(Una revisión comparativa sobre la resolución de la bioimpresión 3D sobre cultivos celulares 2D en modelos de cáncer)

Manju Palanisamy Sadasivam, Josephine Anthony, Ashok Kumar Sekar, Rajendran Peramaiyan

Resumen


El microambiente tumoral, compuesto por células no neoplásicas y la matriz extracelular, desempeña un papel fundamental en la progresión del cáncer. Los cultivos celulares bidimensionales (2D) tradicionales no logran captar su complejidad, lo que resulta en disparidades en la respuesta a los fármacos en comparación con los modelos tridimensionales (3D). Investigaciones recientes destacan la precisión de los modelos de cáncer bioimpresos en 3D, revolucionando la investigación oncológica. La bioimpresión 3D ofrece diversas aplicaciones, incluyendo modelos tumorales personalizados para el análisis individualizado de fármacos. Estos modelos replican las condiciones fisiológicas, proporcionando un cribado preciso de fármacos para su
eficacia y toxicidad. También facilita el estudio de los mecanismos de metástasis y la identificación de dianas terapéuticas. Además, la bioimpresión 3D ayuda a optimizar los tratamientos contra el cáncer, como las terapias génicas y las inmunoterapias, y permite la administración precisa de fármacos a las células cancerosas. Apoya la formación médica con herramientas de formación realistas y ofrece una alternativa ética a la experimentación con animales, reduciendo potencialmente su necesidad en la investigación oncológica. En esencia, la bioimpresión 3D está impulsando la investigación oncológica al proporcionar modelos de alta precisión que imitan fielmente el microambiente tumoral, mejorando la medicina personalizada, el cribado de fármacos, el desarrollo terapéutico y la educación. La presente revisión profundiza en las aplicaciones multifacéticas de la bioimpresión 3D en la investigación del cáncer, al tiempo que explora futuras direcciones e innovaciones en la bioimpresión 3D para modelos de cáncer.

 

Received: November 11th, 2024.
Acepted: March 20th, 2025.


Palabras clave


Bioimpresión 3D; Cáncer; Métodos 2D; Modelos animales; Pruebas de fármacos

Texto completo:

PDF (English)

Referencias


Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics 2019; 20: 273-86. [PubMed] [Google Scholar]

Azmi A, Mohammad RM, editors. Animal Models in Cancer Drug Discovery. Academic Press; 2019. [Google Scholar]

Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer 2018; 18: 359-76. [PubMed] [Google Scholar]

Valkenburg KC, De Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 2018; 15: 366-81. [PubMed] [Google Scholar]

Colombo E, Cattaneo MG. Multicellular 3D models to study tumour-stroma interactions. Int J Mol Sci 2021; 22: 1633. [PubMed] [Google Scholar]

Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, Farnebo L, Roberg K. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int 2019; 19:1-0. [PubMed] [Google Scholar]

Langer EM, Allen-Petersen BL, King SM, Kendsersky ND, Turnidge MA, Kuziel GM, Riggers R, Samatham R, Amery TS, Jacques SL, Sheppard BC. Modeling tumor phenotypes in vitro with threedimensional bioprinting. Cell Rep 2019; 26: 608-23. [PubMed] [Google Scholar]

Miller KL, Xiang Y, Yu C, Pustelnik J, Wu J, Ma X, Matsui T, Imahashi K, Chen S. Rapid 3D BioPrinting of a human iPSC-derived cardiac micro-tissue for high-throughput drug testing. Organs Chip 2021;3:100007. [Google Scholar]

Fang G, Lu H, Al-Nakashli R, Chapman R, Zhang Y, Ju LA, Lin G, Stenzel MH, Jin D. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication 2021; 14: 015006. [PubMed] [Google Scholar]

Datta P, Dey M, Ataie Z, Unutmaz D, Ozbolat IT. 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis Oncol 2020;4:18. [PubMed] [Google Scholar]

Taubenberger AV, Bray LJ, Haller B, Shaposhnykov A, Binner M, Freudenberg U, Guck J, Werner C. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomate 2016; 36: 73-85. [PubMed] [Google Scholar]

Caballero D, Brancato V, Lima AC, Abreu CM, Neves NM, Correlo VM, Oliveira JM, Reis RL, Kundu SC. Tumor‐Associated Protrusion Fluctuations as a

Signature of Cancer Invasiveness. Adv Biol (Weinh) 2021; 5: 2101019. [PubMed] [Google Scholar]

Breslin S, O’Driscoll L. Threedimensional cell culture: the missing link in drug discovery. Drug Discov Today 2013; 18: 240-9. [PubMed] [Google Scholar]

Devarasetty M, Mazzocchi AR, Skardal A. Applications of bioengineered 3D tissue and tumor organoids in drug development and precision medicine:

current and future. BioDrugs 2018;32: 53-68. [PubMed] [Google Scholar]

Lin DS, Rajasekar S, Marway MK, Zhang B. From model system to therapy: scalable production of perfusable vascularized liver spheroids in “opentop

“384-well plate. ACS Biomater Sci Eng 2020; 7: 2964-72. [PubMed] [Google Scholar]

Fan Z, Wei X, Chen K, Wang L, Xu M. 3D Bioprinting of an Endothelialized Liver Lobule-like Construct as a Tumor-Scale Drug Screening Platform. Micromachines (Basel) 2023;14:878. [PubMed] [Google Scholar]

Massa S, Sakr MA, Seo J, Bandaru P, Arneri A, Bersini S, Zare-Eelanjegh E, Jalilian E, Cha BH, Antona S, Enrico A. Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics 2017;11. [PubMed] [Google Scholar]

Zoetemelk M, Rausch M, Colin DJ, Dormond O, Nowak-Sliwinska P. Shortterm 3D culture systems of various complexity for treatment optimization of

colorectal carcinoma. Sci Rep 2019;9:7103. [PubMed] [Google Scholar]

Kim MJ, Chi BH, Yoo JJ, Ju YM, Whang YM, Chang IH. Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLoS One 2019;14: e0223689. [PubMed] [Google Scholar]

Augustine R, Kalva SN, Ahmad R, Zahid AA, Hasan S, Nayeem A, McClements L, Hasan A. 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. Transl Oncol 2021; 14: 101015. [PubMed] [Google Scholar]

Duan J, Cao Y, Shen Z, Cheng Y, Ma Z, Wang L, Zhang Y, An Y, Sang S. 3D bioprinted GelMA/PEGDA hybrid scaffold for establishing an in vitro model of melanoma. J Microbiol Biotechnol 2022; 32: 531-40. [PubMed] [Google Scholar]

Wake N, Rosenkrantz AB, Huang R, Park KU, Wysock JS, Taneja SS, Huang WC, Sodickson DK, Chandarana H. Patientspecific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Print Med 2019; 5:1-8. [PubMed] [Google Scholar]

Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: Drug screening, disease modeling, and precision medicine

applications. Appl Phys Rev 2019; 6: 011302. [PubMed] [Google Scholar]

Ng WL, Lee JM, Yeong WY, Naing MW. Microvalve-based bioprinting–process, bio-inks and applications. Biomater Sci 2017; 5: 632-47. [PubMed] [Google

Scholar]

Baillargeon P, Shumate J, Hou S, Fernandez-Vega V, Marques N, Souza G, Seldin J, Spicer TP, Scampavia L. Automating a magnetic 3D spheroid

model technology for high-throughput screening. SLAS Technol. Transl. Life Sci. Innov 2019; 24: 420-8. [PubMed] [Google Scholar]

Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC, Panoskaltsis‐Mortari A. 3D bioprinted in vitro metastatic models via reconstruction of tumor

microenvironments. Adv Mater 2019; 3: 1806899. [PubMed] [Google Scholar]

Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their

therapeutic implications. Cell Mol Immunol 2020; 17: 807-21. [PubMed] [Google Scholar]

Lu H, Zhao X, Li Z, Hu Y, Wang H. From CAR-T cells to CAR-NK cells: a developing immunotherapy method for hematological malignancies. Front Oncol

; 11: 720501. [PubMed] [Google Scholar]

Jin Z, Li X, Zhang X, Desousa P, Xu T, Wu A. Engineering the fate and function of human T-Cells via 3D bioprinting. Biofabrication 2021;13:035016.

[PubMed] [Google Scholar]

Navin I, Lam MT, Parihar R. Design and implementation of NK cell-based immunotherapy to overcome the solid tumor microenvironment. Cancers. 2020;

: 3871. [PubMed] [Google Scholar]

Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 2015; 33: 97-101. [PubMed] [Google Scholar]

Ahn YH, Ren L, Kim SM, Seo SH, Jung CR, Noh JY, Lee SY, Lee H, Cho MY, Jung H, Yoon SR. A three-dimensional hyaluronic acid-based niche enhances the therapeutic efficacy of human natural killer cell-based cancer immunotherapy. Biomater 2020;247: 119960. [PubMed] [Google Scholar]

Wu D, Yu Y, Zhao C, Shou X, Piao Y, Zhao X, Zhao Y, Wang S. NK-cellencapsulated porous microspheres via microfluidic electrospray for tumor

immunotherapy. ACS Appl Mater Interfaces 2019; 11: 33716-24. [PubMed] [Google Scholar]

Kim D, Jo S, Lee D, Kim SM, Seok JM, Yeo SJ, Lee JH, Lee JJ, Lee K, Kim TD, Park SA. NK cells encapsulated in micro/macropore-forming hydrogels

via 3D bioprinting for tumor immunotherapy. Biomater Res 2023; 27:1-6. [PubMed] [Google Scholar]

Fathi E, Farahzadi R, Valipour B. Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident Ckit+

hematopoietic stem cells. Int J Biol Macromol 2021;177: 317-27. [PubMed] [Google Scholar]

Chao Y, Chen Q, Liu Z. Smart injectable hydrogels for cancer immunotherapy. Adv Funct Mater 2020;30: 1902785. [Google Scholar]

Shim JH, Kim MJ, Park JY, Pati RG, Yun YP, Kim SE, Song HR, Cho DW. Threedimensional printing of antibioticsloaded poly-ε-caprolactone/poly

(lactic-co-glycolic acid) scaffolds for treatment of chronic osteomyelitis. Tissue Eng Regen Med 2015; 12: 283-93. [Google Scholar]

Maher S, Kaur G, Lima-Marques L, Evdokiou A, Losic D. Engineering of micro-to nanostructured 3D-printed drug-releasing titanium implants for enhanced osseointegration and localized delivery of anticancer drugs. ACS Appl Mater Interfaces 2017;9: 29562-70. [PubMed] [Google Scholar]

Chen X, Chen H, Wu D, Chen Q, Zhou Z, Zhang R, Peng X, Su YC, Sun D. 3D printed microfluidic chip for multiple anticancer drug combinations. Sens

Actuators B Chem 2018; 276: 507-16.[Google Scholar]

Chen E, Zhang Y, Zhang H, Jia C, Liang Y, Wang J. Dosimetry study of threedimensional print template for 125I implantation therapy. Radiat Oncol 2021; 16: 115. [PubMed] [Google Scholar]

Macnamara CK, Caiazzo A, Ramis-Conde I, Chaplain MA. Computational modelling and simulation of cancer growth and migration within a 3D heterogeneous tissue: The effects of fibre and vascular structure. J Comput Sci 2020; 40: 101067. [Google Scholar]

Kather JN, Poleszczuk J, Suarez-Carmona M, Krisam J, Charoentong P, Valous NA, Weis CA, Tavernar L, Leiss F, Herpel E, Klupp F. In silico modeling of immunotherapy and stroma-targeting therapies in human colorectal cancer. Cancer Res 2017; 77: 6442-52. [PubMed] [Google Scholar]

Rejniak KA, Wang SE, Bryce NS, Chang H, Parvin B, Jourquin J, Estrada L, Gray JW, Arteaga CL, Weaver AM, Quaranta V. Linking changes in epithelial

morphogenesis to cancer mutations using computational modeling. PLoS Comput Biol 2010; 6: e1000900. [PubMed] [Google Scholar]

Franssen LC, Lorenzi T, Burgess AE, Chaplain MA. A mathematical framework for modelling the metastatic spread of cancer. Bull Math Biol 2019; 81: 1965-2010. [PubMed] [Google Scholar]

Chiu T, Xiong Z, Parsons D, Folkert MR, Medin PM, Hrycushko B. Low-cost 3D print–based phantom fabrication to facilitate interstitial prostate

brachytherapy training program. Brachytherapy 2020; 19: 800-11. [PubMed] [Google Scholar]

Farooqi KM, Mahmood F. Innovations in preoperative planning: insights into another dimension using 3D printing for cardiac disease. J Cardiothorac Vasc Anesth 2018; 32: 1937-45. [PubMed] [Google Scholar]

Tang F, Hu C, Huang S, Long W, Wang Q, Xu G, Liu S, Wang B, Zhang L, Li L. An innovative customized stent graft manufacture system assisted by threedimensional printing technology. Ann Thorac Surg 2021;112: 308-14. [PubMed] [Google Scholar]

Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 2017; 9: 137-53. [PubMed] [Google Scholar]

Kuracha MR, Thomas P, Loggie BW, Govindarajan V. microenvironment. Cancer Med 2016;5: 711–9. [PubMed] [Google Scholar]

Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinská E, Caldas C, Chang DK, Clarke RB, Clevers H, Coukos G, Dangles-Marie V, Eckhardt SG, Gonzalez-Suarez E, Hermans E, Hidalgo M, Jarzabek MA, de Jong S, Jonkers J, Kemper K, Lanfrancone L, Mælandsmo GM, Marangoni E, Marine JC, Medico E, Norum JH, Palmer HG, Peeper DS, Pelicci PG, Piris-Gimenez A, Roman-Roman S, Rueda OM, Seoane J, Serra V, Soucek L, Vanhecke D, Villanueva A, Vinolo E, Bertotti A, Trusolino L. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017; 17: 254-68. [PubMed] [Google Scholar]




Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.