La yegua como biomodelo reproductivo para el estudio de la fertilidad en la mujer
Resumen
El estudio del impacto del envejecimiento en la fertilidad humana es complejo debido al número limitado de muestras y a la falta de biomodelos similares. En la actualidad se emplean multitud de especies, principalmente roedores debido a su alta disponibilidad y primates por su similitud genética. No obstante, la yegua, presenta unas características que la convierten en una gran alternativa, ya que es una especie que puede llegar a una edad avanzada y tiene una larga vida reproductiva. La población equina es diversa, seleccionada por la capacidad de rendimiento, los rasgos de conformación o el éxito de la descendencia, por lo que el envejecimiento reproductivo varía entre las yeguas de manera consistente, paralelamente a lo que se observa en las mujeres. Además, las técnicas de reproducción asistida y la transferencia de embriones se usan ampliamente en mujeres y yeguas para combatir la infertilidad. Finalmente, ambas especies comparten similitudes en la dinámica folicular y en los cambios reproductivos asociados a la edad, obesidad y excesivo ejercicio. Por lo tanto, el estudio comparativo de ambas puede aportar conocimiento recíproco sobre los mecanismos fundamentales que subyacen al envejecimiento reproductivo y en un futuro poder desarrollar nuevos enfoques para prolongar la duración y la calidad de la vida reproductiva, lo que finalmente tendrá un impacto en la salud global.
Recibido: 15 de Noviembre de 2023.
Aceptado: 11 de Marzo de 2024.
Palabras clave
Texto completo:
PDFReferencias
Referencias
Maldonado-Villamizar J. Experimentación con biomodelos animales en ciencias de la salud. Avan Biomed. 2016; 3: 173-7. [Google Scholar]
Lu H, Ma L, Zhang Y, Feng Y, Zhang J, Wang S. Current animal model systems for ovarian aging. Aging Dis 2021; 13: 1183-95. [PubMed] [Google Scholar]
Gastal EL, Gastal MO, Wischral A, Davis J. The Equine Model to Study the Influence of Obesity and Insulin Resistance in Human Ovarian Function. Acta Sci Vet 2011; 39: 57-70. [Google Scholar]
Vantman D, Vega M. Fisiología reproductiva y cambios evolutivos con la edad de la mujer. RMCLC 2010; 21: 348-62. [Google Scholar]
Benammar A, Derisoud E, Vialard F, Palmer E, Ayoubi JM, Poulain M, Chavatte-Palmer P. The Mare: A Pertinent Model for Human Assisted Reproductive Technologies? Animals 2021; 11: 2304. [PubMed] [Google Scholar]
Bergfelt R. Equine Breeding Management and Artificial Insemination. Ed. St. Louis: Saunders Elsevier, 2009.
Carnevale EM, Catandi G, Fresa K. Equine Aging and the Oocyte: A Potential Model for Reproductive Aging in Women. JEVS 2020; 89: 145-9. [PubMed] [Google Scholar]
Ginther OJ, Gastal EL, Gastal MO, Bergfelt DR, Baerwald AR, Pierson RA. Comparative study of the dynamics of follicular waves in mares and women.
Biol Reprod 2004; 71: 1195–201. [PubMed] [Google Scholar]
Ginther OJ, Beg MA, Gastal EL, Gastal MO, Baerwald AR, Pierson RA. Systemic concentrations of hormones during the development of follicular
waves in mares and women: a comparative study. Reproduction 2005; 130:379–88. [PubMed] [Google Scholar]
Carnevale EM. The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 2008; 69: 23-30. [PubMed] [Google
Scholar]
Edwards RG, Steptoe PC. Induction of follicular growth, ovulation and luteinization in the human ovary. J Reprod Fertil 1975; 22:121-63.
[PubMed] [Google Scholar]
Ginther OJ. (1992). Reproductive biology in the mare. USA: Equiservices Cross Plains.
Bashir ST, Gastal MO, Tazawa SP, Tarso SGS, Hales DB, Cuervo-Arango J, Baerwald AR, Gastal EL. The mare as a model for luteinized unruptured
follicle syndrome: intrafollicular endocrine milieu. Reproduction 2016; 151: 271-83. [PubMed] [Google Scholar]
Ginther OJ, Gastal EL, Gastal MO, Beg MA. Incidence, endocrinology, vascularity, and morphology of hemorrhagic anovulatory follicles in
mares. J Equine Vet Sci 2007; 27:22–131. [Google Scholar]
Smith WL, Marnett LJ, DeWitt DL. Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 1991; 49: 153-79.
Carnevale EM, Bergfelt DR, Ginther OJ. Aging effects on follicular activity and concentrations of FSH, LH, and progesterone in mares. Anim Reprod Sci 1993; 31: 287–99. [PubMed] [Google Scholar]
Soules MR, Battaglia DE, Klein A. Female Reproductive Aging. Ed. New York: The Parthenon Publishing Group, 2000.
Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion.
J Cin Endocrinol Metab 1987; 65:231–7. [PubMed] [Google Scholar]
Santoro N, Brown J, Adel T, Skurnick J. Characterization of reproductive hormonal dynamics in the perimenopause. J Clin Endocrinol Metab 1996; 81:1495–501. [PubMed] [Google Scholar]
Carnevale EM, Bergfelt DR, Ginther OJ. Follicular activity and concentrations of FSH and LH associated with senescence in mares. Anim Reprod Sci 1994; 35:231–46. [Google Scholar]
Te Velde ER, Scheffer GJ, Dorland M, Broekmans FJ, Fauser BCJM.Developmental and endocrine aspects of normal ovarian aging. Molec Cell Endocrinol 1998; 145:67–73. [PubMed] [Google Scholar]
Vanderwall DK,Woods GL. Age-related subfertility in the mare. En Proc 35th Annual Conv American Assoc Equine Practitioners, 1990.
Uliani RC, Conley AJ, Corbin CJ, Friso AM, Maciel LF, Alvarenga MA. Anti-Müllerian hormone and ovarian aging in mares. J Endocrinol 2019; 240: 147-56. [PubMed] [Google Scholar]
Claes A, Ball BA, Scoggin KE, Esteller-Vico A, Kalmar JJ, Conley AJ, Squires EL, Troedsson MH. The interrelationship between anti-Mullerian hormone, ovarian follicular populations and age in mares. Equine Vet J 2015; 47:537–41. [PubMed] [Google Scholar]
Moghadam ARE, Moghadam MT, Hemadi M, Saki G. Oocyte quality and aging. JBRA Assist Reprod 2022; 26: 105-22. [PubMed]
Legro RS, Wong IL, Paulson RJ, Lobo RA, Sauer MV. Recipient’s age does not adversely affect pregnancy outcome after oocyte donation. Am J Obstet Gynecol 1995; 172:96–100. [PubMed] [Google Scholar]
Carnevale EM, Ginther OJ. Defective oocytes as a cause of subfertility in old mares. Biol Reprod 1995, 12:209–14. [Google Scholar]
Loutradis D, Drakakis P, Kallianidis K, Milingos S, Dendrinos S, Michalas S. Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection. Fertil Steril 1999; 72: 240-4. [PubMed] [Google Scholar]
De Bruin JP, Dorland M, Spek ER, Posthuma G, van Haaften M, Looman CWN. Age-related changes in the ultrastructure of the resting follicle pool
in human ovaries. Biol Reprod 2004; 70:419–24. [PubMed] [Google Scholar]
Kahraman S, Yakin K, Dönmez E, Samli H, Bahçe M, Cengiz G, Sertyel S, Samli M, Imirzalioğlu N. Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod 2000; 15: 2390-3. [PubMed] [Google Scholar]
Moussa M, Shu J, Zhang XH, Zeng F. Maternal control of oocyte quality in cattle "a review". Anim Reprod Sci 2015; 155: 11-27. [PubMed] [Google
Scholar]
Ebner T, Moser M, Sommergruber M, Puchner M, Wiesinger R, Tews G. Developmental competence of oocytes showing increased cytoplasmic viscosity. Hum Reprod 2003; 18: 1294-8. [PubMed] [Google Scholar]
Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte. Hum Reprod 2012; 27: 12-21. [Google Scholar]
Carnevale EM, Uson M, Bozzola JJ, King SS, Schmitt SJ, Gates HD. Comparison of oocytes from young and old mares with light and electron microscopy. Theriogenology 1999; 51:299.
Altermatt JL, Suh TK, Strokes JE, Carnevale EM. Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of
equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI). Reprod Fert Develop 2009; 21:615-23. [PubMed] [Google Scholar]
Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in
women. Fertil Steril 1995; 64:577–83. [PubMed] [Google Scholar]
Thouas GA, Trounson AO, Jones GM. Effect of female age on mouse oocyte developmental competence following mitochondrial injury. Biol Reprod 2005;
:366–73. [PubMed] [Google Scholar]
Tarin JJ, Vendrell FJ, Ten J, Cano A. Antioxidant therapy counteracts the disturbing effects of diamide and maternal ageing on meiotic division and chromosomal segregation in mouse oocytes. Molec Human Reprod 1998; 4:281–8. [PubMed] [Google Scholar]
Schon EA, Kim SH, Ferreira JC, Magelhaes P, Grace M, Warburton D. Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection?. Human Reprod 2000; 15: 160–72. [PubMed] [Google Scholar]
Van Blerkom J, Sinclair J, Davis P. Mitochondrial transfer between oocytes: potential applications of mitochondrial donation and the issue of
heteroplasmy. Hum Reprod 1998; 13:2857–68. [PubMed] [Google Scholar] 41. Malter HE. Ooplasmic transfer: animal models assist human studies. Reprod
Biomed Online 2002; 5:26–35. [PubMed] [Google Scholar]
Hemadi M, Abolhassani F, Akbari M, Sobhani A, Pasbakhsh P, Ahrlund-Richter L, Modaresi MH, Salehnia M. Melatonin promotes the cumulus-oocyte complexes quality of vitrified-thawed murine ovaries; with increased mean number of follicles survival and ovary size following heterotopic transplantation. Eur J Pharmacol 2009; 15:84-90. [PubMed] [Google Scholar]
McReynolds S, Dzieciatkowska M, McCallie BR, Mitchell SD, Stevens J, Hansen K, Schoolcraft WB, Katz-Jaffe MG. Impact of maternal aging on the
molecular signature of human cumulus cells. Fertil Steril 2012; 98: 1574-80.e5. [PubMed] [Google Scholar]
Al-Edani T, Assou S, Ferrières A, Bringer Deutsch S, Gala A, Lecellier CH, Aït-Ahmed O, Hamamah S. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. Biomed Res Int 2014; 4: 964614. [PubMed] [Google Scholar]
Goudet G, Bézard J, Duchamp G, Gérard N, Palmer E. Equine oocyte competence for nuclear and cytoplasmic in vitro maturation: effect of follicle size and hormonal environment. Biol Reprod 1997; 57: 232-45. [PubMed] [Google Scholar]
Vitt UA, Hayashi M, Klein C, Hsueh A.J. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 2000; 62: 370-7. [PubMed] [Google Scholar]
Albertini DF, Sanfins A, Combelles CM. Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online 2003; 6: 410-5. [PubMed]
[Google Scholar]
Lindbloom SM, Farmerie TA, Clay CM, Seidel GE, Carnevale EM. Potential involvement of EGF-like growth factors and phosphodiesterases in initiation of equine oocyte maturation. Anim Reprod Sci 2008; 103:187–92. [PubMed] [Google Scholar]
Campos-Chillon LF, Clay CM, Altermatt JL, Bouma GL, Carnevale EM. Differences in resumption of oocyte maturation in young and old mares. Reprod Fertil Dev 2008; 20: 81. [Google Scholar]
Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update 2012; 18: 73-91.
[PubMed] [Google Scholar]
Madill S. Reproductive considerations: mare and stallion. Vet Clin Equine 2002; 18: 591–619. [PubMed] [Google Scholar] 52. McCue PM. Breeding the Older Mare. J Equine Vet Science 1991; 11: 316-8.
Schwartz D, Mayaux MJ. Female fecundity as a function of age: results of artificial insemination in 2193 nulliparous women with azoospermic husbands. N Engl J Med 1982; 306:404-406. [PubMed] [Google Scholar]
Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.