Melatonina en infecciones bacterianas y sepsis. Un hablar cruzado entre el estrés oxidativo, daño oxidativo, actividad antioxidante, inmunidad innata y las mitocondrias (Revisión sistemática cualitativa)

José Ramón Vielma Guevara, Nolis de Jesús Bracho Morán

Resumen


Con el propósito de describir las evidencias obtenidas en modelos in vivo e in vitro sobre el potencial uso de la melatonina en diferentes infecciones bacterianas (Gram positivas y Gram negativas) y el desarrollo de la sepsis, realizamos una revisión sistemática cualitativa con criterios de validación de la información, con el uso de siete motores de búsqueda, metabuscadores y bases de datos: Google Scholar, WebMD, Trip, Medscape, PubMed, NICE y Scielo, lo que se tradujo en la recuperación 55.540 documentos empleando una combinación de palabras claves en inglés y español y el uso de los operadores booleanos: AND, OR o NOT. Lo complejo de la fisiopatología de las diferentes infecciones bacterianas y la sepsis nos permitió inferir que existe un hablar cruzado entre el estrés oxidativo, daño oxidativo, actividad antioxidante, inmunidad innata y las mitocondrias. El análisis de la evidencia nos permitió puntualizar que la melatonina actúa como antiinflamatorio a través de las vías del Factor Nuclear Kappa Beta y del Inflamasoma NLRP3; además de sus propiedades como capturador de radicales libres derivados del oxígeno y del nitrógeno, su rol de protección a mitocondrias en la mitofagia, entre otras
propiedades. Melatonina es una excelente alternativa para mitigar, aminorar y combatir las infecciones y se ha propuesto su potencial uso como antibiótico y como coadyuvante en la sepsis.

 

Recibido: 09 de Septiembre de 2024.
Aceptado: 19 de Enero de 2025.


Palabras clave


Sepsis bacteriana, infecciones, melatonina, bacterias Gram negativas, bacterias Gram positivas.

Texto completo:

PDF

Referencias


Alomari T, Al-Abdallat H, Hamamreh R, Alomari O, Hos BH, Reiter RJ. Assessing the antiviral potential of melatonin: A comprehensive systematic review. Rev Med Virol 2024; 34: e2499. doi: 10.1002/rmv.2499. [PubMed] [Google Scholar]

Vielma JR, Bonilla E, Chacín-Bonilla L, Mora M, Medina Leendertz S, Bravo Y. Effects of melatonin on oxidative stress and resistance to bacterial, parasitic, and viral infections. Acta Tropica. 2014; 137: 81-7. [PubMed] [Google Scholar]

Vielma JR, Bonilla E, Chacín-Bonilla L, Mora M, Medina Leendertz S, Bravo Y. Effects of melatonin on oxidative stress and resistance to bacterial, parasitic, and viral infections. Acta Tropica. 2014; 137: 81-7. [PubMed] [Google Scholar]

Chacín Bonilla L, Vielma JR, Bonilla E. Should Melatonin be considered a complementary or alternative therapy against parasitic infections?

Epidemiology: Open Access 2014; 4: E117. [Google Scholar]

Cárdenas R, Chacín-Bonilla L, Bonilla E. Melatonin: A review of its physiopathological and therapeutic relationship with parasitic diseases.

Melatonin Res 2023; 6: 28-50. [Google Scholar]

Chacín Bonilla L, Bonilla E. Melatonin and viral infections: A review focusing on therapeutic effects and SARS-CoV-2.Melatonin Research 2024; 7: 47-83. [Google Scholar]

Chojnacki C, Popławski T, Blasiak J, Chojnacki J, Reiter RJ, Klupinska G. Expression of melatonin synthesizing enzymes in Helicobacter pylori infected gastric mucosa. Biomed Res Int 2013; 845032. doi: 10.1155/2013/845032. [PubMed] [Google Scholar]

Shen S, Liao Q, Wong YK, Chen X, Yang C, Xu C, Sun J, Wang J. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease. Int J Biol Sci 2022; 18: 983-94. doi: 10.7150/ijbs.66871. [PubMed]

Brazão V, Santello FH, Pravato Colato R, Clóvis do Prado Jr. T. cruzi infection among aged rats: Melatonin as a promising therapeutic molecule. Exp

Gerontol 2020; 135: 110922. doi: 10.1016/j.exger.2020.110922. [PubMed] [Google Scholar]

Medina-Leendertz S, Paz M, Mora M, Bonilla E, Bravo Y, Arcaya JL, Terán R, Villalobos V. Longterm melatonin administration alleviates paraquat

mediated oxidative stress in Drosophila melanogaster. Invest Clin 2014; 54: 352- 64. [PubMed] [Google Scholar]

Tomás-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 2005;

: 99-104. [PubMed] [Google Scholar]

Vielma JR, Urdaneta Romero H, Villarreal JC, Paz Peinado LA, Gutiérrez LV, Mora M, Chacín-Bonilla L. Neurocysticercosis: Clinical Aspects, Immunopathology, Diagnosis, Treatment and Vaccine Development. Epidemiology: Open Access 2014; 4: 156. doi:10.4172/2161-

1000156. [Google Scholar]

Mahapatra S, Heffner AC. (2023). Septic Shock. Book. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Bookshelf ID: NBK430939. [PubMed]

Salgado López D, Rodríguez Pascual C. (2006). Bacteriemia, sepsis y schock séptico. Tratado de Geriatría para residentes. ISBN: 84-689-8949-5. 409-16 [Google Scholar]

Organización Mundial de la Salud (OMS). (2024). Sepsis. [Google Scholar]

Fleischmann-Struzek C, Rudd K. Challenges of assessing the burden of sepsis. Med Klin Intensivmed Notfmed 2023; 118 (Suppl 2): 68-74. doi:

1007/s00063-023-01088-7. [Google Scholar]

Vera Carrasco O. Sepsis y shock séptico. Cuadernos Hospital de Clínicas, 60 (Especial) 2019; 61-71. [Google Scholar]

Nolt B, Tu F, Wang X, Ha T, Winter R, Williams DL, Li C. Lactate and Immunosuppression in Sepsis. Shock 2018; 49: 120-5. doi: 10.1097/SHK.0000000000000958.[PubMed]

Hu W, Deng C, Ma Z, Wang D, Fan C, Li T, Di S, Gong B, Reiter RJ, Yang Y. Utilizing melatonin to combat bacterial infections and septic injury. Br J Pharmacol 2017; 174: 754-68. doi: 10.1111/bph.13751. [PubMed] [Google Scholar]

García Santos JA. Regulación de la vía inflamatoria nuclear-mitocondrial por la melatonina. [Tesis doctoral]. 2016. Universidad de Granada. Granada, España. [Google Scholar]

Vielma Guevara JR, Villarreal Andrade JC. Sistemas colinérgicos neuronales y no-neuronales en infecciones parasitarias. Revisión sistemática y

metaanálisis. Avan Biomed 2022; 11: 6- 23. [Google Scholar]

Vielma JR, Picón Borregales DE, Gutiérrez Peña LV, Lara ND. Pathophysiology of osteoporosis: genes, oxidative stress and immunopathogeny. A systematic review. Avan Biomed. 2018; 7: 100-11. [Google Scholar]

Vielma Guevara JR. Vacunas basadas en sistemas colinérgicos en infecciones por helmintos. Revisión sistemática y metaanálisis. Revista Científica 2023; 35: 132-42. [Google Scholar]

Vielma Guevara JR. Tratamiento de la osteoporosis. Revisión sistemática. Avan Biomed 2023; 12: 6-20. [Google Scholar]

Manterola C, Pineda V, Vial M, Losada H, Muñoz S. Revisión sistemática de la literatura. Propuesta metodológica para su realización. Rev Chil 2003; Cir. 55: 204-6. [Google Scholar]

Sniekers YH, Weinans H, Bierma- Zeinstra SM, van Leeuwen JP, van Osch GJ. Animal models for osteoarthritis: the effect of ovariectomy and estrogen

treatment a systematic approach. Osteoarthritis Cartilage 2008; 16: 533- 41. [PubMed] [Google Scholar]

Guerrero JM, Carrillo-Vico A, Lardone PJ. La melatonina. Investigación y ciencia 2007; 30-8. [Google Scholar]

Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C. Melatonin: Pharmacology, Functions and Therapeutic Benefits.

Current Neuropharmacology 2017; 15: 434-43. [PubMed] [Google Scholar]

Liu J, Clough SJ, Hutchinson AJ, Adamah- Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2016; 56:361-83. doi: 10.1146/annurevpharmtox- 010814-124742. [PubMed] [Google Scholar]

Pala D, Lodola A, Bedini A, Spadoni G, Rivara S. Homology models of melatonin receptors: challenges and recent advances. Int J Mol Sci 2013; 14, 8093– 121. [PubMed] [Google Scholar]

Stauch B, Johansson LC, Cherezov V. Structural Insights into Melatonin Receptors. FEBS J 2020; 287 (8): 1496- 1510. doi:10.1111/febs.15128. [PubMed] [Google Scholar]

Dubocovich ML, Delagrange P, Diana N, Krause DN, Sugden D, Daniel P, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors. Pharmacol Rev 2010; 62: 343–80. doi:

1124/pr.110.002832. [PubMed] [Google Scholar]

Li DY, Smith DG, Hardeland R, Yang MY, Xu HL, Zhang L, Yin HD, Zhu Q. Melatonin receptor genes in vertebrates. Int J Mol Sci 2013; 14: 11208-23. doi: 10.3390/ijms140611208. [PubMed] [Google Scholar]

Ebisawa T, Karne S, Lerner MR, Reppert SM. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc. Natl. Acad. Sci. U. S. A 1994; 91: 6133-7. [PubMed] [Google Scholar]

Okamoto HH, Cecon E, Nureki O, Rivara S, Jockers R. Melatonin receptor structure and signaling. J Pineal Res 2024; 76 (3): e12952. doi: 10.1111/jpi.12952. [PubMed] [Google Scholar]

Hattori A, Suzuki N. Receptor-Mediated and Receptor-Independent Actions of Melatonin in Vertebrates. Zoolog Sci 2024; 41: 105-16. doi: 10.2108/zs230057. [PubMed] [Google Scholar]

Claustrat B, Leston J. Melatonin: Physiological effects in humans. Neurochirurgie 2015; 61 (2-3): 77-84. doi: 10.1016/j.neuchi.2015.03.002. [PubMed] [Google Scholar]

Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61: 253-78. doi: 10.1111/jpi.12360. [PubMed] [Google Scholar]

Gitto E, Tan DX, Reiter R J, Karbownik M., Manchester LC, Cuzzocrea S, Fulia F, Barberi I. Individual and synergistic antioxidative actions of melatonin: studies with vitamin E, vitamin C, glutathione and desferrioxamine (desferoxamine) in rat liver homogenates. J Pharm Pharmacol 2001;

: 1393-401. doi: 10.1211/0022357011777747. [PubMed] [Google Scholar]

Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. REDOX Biology 2013; 1: 244-57. [PubMed] [Google Scholar]

Vielma Guevara JR, Buelvas Jiménez N. Metabolismo intermediario en Blastocystis spp. Revista Eugenio Espejo. 2021; 15: 115-36. [Google Scholar]

Martin WF, Bryant DA, Beatty JT. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol Rev 2018; 42: 205-31. doi: 10.1093/femsre/fux056. [PubMed] [Google Scholar]

Kavsak PA, Hammett-Stabler C, Lai L, Wallemacq P, Christenson RH. The ABCs of clinical biochemistry. Clin Biochem 2012; 45 (1-2): 1-2. doi:

1016/j.clinbiochem.2011.11.003. [PubMed]

Harper ME, Patti ME. Metabolic terminology: what's in a name? Nat Metab 2020: 476-77. doi: 10.1038/s42255-020- 0216-7. [PubMed] [Google Scholar]

Chacín Bonilla L. Perfil epidemiológico de las enfermedades infecciosas en Venezuela. Invest. Clín 2017; 58: 103-5. [Google Scholar]

Page KR, Doocy S, Reyna Ganteaume F, Castro JS, Spiegel P, Beyrer C. Venezuela's public health crisis: a regional emergency. Lancet 2019; 393 (10177): 1254-60. doi: 10.1016/S0140-6736(19)30344-7. [PubMed] [Google Scholar]

Schmidt Grant S, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 2013; 4: 273-83.

doi: 10.4161/viru.23987. [PubMed] [Google Scholar]

Joffre J, Hellman J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid Redox Signal 2021; 35: 1291-307. doi:

1089/ars.2021.0027. [PubMed] [Google Scholar]

Rubio-Canalejas A, Admella J, Pedraz L, Torrents E. Pseudomonas aeruginosa Nonphosphorylated AlgR Induces Ribonucleotide Reductase Expression

under Oxidative Stress Infectious Conditions. MSystems 2023; 8: e0100522. doi: 10.1128/msystems.01005-22. [PubMed] [Google Scholar]

Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between

Different Tissues. Front Immunol 2022; 13: 905370. doi: 10.3389/fimmu.2022.905370. [PubMed] [Google Scholar]

Beutler B. Innate immunity: an overview. Mol Immunol 2024; 40: 845-59. doi: 10.1016/j.molimm.2003.10.005. [PubMed] [Google Scholar]

Chen H, Zhang J, He Y, Lv Z, Liang Z, Chen J, Li P, Liu J, Yang H, Tao A, Liu X. Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14: 464. doi: 10.3390/toxins14070464. [PubMed] [Google Scholar]

Instituto Nacional del Cáncer. (2024). Página oficial del Gobierno de los Estados Unidos de Norteamérica. [Google Scholar]

Echeverri R, Nancy P, Mockus SI. Factor nuclear κB (NF-κB): signalosoma y su importancia en enfermedades inflamatorias y cáncer. Rev Fac Med.

; 56: 133-46. [Google Scholar]

Lisboa CD, Maciel de Souza JL, Gaspar CJ, Turck P, Ortiz VD, Teixeira Proença IC, Fernandes TRG, Fernandes E, Tasca S, Carraro CC, Belló-Klein A, Sander da Rosa Araujo A, Luz de Castro A. Melatonin effects on oxidative stress and on TLR4/NFkβ inflammatory pathway in the right ventricle of rats with pulmonary arterial hypertension. Mol Cell Endocrinol 2024; 592: 112330. doi: 10.1016/j.mce.2024.112330. [PubMed] [Google Scholar]

Esser N, Legrand S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 2014; 105: 141150. [PubMed] [Google Scholar]

Andersen K, Eltrich N, Lichtnekert J, Anders HJ, Vielhauer V. The NLRP3/ASC inflammasome promotes T-celldependent immune complex glomerulonephritis by canonical and noncanonical mechanisms. Kidney Int 2014; 86: 965-78. [PubMed] [Google Scholar]

Buelvas-Jiménez N, Suárez-Useche RJ, Vielma-Guevara JR. NLRP3 inflammasome: A therapeutic option for kidney disease? Rev Salud Publica (Bogota). 2017; 19:118- 22. doi: 10.15446/rsap.v19n1.54415. [PubMed] [Google Scholar]

Buelvas Jiménez N, Vielma Guevara JR. Inmunopatogénesis, ingesta de sodio/potasio y sistema calicreínas-cininas en hipertensión arterial. Una revisión. Avan Biomed. 2020; 9: 33-45. [Google Scholar]

Buelvas Jiménez N, Vielma Guevara J. R. (2021). Arterial hypertension immunopathology. A focusing in inflammasome NLRP3 activation, and renin-angiotensin aldosterone and kallikrein-kinin systems. Generis Publishing. 131 p. ISBN: 978-1-63902-524- 4. [Google Scholar]

Buelvas-Jimenez N, Vielma-Guevara JR. Hipertensión arterial: ingesta de sal y mecanismos de patogénesis. Una revisión. Avan Biomed. 2020; 9:16-29. [PubMed] [Google Scholar]

Suárez R, Buelvas N. El inflamasoma: mecanismos de activación. Invest Clín 2015; 56: 74-99. [PubMed] [Google Scholar]

Danielski LG, Giustina AD, Bonfante S, Barichello T, Petronilho F. The NLRP3 Inflammasome and Its Role in Sepsis Development. Inflammation. 2020; 43: 24- 31. doi: 10.1007/s10753-019-01124-9. [PubMed] [Google Scholar]

Shokri M, Kharaziha M, Ahmadi Tafti H, Dalili F, Mehdinavaz Aghdam R, Ghiassi SR, Baghaban. Melatonin-loaded mesoporous zinc- and gallium-doped hydroxyapatite nanoparticles to control infection and bone repair. Biomater Sci 2024; 12 (16): 4194-4210. doi: 10.1039/d4bm00377b. [PubMed] [Google Scholar]

Ren W, Wang P, Yan J, Liu G, Zeng B, Hussain T, Peng C, Yin J, Li T, Wei H, Zhu G, Reiter RJ, Tan B, Yin Y. Melatonin alleviates weanling stress in mice: Involvement of intestinal microbiota. J Pineal Res 2018; 64: doi: 10.1111/jpi.12448. [PubMed] [Google Scholar]

Sei-Jung L, Hyun Jik L, Young Hyun J, Jun Sung K, Sang Ho C, Ho Jae H. Melatonin inhibits apoptotic cell death induced by Vibrio vulnificus VvhA via melatonin receptor 2 coupling with NCF-1. Cell Death Dis 2018; 9: 48. doi: 10.1038/s41419-017-0083-7. [PubMed] [Google Scholar]

Jianhua L, Jun S, Hui Z, Feng Z, Hui Liu, Li L, Zhiguang Z, Lushan C, Mi Z, Dacen L, Meifang L, Ruixiang Z. Melatonin mediated

Foxp3-downregulation decreases cytokines production via the TLR2 and TLR4 pathways in H. pylori infected mice. Int Immunopharmacol 2018; 64: 116-122.

doi: 10.1016/j.intimp.2018.08.034. [PubMed] [Google Scholar]

Ramos A, Prado Míguez M, Morgado S, Sanchez-Correa B, Gordillo JJ, Casado JG, Tarazona R, Regodón S. Melatonin enhances responsiveness to Dichelobacter nodosus vaccine in sheep and increases peripheral blood CD4 T lymphocytes and IgG-expressing B lymphocytes. Vet Immunol Immunopathol 2018; 206: 1-8. doi: 10.1016/j.vetimm.2018.11.006. [PubMed] [Google Scholar]

Liu Y, Jia Y, Yang K, Tong Z, Shi J, Li R, Xiao X, Ren W, Hardeland R, Reiter RJ, Wang Z. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Theranostics 2020; 10: 10697-711. [PubMed] [Google Scholar]

Bishayi B, Adhikary R, Nandi A, Sultana S. Beneficial Effects of Exogenous Melatonin in Acute Staphylococcus aureus and Escherichia coli Infection-Induced Inflammation and Associated Behavioral Response in Mice After Exposure to Short Photoperiod. Inflammation 2016; 39: 2072-2093. doi: 10.1007/s10753-016- 0445-9. [PubMed] [Google Scholar]

Spreer A, Gerber J, Baake D, Hanssen M, Huether G, Nau, R. (2006). Antiinflammatory but no neuroprotective effects of melatonin under clinical treatment conditions in rabbit models of bacterial meningitis. J Neurosci Res 2006; 84: 1575-9. doi: 10.1002/jnr.21055. [PubMed] [Google Scholar]

Chojnacki C, Mędrek-Socha M, Konrad P, Chojnacki J, Błońska A. The value of melatonin supplementation in postmenopausal women with Helicobacter pylori-associated dyspepsia. Randomized Controlled Trial BMC Womens Health. 2020; 20: 262. [PubMed] [Google Scholar]

Xu L, Zang W, Kwak M, Zang LJ, Lee PCW, Jin JO. Protective Effect of Melatonin against Polymicrobial Sepsis Is Mediated by the Anti-bacterial Effect of Neutrophils. Front Immunol 2019; 10: 1371. doi: 10.3389/fimmu.2019.01371. [PubMed] [Google Scholar]

Deng Z, He M, Hu H, Zhang W, Zhang Y, Ge Y, Ma T, Wu J, Li L, Sun M., An S, Li J, Huang Q, Gong S, Zhang J, Chen Z, Zeng Z. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation. Autophagy 2024; 20: 151-65. [PubMed] [Google Scholar]

Ling J, Yu S, Xiong F, Xu T, Li S. Melatonin Attenuates Sepsis-Induced Acute Lung Injury via Inhibiting Excessive Mitophagy. Drug Des Devel Ther 2023; 17: 2775-2786. doi: 10.2147/DDDT.S423264. [PubMed] [Google Scholar]

Wang S, Chen K, Wang Y, Wang Z, Li Z, Guo J, Chen J, Liu W, Guo X, Yan G, Liang C, Yu H, Fang S, Yu B. Cardiac-targeted delivery of nuclear receptor RORα via ultrasound targeted microbubble destruction optimizes the benefits of regular dose of melatonin on sepsisinduced cardiomyopathy. Biomater Res 2023; 27: 41. doi: 10.1186/s40824-023- 00377-8. [PubMed] [Google Scholar]

Hu B, Chen Z, Liang L, Zheng M, Chen X, Zeng Q. Melatonin Promotes Mitochondrial Biogenesis and Mitochondrial Degradation in Hepatocytes During Sepsis. Altern Ther Health Med 2023; 29: 284-9. [PubMed] [Google Scholar]

Liu T, Zhang C, Ying J, Wang Y, Yan G, Zhou Y, Lu G. Inhibition of the intracellular domain of Notch1 results in vascular endothelial cell dysfunction in sepsis. Front Immunol 2023; 14: 1134556. doi: 10.3389/fimmu.2023.1134556. [PubMed] [Google Scholar]

Kalkan KT, Esrefoglu M, Terzioglu-Usak S, Yay A. (2024). Protective effect of melatonin on blood-brain barrier damage caused by Endotoxemia. Neurol Res 2024; 46: 195-206. doi: 10.1080/01616412.2023.2265244. [PubMed] [Google Scholar]

García JA, Volt H, Venegas C, Doerrier C, Escames G, López LC, Acuña-Castroviejo D. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. FASEB J 2015; pii: fj.15-273656. PMID: 26045547. [PubMed] [Google Scholar]

Jia Y, Yang B, Shi J, Fang D, Wang Z, Liu Y. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force. Pharmacol Res 2020; 175: 105978. doi: 10.1016/j.phrs.2021.105978. [PubMed] [Google Scholar]

Chen Z, Wang K, Guo J, Zhou J, Loor JJ, Yang Z, Yang Y. Melatonin Maintains Homeostasis and Potentiates the Antiinflammatory Response in Staphylococcus aureus-Induced Mastitis through microRNA-16b/YAP1. J Agric Food Chem 2022; 70: 15255-70. doi: 10.1021/acs.jafc.2c05904. [PubMed]

[Google Scholar]

Li H, Sun P. (2022). Insight of Melatonin: The Potential of Melatonin to Treat Bacteria-Induced Mastitis. Antioxidants (Basel) 2022; 11: 1107. doi: 10.3390/antiox11061107. [PubMed] [Google Scholar]

Yang Y, Ke J, Cao Y, Gao Y, Lin C. Melatonin regulates microglial M1/M2 polarization via AMPKα2-mediated mitophagy in attenuating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177: 117092. doi: 10.1016/j.biopha.2024.117092. [PubMed] [Google Scholar]

Sieminski M, Szaruta-Raflesz K, Szypenbejl J, Krzyzaniak K. Potential Neuroprotective Role of Melatonin in Sepsis-Associated Encephalopathy Due to Its Scavenging and Anti-Oxidative Properties. Antioxidants (Basel) 2023; 12: 1786. doi: 10.3390/antiox12091786. [PubMed] [Google Scholar]

Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999; 284: 1313- 8. doi: 10.1126/science.284.5418.1313. [PubMed] [Google Scholar]

Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 2001; 15: 2321-42. doi: 10.1101/gad.909001. [PubMed] Google Scholar]

Cardinali DP, Golombek DA, Rosenstein RE, Cutrera RA, Esquifino AI. Melatonin site and mechanism of action: Single or multiple? J. Pineal Res 1997; 23, 32-39. [Google Scholar] 88. Vielma JR. Blastocystosis: Epidemiological, clinical, pathogenic, diagnostic, and therapeutic aspects. Invest clin 2019; 60: 53-78. [Google Scholar]

Vielma JR, Pérez IF, Villarreal Andrade JC, Vegas ML, Reimi Y, Belisario M, Prieto MG, Uzcátegui D, Suarez HJ, Pineda Ochoa C, González EL, Gutiérrez Peña LV. Prevalencia de Blastocystis spp. y enteroparásitos en pacientes que asisten a dos instituciones de salud pública, occidente venezolano. Acta Bioclínica. 2017; 7: 80-99. [Google Scholar]

Vielma JR, Delgado Y, Bravo YA, Gutiérrez Peña LV, Villarreal JC. Enteroparasites and thermotolerant coliforms in wáter and human feces of sectors Juan de Dios González and El Moralito, Colón Municipality, Zulia State. Acta Bioclínica 2016; 6: 25-43. [Google Scholar]

Vielma-Guevara, J R Díaz Y, Pérez Z, Villarreal-Andrade JC Gutiérrez Peña, Luís V. Blastocystis spp. y otros enteroparásitos en pacientes atendidos en el Hospital Doctor Adolfo Pons, Maracaibo, Venezuela. Avan Biomed 2019; 8: 102-12 [Google Scholar]

Vielma JR, Chirinos R, León A, Pérez IF, Díaz S, Gutiérrez Peña LV. Enteroparásitos en personas de un instituto de educación especial venezolano. Acta Bioclínica; 2021; 11: 29-48. [Google Scholar]

Aisa-Álvarez A, Pérez-Torres I, Guarner- Lans V, Manzano-Pech L, Cruz-Soto R, Márquez-Velasco R, Casarez-Alvarado S, Franco-Granillo J, Núñez-Martínez ME, Soto ME. Randomized Clinical Trial of Antioxidant Therapy Patients with Septic Shock and Organ Dysfunction in the ICU: SOFA Score Reduction by Improvement of the Enzymatic and Non-Enzymatic Antioxidant System. Cells 2023; 6; 12: 1330. doi: 10.3390/cells12091330. [PubMed] [Google Scholar]

Mansilla-Roselló A, Hernández- Magdalena J, Domínguez-Bastante M, Olmedo-Martín C, Comino-Pardo A, Escames G, Acuña-Castroviejo D. A

phase II, single-center, double-blind, randomized placebo-controlled trial to explore the efficacy and safety of intravenous melatonin in surgical

patients with severe sepsis admitted to the intensive care unit. J Pineal Res. 2023; 74:e12845. doi: 10.1111/jpi.12845. [PubMed] [Google Scholar]




Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.