El acoplamiento molecular de los trímeros de quitina y quitosano como un ejemplo de investigación interdisciplinaria de actualidad
Resumen
En el presente trabajo se hace uso del acoplamiento molecular (docking) para exponer el apoyo que pueden brindar estos proce-dimientos computacionales en diversos aspectos de investigaciones química interdisciplinarias en áreas como la agricultura, medicina, ciencia de materiales, entre otras. Se discuten algunos resultados obtenidos mediante este sistema informático sobre la energía de afinidad de los ocho quitooligosacáridos trímeros de quitina y quitosano hacia una lectina presente en el floema de la planta de pepino (Cucumis sativus). Se destaca el valor predictivo y educativo que puede tener el docking como una poderosa técnica complementaria para el estudio de estos biomateriales. De los trímeros estudiados, se pudo perfilar el ADDr como el mejor candidato para estudios en aplicaciones agrícolas, como la preservación de frutos de pepino cortado propuesta, mostrando así la versatilidad de estos estudios. Adicionalmente, este trabajo aporta información básica, en idioma español, para ayudar a fomentar el interés por el uso de esta metodología entre estudiantes e investigadores hispanoparlantes
Recibido: 29/10/2025
Aceptado: 17/12/2025
Palabras clave
Texto completo:
PDFReferencias
BT Iber, NA Kasan, D Torsabo, JW Omuwa. A review of various sources of chitin and chitosan in nature. J. Renewable Materials, 10(4), 1097–1123 (2022). https://doi.org/10.32604/jrm.2022.018 142
C Lárez-Velásquez. Chitosan: An overview of its multiple ad-vantages for creating sustainable development poles. Polímeros, 33(1), e20230005 (2023). https://doi.org/10.1590/0104-1428. 20220103
GG Allan, LC Altman, RE Bensinger, DK Ghosh, Y Hirabayashi, AN Neogi et al. Biomedical applications of chitin and chitosan. En: Chitin, chitosan, and related enzymes. Ed. JP Zikakis, pp. 119–133, Academic Press. (1984). https://doi.org/10.1016/B978-0-12-780950-2.50013-7
N Míguez, P Kidibule, M Minguet-Lobato, H Soto, E Jiménez, P Santos-Moriano et al. Estrategias para la producción enzimática de diferentes tipos de quitooligosacáridos a partir de quitina y qui-tosano. XXVIII Congreso Nacional de Microbiología, España, 28 de junio a 2 de julio de 2021, formato virtual. https://digital.csic.es/ handle/10261/248868
C Lárez-Velásquez, F López. Chito-oligosaccharides: A mini-re-view on sources, production, and agricultural applications. Adv. Modern Agriculture, 5(3), 2730 (2024). https://doi.org/10.545 17/ama.v5i3.2730
M Panza, SG Pistorio, KJ Stine, AV Demchenko. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chemical Reviews, 118(17), 8105-8150 (2018). https://doi.org/10.1021/acs.chemrev.8b00051
SN Das, J Madhuprakash, PV Sarma, P Purushotham, K Suma et al. Biotechnological approaches for field applications of chito-ol-igosaccharides (COS) to induce innate immunity in plants. Criti-cal Reviews in Biotechnology, 35(1), 29–43 (2015). https:// doi.org/10.3109/07388551.2013.798255
Z Mészáros, N Kulik, L Petrásková, P Bojarová, M Texidó, AK Planas et al. Three-step enzymatic remodeling of chitin into bioac-tive chitooligomers. J. Agric. Food Chem., 72(28), 15613-15623 (2024). https://doi.org/10.1021/acs.jafc.4c03077
M Abla, C Ladavière, S Trombotto. Impact of HILIC amino-based column equilibration conditions on the analysis of chitooli-gosaccharides. Chromatographia, 85(1), 55–63 (2022). https:// doi.org/10.1007/s10337-021-04109-9
S Cord-Landwehr, P Ihmor, A Niehues, H Luftmann, BM Moerschbacher, M Mormann. Quantitative mass-spectrometric sequencing of chitosan oligomers revealing cleavage sites of chi-tosan hydrolases. Analytical Chemistry, 89(5), 2893–2900 (2017). https://doi.org/10.1021/acs.analchem.6b04183
C Castañeda-Ramírez, NM de la Fuente-Salcido, RP Cano, T Or-tiz-Rodríguez, JE Corona. Potencial de los quitooligosacáridos ge-nerados de quitina y quitosana. Acta Universitaria, 21(3), 14-23 (2011). https://www.actauniversitaria.ugto.mx/index.php/acta/ar-ticle/view/16/pdf
LE Ibáñez, MS Puig, F Lorenzo, R Bertó, FJ Gavilá. Revaloriza-ción de quito-oligosacáridos obtenidos a partir de subproductos de la industria pesquera como antimicrobianos naturales. Nereis, (13), 173-186 (2021). https://dialnet.unirioja.es/descarga/ar-ticulo/8171760.pdf
PaCosValor. Producción biotecnológica de oligosacaridos de qui-tosano con estructura definida como inmunoestimulantes. https://iqs.edu/es/investigacion/proyectos-investigacion/pacosva-lor-produccion-biotecnologica-de-oligosacaridos-de-quitosano-con-estructura-definida-como-inmunoestimulantes/
Húmico. Explorando el potencial de uso de los oligosacáridos de quitosano. https://es.ihumico.com/chitosan-oligosaccharide-uses/
Chitosanlab. Venta de COS para agricultura y para alimentos. https://chitosanlab.com/es/oligomeros-de-quitosano/
S Basa, M Nampally, T Honorato, SN Das, AR Podile, NE El Gueddari et al. The pattern of acetylation defines the priming activity of chitosan tetramers. J. Am. Chem. Soc., 142(4), 1975–1986 (2020). https://doi.org/10.1021/jacs.9b11466
C Zhu, M Zhao, L Fan, X Cao, Q Xia, J Zhou et al. Chitopentaose inhibits hepatocellular carcinoma by inducing mitochondrial me-diated apoptosis and suppressing protective autophagy. Biore-sources and Bioprocessing, 8(1), 12 pages (2021). https://doi. org/10.1186/s40643-020-00358-y
KC Li, XQ Zhang, Yu Yu, RE Xing, S Liu, S., PC Li. Effect of chitin and chitosan hexamers on growth and photosynthetic char-acteristics of wheat seedlings. Photosynthetica, 58(3), 819–826 (2020). https://doi.org/10.32615/ps.2020.027
X Zhang, K Li, R Xing, S Liu, P Li. Metabolite profiling of wheat seedlings induced by chitosan: revelation of the enhanced carbon and nitrogen metabolism. Front. Plant Sci., 8, 13 pages (2017). https://doi.org/10.3389/fpls.2017.02017
KB Bobbili, B Singh, A Narahari, G Bulusu, A Surolia, MJ Swamy. Chitooligosaccharide binding to CIA17 (Coccinia indica agglutinin): Thermodynamic characterization and formation of higher order complexes. Int. J. Biol. Macromol., 137, 774–782 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.211
MJ Swamy, KB Bobbili, S Mondal, A Narahari, D Datta. Cucur-bitaceae phloem exudate lectins: Purification, molecular charac-terization, and carbohydrate binding characteristics. Phytochem-istry, 201, 113251 (2022). https://doi.org/10.1016/j.phytochem. 2022.113251
G Lambrinidis, T Vallianatou, A Tsantili-Kakoulidou. In vitro, in silico and integrated strategies for the estimation of plasma protein binding: A review. Adv. Drug Delivery Reviews, 86, 27–45 (2015). https://doi.org/10.1016/j.addr.2015.02.005
DL Roman, M Roman, C Som, M Schmutz, E Hernandez, P Wick et al. Computational assessment of the pharmacological profiles of degradation products of chitosan. Front. Bioeng. Biotechnol., 7, 214 (2019). https://doi.org/10.3389/fbioe.2019.00214
DL Roman, V Ostafe, A Isvoran. Computational assessment of chito-oligosaccharides interactions with plasma proteins. Marine Drugs, 19(3), 120 (2021). https://doi.org/10.3390/md19030120
FD Prieto-Martínez, M Arciniega, JL Medina-Franco. Acopla-miento Molecular: Avances Recientes y Retos. TIP Revista Es-pecializada en Ciencias Químico-Biológicas, 21, 65–87 (2018). https://doi.org/10.22201/fesz.23958723e.2018.0.143
C Yang, EA Chen, Y Zhang. Protein–ligand docking in the ma-chine-learning era. Molecules, 27(14), 4568 (2022). https://doi. org/10.3390/molecules27144568
PC Agu, CA Afiukwa, OU Orji, EM Ezeh, IH Ofoke, CO Ogbu et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Re-ports, 13(1), 13398 (2023). https://doi.org/10.1038/s41598-023-40160-2
ES Istifli. Introductory chapter: Molecular docking—The transi-tion from the micro nature of small molecules to the macro world. En: Molecular Docking—Recent Advances. IntechOpen (2023). https://doi.org/10.5772/intechopen.106750
A Rudnitskaya, B Török, M Török. Molecular docking of enzyme inhibitors: A computational tool for structure‐based drug design. Biochem. Mol. Biol. Educ., 38(4), 261-265 (2010). https://doi. org/10.1002/bmb.20392
G Jing, W Gao, Y Wang, K Xu, W Luo, T Hong et al. Enhancing enzyme activity and thermostability of Bacillus amyloliquefaciens chitosanase BaCsn46A through saturation mutagenesis at Ser196. Current Microbiology, 80(5), 180 (2023). https://doi.org/10. 1007/s00284-023-03281-5
LW Stockinger, KB Eide, AL Dybvik, H Sletta, KM Vårum, VG Eijsink et al. The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase. Biochimica et Biophysica Acta-Proteins and Proteomics, 1854(10), 1494-1501 (2015). https://doi.org/10.1016/j.bbapap.2015.06.008
Ö Kurç, N Rähse, H Gohlke, J Cramer. Human chitinases and chi-tinase-like proteins as emerging drug targets–a medicinal chemis-try perspective. RSC Medicinal Chemistry, 16(6), 2388-2402 (2025). https://doi.org/10.1039/D4MD01050G
RM de Angelo, LA Nascimento, JP Encide, H Barbosa, JH Lago, F da Silva Emery et al. Advances and Challenges in Molecular Docking Applied to Neglected Tropical Diseases. Current Me-dicinal Chemistry, 32(28), 5939-5959 (2025). https://doi.org/ 10.2174/0109298673327352240930040103
BB Aam, EB Heggset, AL Norberg, M Sørlie, KM Vårum, VG Eijsink. Production of chitooligosaccharides and their potential applications in medicine. Marine Drugs, 8(5), 1482–1517 (2010). https://doi.org/10.3390/md8051482
C Hao, L Gao, Y Zhang, W Wang, G Yu, H Guan et al. Acetylated chitosan oligosaccharides act as antagonists against glutamate-in-duced PC12 cell death via Bcl-2/Bax signal pathway. Marine Drugs, 13(3), 1267–1289 (2015). https://doi.org/10.3390/ md13031267
NN Desai, AK Allen. The purification of potato lectin by affinity chromatography on an N,N′,N″-triacetylchitotriose-Sepharose matrix. Analytical Biochemistry, 93(1), 88–90 (1979). https:// doi.org/10.1016/S0003-2697(79)80120-7
X Zhang, K Li, S Liu, R Xing, H Yu, X Chen, P Li. Size effects of chitooligomers on the growth and photosynthetic characteris-tics of wheat seedlings. Carbohydrate Polymers, 138, 27-33 (2016). https://doi.org/10.1016/j.carbpol.2015.11.050
KC Li, S Liu, RE Xing, HH Yu, Y Qin, RF Li et al. High-resolu-tion separation of homogeneous chitooligomers series from 2-mers to 7-mers by ion-exchange chromatography. Journal of Separation Science, 36(8), 1275–1282 (2013). https://doi.org/10. 1002/jssc.201201038
P Zou, X Tian, B Dong, C Zhang. Size effects of chitooligomers with certain degrees of polymerization on the chilling tolerance of wheat seedlings. Carbohydrate Polymers, 160, 194-202 (2017). https://doi.org/10.1016/j.carbpol.2016.12.058
H Li, K Ji, P Liu, Y Geng, J Gong, C Zhang et al. Chitotriose Enhanced Antitumor Activity of Doxorubicin through Egr1 Up-regulation in MDA-MB-231 Cells. Marine Drugs, 22, 26 (2024). https://doi.org/10.3390/md22010026
K Li, S Liu, R Xing, Y Qin, P Li. Preparation, characterization and antioxidant activity of two partially N-acetylated chito-trioses.Carbohydrate Polymers, 92(2), 1730–1736 (2013). https://doi. org/10.1016/j.carbpol.2012.10.038
KI Amano, E Ito. The action of lysozyme on partially deacetylated chitin. Eur. J. Biochemistry, 85(1), 97–104 (1978). https://doi. org/10.1111/j.1432-1033.1978.tb12216.x
SJ Horn, M Sørlie, G Vaaje-Kolstad, AL Norberg, B Synstad, KM Vårum et al. Comparative studies of chitinases A, B and C from Serratia marcescens. Biocatalysis and Biotransformation, 24(1–2), 39–53 (2006). https://doi.org/10.1080/102424205005 18482
A Narahari, H Singla, PK Nareddy, G Bulusu, A Surolia, MJ Swamy. Isothermal titration calorimetric and computational stud-ies on the binding of chitooligosaccharides to pumpkin (Cucurbita maxima) phloem exudate lectin. J. Phys. Chem., B115(14), 4110-4117 (2011). https://doi.org/10.1021/jp110468n
O Crasson, G Courtade, RR Léonard, FL Aachmann, F Legrand, R Parente et al. Human chitotriosidase: catalytic domain or carbo-hydrate binding module, who’s leading HCHT’s biological func-tion. Scientific Reports, 7(1), 2768 (2017). https://doi.org/ 10.1038/s41598-017-02382-z
KB Bobbili, N Sivaji, B Priya, K Suguna, A Surolia. Structure and interactions of the phloem lectin (phloem protein 2) Cus17 from Cucumis sativus. Structure, 31(4), 464–479 (2023). https://doi. org/10.1016/j.str.2023.02.008
Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. http://avogadro.cc/
VJ Osterne, KS Nascimento, BS Cavada, EJ Van Damme. The future of plant lectinology: Advanced technologies and computa-tional tools. BBA Advances, 7, 100145 (2025). https:// doi.org/10.1016/j.bbadva.2025.100145
Y Liu, X Yang, J Gan, S Chen, ZX Xiao, Y Cao. CB-Dock2: im-proved protein–ligand blind docking by integrating cavity detec-tion, docking and homologous template fitting. Nucleic Acids Res., 50(W1), W159-W164 (2022). https://doi.org/10.1093/ nar/gkac394
Y Liu, Y Cao. Protein–Ligand Blind Docking Using CB-Dock2. En: Computational Drug Discovery and Design. Methods in Mo-lecular Biology, Vol 2714, Eds. M Gore, M. y UB Jagtap. Hu-mana, New York, USA, (2024). https://doi.org/10.1007/978-1-0716-3441-7_6
PK Nareddy, KB Bobbili, MJ Swamy. Purification, physico-chemical characterization and thermodynamics of chitooligosac-charide binding to cucumber (Cucumis sativus) phloem lectin. Int. J. Biol. Macromol., 95, 910-919 (2017). https://doi.org/10.1016/ j.ijbiomac.2016.10.078
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
DOI: https://doi.org/10.53766/AVANQUIM
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.