Inmunopatogénesis, ingesta de sodio/potasio y sistema calicreínas-cininas en hipertensión arterial. Una revisión

Neudo Buelvas Jimenez, José Ramón Vielma-Guevara

Resumen


Resumen(español) La hipertensión arterialrepresenta uno de los principales factores que contribuyen a la morbimortalidad en todo el mundo, porquese asocia a las enfermedades cardiovasculares.La hipertensión afecta aproximadamente a 1,3 billones de personas en el mundo, con una tendencia alaumento en las tasas de prevalencia e incidencia. Menos de la mitad de las personas conocen su condición, y muchas otras son conscientes, pero o no son tratadas, o están tratadas inadecuadamente, aun cuando, el tratamiento reduce la carga de morbimortalidad. Los principales mecanismos fisiopatológicos incluyen:la elevada ingesta de sodio y baja de potasio, lo cual conlleva a la activación de las ramas innata y adaptativa del sistema inmune, incluyendo procesos de autoinmunidad, disfunción del sistema renina-angiotensina-aldosterona, alteración del sistema de calicreínas-cininas, elevando las cifras de presión arterial en pacientes sal sensibles.Como condición inflamatoria crónica, la hipertensión puede ser tratada con inmunosupresores, de forma transitoria, como el micofenolato de mofetilo, entre otras drogas. De igual manera, el inflamasoma NLRP3 ha sido sugerido como alternativa terapéutica en enfermedad renal, hipertensión, fibrilación atrial, aterotrombosis, entre otras, y drogas como el inhibidor selectivo del inflamasoma NLRP3, designado como MCC950, podría ser utilizado con propósito de tratamiento en éstas enfermedades.El objetivo de la presente revisión es destacar la inmunopatogénesis, ingesta de sodio y potasio, sistema calicreínas-cininas en el desarrollo de la hipertensión arteria

Recibido: 20 de Junio del2020.
Aceptado: 25 de Enero del 2021.
Publicadoonline: 16 de Abril del 2022.


Palabras clave


Hipertensión arterial; autoinmunidad; sistema calicreínas-cininas; inflamasoma NLRP3; sodio; potasio

Texto completo:

PDF

Referencias


Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A, Whelton PK. Hypertension. Nat Rev Dis Primers 2018; 4: 18014. [PubMed][Google Scholar]

Afsar B, Kuwabara M, Ortiz A, Yerlikaya A, Siriopol D, Covic A, Rodriguez-Iturbe B, Johnson RJ, Kanbay M. Salt Intake and Immunity. Hypertension 2018; 72:19-23. [PubMed][Google Scholar]

Rodríguez-Iturbe B. La participación de la inmunidad en la patogenia de la hipertensión arterial. Nefrología 2020; 40, 1. [PubMed][Google Scholar].

Adrogué HJ, Madias NE. The impact of sodium and potassium on hypertension risk. Semin Nephrol 2014; 34:257-72. [PubMed][Google Scholar]

Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev 2017; 97: 1127-64.[PubMed][Google Scholar]

Suckling RJ, He FJ, Markandu ND, MacGregor GA. Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int 2012; 81: 407-11. [PubMed][Google Scholar]

Buelvas N, Vielma-Guevara JR. Hipertensión arterial: ingesta de sal y mecanismos de patogénesis. Una revisión. Avan Biomed 2020; 9: 16-29. [Google Scholar]

Wolf VL, Ryan MJ. Autoimmune Disease-Associated Hypertension. Current Hypertension Reports 2019; 21: 10.[PubMed][Google Scholar]

Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 2014; 124: 4642-56. [PubMed][Google Scholar]

Rodríguez-Iturbe B, Franco M, Tapia E, Quiroz Y, Johnson RJ. Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol 2012; 39: 96-103. [PubMed][Google Scholar]

Rodríguez-Iturbe B, Pons H, Quiroz Y, Lanaspa MA, Johnson RJ. Autoimmunity in the pathogenesis of hypertension. Nat Rev Nephrol 2014; 10: 56-62. [PubMed][Google Scholar]

Rodríguez-Iturbe B, Lanaspa MA, Johnson RJ. The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. Br J Pharmacol 2019; 176: 1829-38. [PubMed][Google Scholar]

Parra G, Quiroz Y, Salazar J, Bravo Y, Pons H, Chavez M, Johnson RJ, Rodriguez-Iturbe B. Experimental induction of salt-sensitive hypertension is associated with lymphocyte proliferative response to HSP70. Kidney Int Suppl 2008; 111: S55-9. [PubMed][Google Scholar]

Pons H, Ferrebuz A, Quiroz Y, Romero-Vasquez F, Parra G, Johnson RJ, Rodriguez-Iturbe B. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am J Physiol

Renal Physiol 2013; 304: F289-99. [PubMed] [Google Scholar]

Taylor EB, Barati MT, Powell DW, Turbeville HR, Ryan MJ. Plasma cell depletion attenuates hypertension in an experimental model of autoimmune disease. Hypertension 2018; 71 (4): 719-28. [PubMed][Google Scholar]

Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020; 11: 776. [PubMed][Google Scholar]

Bernatova I.Endothelial Dysfunction in Experimental Models of Arterial Hypertension: Cause or Consequence? BioMed Res Int 2014; 598271. [PubMed][Google Scholar]

Mathew R.Endothelial Dysfunction and Disruption in Pulmonary Hypertension. In Cardiovascular Risk Factors in Pathology. DOI: 10.5772/intechopen.92177. 2020. [Google Scholar]

Mathew R. Pathogenesis of pulmonary hypertension: A case for caveolin-1 and cell membrane integrity. American Journal of Physiology. Heart and Circulatory Physiology. 2014; 306: H15-25. [PubMed][Google Scholar]

Mathew R. Cell-specific dual role of caveolin-1 in pulmonary hypertension. PulmonaryMedicine. 2011;2011:573432.[PubMed][Google Scholar]

Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003; 23: 1161-8. [Google Scholar]

Jasmin JF, Mercier I, Hnasko R, Cheung MW, Tanowitz HB, Dupuis J, Lisanti, MP. Lung remodeling and pulmonary hypertension after myocardial infarction: Pathogenic role of reduced caveolin expression. Cardiovascular Res 2004;63: 747-55.[PubMed][Google Scholar]

Achcar RO, Demura Y, Rai PR, Taraseviciene-Stewart L, Kasper M, Voelkel NF, Cool CD. Loss of caveolin and heme oxygenase expression in severe pulmonary hypertension. Chest.2006; 129: 696-705.[PubMed][Google Scholar]

Huang J, Wolk JH, Gewitz MH, Mathew R. Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension. Exp Lung Res 2010; 36: 57-66. [PubMed]

Mathew R, Huang J, Shah M, Patel K, Gewitz M, Sehgal PB. Disruption of endothelial-cell caveolin-1alpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Circulation 2004; 110: 1499-506. [PubMed][Google Scholar]

Kostov K, Halacheva L. Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension. Int J Mol Sci 2018; 19: 1724. [PubMed][Google Scholar]

Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice. Nutrients 2014; 6: 1194-208. [PubMed]

Ban Y, Liu Y, Li Y, Zhang Y, Xiao L, Gu Y, Chen S, Zhao B, Chen C, Wang, N. S-nitrosation impairs KLF4 activity and instigates endothelial dysfunction in pulmonaryarterial hypertension. Redox Biology 2019; 21: 101099. [PubMed][Google Scholar]

León-Álvarez JL, Guerra-Ibañez G, Yanes Quesada MA, Calderín-Bouza RO, Gutiérrez-Rojas A. Disfunción endotelial en hipertensos de reciente diagnóstico. Rev Cubana Med 2014; 53:[Google Scholar]

Liu D, Zeng X, Li X, Mehta JL, Wang X. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol 2017;113: 5[PubMed][Google Scholar].

Marketou ME, Kontaraki JE, Zacharis EA, Kochiadakis GE, Giaouzaki A, ChlouverakisG, Vardas PE. TLR2 and TLR4 gene expression in peripheral monocytes in nondiabetic hypertensive patients: The effect of intensive blood pressure-lowering. J Clin Hypertens 2012;14:330-5. [PubMed]

Zirlik A, Abdullah SM, Gerdes N, MacFarlane L, Schönbeck U, Khera A, McGuire DK, Vega GL, Grundy S, Libby P, de Lemos JA. Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: Results from the Dallas HeartStudy. Arterioscler Thromb Vasc Biol 2007;27:2043–9. [PubMed][Google Scholar]

Blankenberg S, Luc G, Ducimetière P, Arveiler D, Ferrières J, Amouyel P, Evans A, Cambien F, Tiret L, PRIME Study Group. PRIME Study Group Interleukin-18 and therisk of coronary heart disease in European men: TheProspective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 2003; 108: 2453-9. [PubMed][Google Scholar]

Suárez R, Buelvas N. El inflamasoma: mecanismos de activación. Invest Clin 2015; 56: 74-99.[PubMed][Google Scholar]

Buelvas-Jimenez N, Suárez-Useche R. Regulación del inflamasoma: bioquímica y más allá de ella. IATREIA. 2015; 28: 170-80. [Google Scholar]

Buelvas-Jimenez N, Suárez-Useche R, Vielma-Guevara JR. NLRP3 inflammasome: A therapeutic option for kidney disease? Rev Salud Pública 2017; 19: 118-22. [PubMed][Google Scholar]

Kim S-M, Kim YG, Kim D-J, Park SH, Jeong K-H, Lee YH, Lim SJ, Lee S-H, Moon J-Y. Inflammasome-Independent Role of NLRP3 Mediates Mitochondrial Regulation in Renal Injury. Front Immunol 2018; 9: 2563. [PubMed]

Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu, JW, Meng R, Quong AA, Latz E, Scott CP, Alnemri ES. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 2010; 285: 9792-802.[PubMed]

He Y, Varadarajan S, Muñoz-Planillo R, Burberry A, Nakamura Y, Núñez G. 3, 4-methylenedioxy-ß-nitrostyrene inhibits

NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem 2014; 289:1142-50.[PubMed][Google Scholar]

Ahn H, Kim J, Jeung EB, Lee GS. Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 2014; 219:315-22.[PubMed] [

Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D'Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM,Crawford PA, Biragyn A, Alnemri E, Dixit VD. The ketone metabolite ß-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 2015; 21: 263-69.[PubMed][Google Scholar]

Levy M, Thaiss CA, Elinav E. Taming the inflammasome. Nat Med 2015; 21: 213-215.[PubMed] [Google Scholar]

Luo T, Ji WJ, Yuan F, Guo ZZ, Li YX, Dong Y, Ma YQ, Zhou X, Li YM. Th17/Treg imbalance induced by dietary salt variation indicates inflammation of target organs in humans. Sci Rep 2016; 6: 26767. [PubMed][Google Scholar]

Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, András Balogh A, Markó L, Vvedenskaya O, Kleiner FH, Tsvetkov D, Klug L, Costea PI, Sunagawa S, Maier L, Rakova N, Valentin Schatz V, Neubert P, Frätzer C, Krannich A, Gollasch M, Grohme DA, Côrte-Real BF, Gerlach RG, Basic M, Typas A, Wu C, Titze JM, Jantsch J, Boschmann M, Dechend R, Kleinewietfeld M, Kempa S, Bork P, Linker RA, Alm EJ, Müller DM. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017; 551: 585-9. [PubMed]

Robles-Vera I, Toral M, de la Visitación N, Aguilera-Sánchez N, Redondo JM, Duarte J. Protective Effects of Short-Chain Fatty Acids on Endothelial Dysfunction Induced by Angiotensin II. Front Physiol 2020; 11: 277. [PubMed] [Google Scholar]

Cifuentes ME, Rey FE, Carretero OA, Pagano PJ. Upregulation of p67(phox) and gp91(phox) in aortas from angiotensin II-infused mice. Am J Physiol Heart Circ Physiol 2000; 279: H2234-40. [PubMed] [Google Scholar]

Shah KH, Shi P, Giani JF, Janjulia T, Bernstein EA, Li Y, Zhao T, Harrison DG, Bernstein KE, Shen XZ. Myeloid Suppressor Cells Accumulate and Regulate Blood Pressure in Hypertension. Circ Res 2015; 117: 858-69. [PubMed]

Juelke K, Romagnani C. Differentiation of human innate lymphoid cells (ILCs). Curr Opin Immunol 2015; 38: 75-85. [PubMed]

Caillon A, Paradis P, Schiffrin EL. Role of immune cells in hypertension. British Journal of Pharmacology 2019; 176: 1818-28. [PubMed][Google Scholar]

Kossmann S, Schwenk M, Hausding M, Karbach SH, Schmidgen MI, Brandt M, Knorr M, Hu H, Kröller-Schön S, Schönfelder T, Grabbe S, Oelze M, Daiber A, Münzel T, Becker C, Wenzel P. Angiotensin II-induced vascular dysfunction depends on interferon-?-driven immune cell recruitment and mutual activation of monocytes and NK-cells. Arterioscler Thromb Vasc Biol 2013; 33: 1313-9.[PubMed]

Krüger T, Benke D, Eitner F, Lang A, Wirtz M, Hamilton-Williams EE, Engel D, Giese B, Müller-Newen G, Floege J, Kurts C. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol 2004; 15: 613-21. [PubMed]

Hevia D, Araos P, Prado C, Fuentes Luppichini E, Rojas M, Alzamora R, Flavia Cifuentes-Araneda F, Alexis A. Gonzalez AA, Amador CA, Pacheco R, Michea L. Myeloid CD11c+ Antigen-Presenting Cells Ablation Prevents Hypertension in Response to Angiotensin II Plus High-Salt Diet. Hypertension 2018; [PubMed][Google Scholar]

Rucker AJ, Rudemiller NP, Crowley SD. Salt, Hypertension, and Immunity. Annu Rev Physiol 2018; 80: 283-307. [PubMed]

Ardiles L, Mezzano S. [Role of the kidney in salt sensitive hypertension]. Rev Med Chil 2010; 138: 862-7. [PubMed][Google Scholar]

Hall JE. Guyton y Hall. Tratado de Fisiología. S.A. Elsevier España. ISBN: 9788491130246. 1168 p. 2016. [Google Scholar]

Kanbay M, Aslan G, Afsar B, Dagel T, Siriopol D, Kuwabara M, Incir S, Camkiran V, Rodriguez-Iturbe B, Lanaspa MA, Covic A, Johnson RJ. Acute effects of salt on blood pressure are mediated by serum osmolality. J Clin Hypertens 2018; 20:1447-54. [PubMed]

de Wardener HE, He FJ, MacGregor GA. Plasma sodium and hypertension. Kidney

Int 2004; 66: 2454–66. [PubMed][Google Scholar]

Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, Delpire E, Harrison DG, McDonough AA. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-?-/- and interleukin-17A-/- mice. Hypertension 2015; 65: 569-76.[PubMed]

Koh KH, Wei-Soon LH, Jun L, Lui-Sian LN, Hui-Hong CT.Study of low salt diet in hypertensive patients with chronic kidney disease. Med J Malaysia 2018; 73: 376-81. [PubMed]

Zhang J, Patel MB, Griffiths R, Mao A, Song Y, Karlovich NS, Sparks MA, Jin H, Wu M, Lin EE, Crowley SD.Tumor necrosis factor-a produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension 2014; 64: 1275-81. [PubMed] [Google Scholar]

Trott DW, Thabet SR, Kirabo A, Saleh MA, Itani H, Norlander AE, Wu J, Goldstein A, Arendshorst WJ, Madhur MS, Chen W, Li CI, Shyr Y, Harrison DG.Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 2014, 64:1108-15.[PubMed][Google Scholar]

Guzik TJ, Hoch NE,Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 2007; 204: 2449-60. [PubMed][Google Scholar]

Mattson DL, Lund H, Guo C, Rudemiller N, Geurts AM, Jacob H. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am J Physiol Regul Integr Comp Physiol 2013; 304: R407-14. [PubMed][Google Scholar]

Barret KE, Barman SM, Boltano S, Brooks HL. Ganong Fisiología Médica. McGraw-Hill Lange. ISBN: 9786071513656. 762 p. 2016. [Google Scholar]

Fauci AS. Harrison’s Principles of Internal Medicine, McGraw-Hill Medical, New York, NY, USA, 2008. [Google Scholar]

Guyton AC, Coleman TG, Fourcade JC, Navar LG. Physiologic control of arterial

pressure. Bull N Y Acad Med 1969; 45: 811-30. [Google Scholar]

Guyton AC. Blood pressure control: special role of the kidneys and body fluids. Science 1991; 252: 1813-6. [PubMed]

Palmer BF, Clegg DJ. Are there benefits of a high potassium diet, even in the CKD patient?Port J Nephrol Hypert 2017; 31: 115-21.[Google Scholar]

Palmer BF, Clegg DJ.Physiology and Pathophysiology of Potassium Homeostasis: Core Curriculum 2019. Am J Kidney Dis 2019; 1-14.[PubMed]

Elliot WJ. Systemic Hypertension. Curr Probl Cardiol 2007; 32: 201-59. [PubMed][Google Scholar]

Palmer BF. Regulation of potassium homeostasis. Clin J Am Soc Nephrol 2015;10:1050-60.[PubMed][Google Scholar]

Palmer BF, Clegg DJ. Achieving the benefits of a high potassium, Paleolithic diet, without the toxicity. Mayo Clin Proc 2016;91:496-508.[PubMed]

Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, Siler DA, Park HJ,Fu Y, Cohen DM, Weinstein AM, Wang WH, Yang CL, Ellison DH. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 2015;21:39-50.[PubMed][Google Scholar]

Wang WH. Basolateral Kir4.1 activity in the distal convoluted tubule regulates K+ secretion by determining NaCl cotransporter activity. Curr Opin Nephrol Hypertens 2016;25:429-35. [PubMed]

Stanton BA. Renal potassium transport: morphological and functional adaptations. Am J Physiol 1989;257: R989-97.[PubMed][Google Scholar]

Kamel KS, Schreiber M, Halperin ML.Renal Potassium Physiology: Integration of the Renal Response to Dietary Potassium Depletion. Kidney Int 2018; 93:41-53. [PubMed]

Mayan H, Vered I, Mouallem M, Tzadok-Witkon M, Pauzner R, Farfel Z. Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab 2002; 87: 3248-54. [PubMed]

Bach I, Handel M, Sos J. Effect of nutritional sodium-potassium ratio on experimental renal and neurogenic hypertension in rats. Magy Belorv Arch 1955; 8: 108-11. [PubMed]

Bubien JK. Epithelial Na+ channel (ENaC), hormones, and hypertension. J Biol Chem 2010; 285: 23527-31. [PubMed]

Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, Klag MJ. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997; 277: 1624–32. [PubMed][Google Scholar]

Katori M, Majima M.A Missing Link Between a High Salt Intake and Blood Pressure Increase. J Pharmacol Sci 2006; 100, 370-90. [PubMed][Google Scholar]

Katori M, Majima M. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension. Prog Drug Res. 2014; 69: 59-109. [PubMed]

Majima M, Katori M. Effect of chronic blockade of the kallikrein-kinin system on the development of hypertension in rats. Hypertension 2001; 38: E21-3. [PubMed]

Rhaleb NE, Yang XP, Nanba M, Shesely EG, Carretero OA. Effect of Chronic Blockade

of the Kallikrein-Kinin System on the Development of Hypertension in Rats. Hypertension 2001; 37:121-128. [PubMed]

Bönner G, Unger T, Rascher W, Speck G, Ganten D, Gross F. The renal kallikrein-kinin system in spontaneously hypertensive rats. Agents Actions 1984; 15: 111-8. [PubMed]

Majima M, Hayashi I, Fujita T, Ito H, Nakajima S, Katori M. Facilitation of renal kallikrein-kinin system prevents the development of hypertension by inhibition of sodium retention. Immunopharmacology. 1999; 44: 145-52. [PubMed]

Anders HJ, Baumann M, Tripepi G, Mallamaci F.Immunity in arterial hypertension: associations or causalities? Nephrol Dial Transplant 2015; 30: 1959-64.[PubMed][Google Scholar]

Abais-Battad JM, Dasinger JH, Fehrenbach DJ, Mattson DL.Novel adaptive and innate immunity targets

in hypertension.Pharmacol Res 2017;120: 109-15. [PubMed]

Hu B, Wang Z, Zeng H, Qi Y, Chen Y, Wang T, Wang J, Chang Y, Bai Q, Xia Y, Wang Y, Liu L, Zhu Y, Dai B, Guo J, Xu L, Zhang W, Xu J. Blockade of DC-SIGN + Tumor-Associated Macrophages Reactivates Antitumor Immunity and Improves Immunotherapy in Muscle-Invasive Bladder Cancer. Cancer Res 2020; 80: 1707-19. [PubMed][Google Scholar]

Smorodinova N, Bláha M, Melenovský V, Rozsívalová K, Pridal J, Durišová M, Pirk J, Kautzner J, Kucera T. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS One; 12: e0172691. [PubMed]

Perros F, Dorfmüller P, Souza R, Durand-Gasselin I, Mussot S, Mazmanian M, Hervé P, Emilie D, Simonneau G, Humbert M. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J 2007; 29: 462-8. [PubMed]




Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.