient Friedel–Crafts benzoylation of aniline derivatives with 4-fluoro-benzoyl chloride using copper triflate in the synthesis of amino-benzophenones. Synthetic Communications, 46(10), 893−901 (2016). https://doi.org/10.1080/00397911.2016.1148164
VK Rao, R Tiwari, BS Chhikara, AN Shirazi, K Parang, A Ku-mar. Copper triflate-mediated synthesis of 1,3,5-triaryl-pyra-zoles in [bmim][PF6] ionic liquid and evaluation of their anti-cancer activities. RSC Advances, 3(35), 15396−15403 (2013). https://doi.org/10.1039/C3RA41830H
MTT Nguyen, N Le, HT Nguyen, TDV Luong, VKT Nguyen, Y Kawazoe, et al. Mechanism of Friedel–Crafts acylation using metal triflate in deep eutectic solvents: An experimental and computational study. ACS Omega, 8(1), 271−278 (2022). https://doi.org/10.1021/acsomega.2c03944
A Kumar, TM Dhameliya, K Sharma, KA Patel, RV Hirani. En-vironmentally benign approaches towards the synthesis of quin-olines. ChemistrySelect, 7(22), e202201059 (2022). https://doi. org/10.1002/slct.202201059
GM Shelke, VK Rao, K Pericherla, A Kumar. An Efficient and Facile Synthesis of Vinyl Sulfones via Microwave-Assisted Copper Triflate Catalyzed Hydrosulfonylation of Alkynes. Syn-lett, 25(16), 2345−2349 (2014). https://doi.org/10.1055/s-0034-1378546
H Firouzabadi, N Iranpoor, S Sobhani, Z Amoozgar. Copper tri-flate as a useful catalyst for the high-yielding preparation of α-acetyloxyphosphonates under solvent-free conditions. Synthe-sis, 2004(02), 295−297 (2004). https://doi.org/10.1055/s-2003-815919
P Singh, S Kumar Sahoo, N Sridhar Goud, B Swain, V Madhavi Yaddanapudi, M Arifuddin. Microwave‐Assisted Copper‐Cata-lyzed One‐Pot Synthesis of 2‐Aryl/Heteroaryl‐4‐Quinolones via Sequential Intramolecular Aza‐Michael Addition and Oxida-tion. Asian Journal of Organic Chemistry, 11(7), e202200181 (2022). https://doi.org/10.1002/ajoc.202200181
G Öztürk, M Çolak, N Demirel. Solvent‐free synthesis of chiral Schiff‐base ligands based on ferrocene under microwave irradi-ation and application to enantioselective nitroaldol (Henry) re-action. Chirality, 23(5), 374−378 (2011). https://doi.org/10. 1002/chir.20934
X Yang, L Li, Y Li, Y Zhang. Visible-light-induced photocata-lytic aerobic oxidative Csp3–H functionalization of glycine de-rivatives: Synthesis of substituted quinolines. The Journal of Organic Chemistry, 81(24), 12433−12442 (2016). https://doi. org/10.1021/acs.joc.6b02683
RA Sheldon, ML Bode, SG Akakios. Metrics of green chemis-try: Waste minimization. Current Opinion in Green and Sus-tainable Chemistry, 33, 100569 (2022). https://doi.org/10. 1016/j.cogsc.2021.100569
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
DOI: https://doi.org/10.53766/AVANQUIM
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.