Efecto del solvente aromático (solvofílico) en la modulación de la actividad interfacial de los asfaltenos

Juan Pereira, Jason Ojeda

Resumen


Se ha estudiado el efecto de disolventes aromáticos sobre la eficiencia de un surfactante polimérico, en la ruptura de emulsiones de agua en crudo (W/O). A través de la dilución del crudo con los disolventes, se establecieron diferentes concentraciones de asfaltenos (CA) en las emulsiones sintéticas. En cada caso particular, la acción del surfactante polimérico (desemulsionante) fue evaluada mediante curvas de estabilidad, con la cuales, se determinó la concentración óptima del desemulsionante (CD*). Los resultados mostraron que, el aumento del contenido aromáticos en la fase oleosa condujo a una disminución significativa de CD* y los tiempos de ruptura. En este sentido, los disolventes aromáticos tendieron a disminuir parcialmente la afinidad de los asfaltenos con la interfase. El aumento de la concentración de asfaltenos tuvo poco efecto en CD*, generalmente la tendencia es un aumento proporcional. Por otro lado, varia la concentración de desemulsionantes por encima o por debajo de CD* conduce a una alta estabilización de las emulsiones W/O, a pesar del efecto del disolvente. Finalmente, se puede considerar el parámetro de solubilidad de la fase oleosa como una variable en la formulación óptima para la deshidratación de emulsiones agua en crudo.

Recibido: 5 de febrero de 2024
Aceptado: 7 de julio de 2024


Palabras clave


asfaltenos; gráficos de estabilidad; emulsiones W/O; mapas de formulación; solvofílico

Texto completo:

PDF

Referencias


Abdel-Raouf, M., 2012. Crude Oil Emulsions: Composition Stability and Characterization. BoD – Books on Demand.

Alvarado, J.G., Bullón, J., Salazar-Rodríguez, F., Delgado-Linares, J.G., 2023. n -C 7 Asphaltenes Characterization as Surfactants and Polar Oil from the HLD N Model Perspective. Ind. Eng. Chem. Res. 62, 11872–11884. https://doi.org/10.1021/acs.iecr.3c01387

Alvarado, J.G., Delgado-Linares, J.G., Forgiarini, A.M., Salager, J.-L., 2019. Breaking of Water-in-Crude Oil Emulsions. 8. Demulsifier Performance at Optimum Formulation Is Significantly Improved by a Small Aromatic Content of the Oil. Energy Fuels 33, 1928–1936. https://doi.org/10.1021/acs.energyfuels.8b03994

Andrews, A.B., Bridot, J.-L., Freudenthal, O., Langevin, D., Mullins, O.C., 2023. Structure–Function Relations of Asphaltenes at the Interface. Energy Fuels 37, 17238–17249. https://doi.org/10.1021/acs.energyfuels.3c03007

Borges, B., Rondón, M., Sereno, O., Asuaje, J., 2009. Breaking of Water-in-Crude-Oil Emulsions. 3. Influence of Salinity and Water-Oil Ratio on Demulsifier Action. Energy Fuels 23, 1568–1574. https://doi.org/10.1021/ef8008822

Carbognani, L., Rogel, E., 2002. Solvent Swelling of Petroleum Asphaltenes. Energy Fuels 16, 1348–1358. https://doi.org/10.1021/ef010299m

da Silva, M., Sad, C.M.S., Pereira, L.B., Corona, R.R.B., Bassane, J.F.P., dos Santos, F.D., Neto, D.M.C., Silva, S.R.C., Castro, E.V.R., Filgueiras, P.R., 2018. Study of the stability and homogeneity of water in oil emulsions of heavy oil. Fuel 226, 278–285. https://doi.org/10.1016/j.fuel.2018.04.011

Delgado-Linares, J., Alvarado, J.G., Vejar, F., Bullon, J., Forgiarini, A.M., Salager, J.-L., 2016. Rompimiento de emulsiones de agua en petróleo crudo. 7. Desempeño del desemulsionante en formulación óptima para varias estructuras extendidas de surfactante | Solicitar PDF. Energy Fuels. https://doi.org/0.1021/acs.energyfuels.6b01286

Hruljova, J., Järvik, O., Oja, V., 2014. Application of Differential Scanning Calorimetry to Study Solvent Swelling of Kukersite Oil Shale Macromolecular Organic Matter: A Comparison with the Fine-Grained Sample Volumetric Swelling Method. Energy Fuels 28, 840–847. https://doi.org/10.1021/ef401895u

Liang, T., Zhan, Z.-W., Zou, Y.-R., Lin, X.-H., Peng, P., 2022. Interaction between Organic Solvents and Three Types of Kerogen Investigated via X-ray Diffraction. Energy Fuels 36, 1350–1357. https://doi.org/10.1021/acs.energyfuels.1c03589

Liu, D., Li, C., Yang, F., Sun, G., You, J., Cui, K., 2019. Synergetic effect of resins and asphaltenes on water/oil interfacial properties and emulsion stability. Fuel 252, 581–588. https://doi.org/10.1016/j.fuel.2019.04.159

Mannistu, K.D., Yarranton, H.W., Masliyah, J.H., 1997. Solubility Modeling of Asphaltenes in Organic Solvents. Energy Fuels 11, 615–622. https://doi.org/10.1021/ef9601879

Marquez, R., Forgiarini, A.M., Langevin, D., Salager, J.-L., 2019. Breaking of Water-In-Crude Oil Emulsions. Part 9. New Interfacial Rheology Characteristics Measured Using a Spinning Drop Rheometer at Optimum Formulation. Energy Fuels 33, 8151–8164. https://doi.org/10.1021/acs.energyfuels.9b01476

Niu, Z., Meng, W., Wang, Y., Wang, Xuejun, Li, Z., Wang, J., Liu, H., Wang, Xiuhong, 2022. Characteristics of trace elements in crude oil in the east section of the south slope of Dongying Sag and their application in crude oil classification. J. Pet. Sci. Eng. 209, 109833. https://doi.org/10.1016/j.petrol.2021.109833

Novaki, L.P., Moraes, E.O., Gonçalves, A.B., de Lira, R.A., Linhares, V.N., de Oliveira, M.C.K., Meireles, F.A., Gonzalez, G., El Seoud, O.A., 2016. Solvatochromic and Solubility Parameters of Solvents: Equivalence of the Scales and Application to Probe the Solubilization of Asphaltenes. Energy Fuels 30, 4644–4652. https://doi.org/10.1021/acs.energyfuels.6b00461

Pereira, J.C., 2009. Fenómenos de Ruptura e Inversión de Emulsiones: Aspectos Fisicoquímicos y Cinéticos (Tesis Doctoral). Universidad De Los Andes, Mérida, Venezuela.

Primerano, K., Mirwald, J., Hofko, B., 2024. Asphaltenes and maltenes in crude oil and bitumen: A comprehensive review of properties, separation methods, and insights into structure, reactivity and aging. Fuel 368, 131616. https://doi.org/10.1016/j.fuel.2024.131616

Rahmati, M., 2021. Effects of heteroatom and aliphatic chains of asphaltene molecules on their aggregation properties in aromatics Solvents: A molecular dynamics simulation study. Chem. Phys. Lett. 779, 138847. https://doi.org/10.1016/j.cplett.2021.138847

Raya, S.A., Mohd Saaid, I., Abbas Ahmed, A., Abubakar Umar, A., 2020. A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. J. Pet. Explor. Prod. Technol. 10, 1711–1728. https://doi.org/10.1007/s13202-020-00830-7

Rondón, M., Boriat, P., Lachaise, J., Salager, J.-L., 2006. Rompimiento de emulsiones de agua en petróleo crudo. 1. Fenomenología fisicoquímica de la acción desemulsionante | Energía y Combustibles. Energy Fuels. https://doi.org/10.1021/ef060017o

Salager, J.-L., Marquez, R., Delgado-Linares, J.G., Rondon, M., Forgiarini, A., 2022. Fundamental Basis for Action of a Chemical Demulsifier Revisited after 30 Years: HLDN as the Primary Criterion for Water-in-Crude Oil Emulsion Breaking. Energy Fuels 36, 711–730. https://doi.org/10.1021/acs.energyfuels.1c03349

Salehzadeh, M., Husein, M.M., Ghotbi, C., Dabir, B., Taghikhani, V., 2022. In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions. Fuel 324, 124525. https://doi.org/10.1016/j.fuel.2022.124525

Savonina, E.Yu., Panyukova, D.I., 2023. State of the Art and Prospects for the Development of Methods for Determining the Group Hydrocarbon Composition (SARA Composition) of Crude Oil and Petroleum Products. Russ. J. Appl. Chem. 96, 503–524. https://doi.org/10.1134/S1070427223050014

Shehzad, F., Hussein, I.A., Kamal, M.S., Ahmad, W., Sultan, A.S., Nasser, M.S., 2018. Polymeric Surfactants and Emerging Alternatives used in the Demulsification of Produced Water: A Review. Polym. Rev. 58, 63–101. https://doi.org/10.1080/15583724.2017.1340308

Umar, A.A., Saaid, I.B.M., Sulaimon, A.A., Pilus, R.B.M., 2018. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 165, 673–690. https://doi.org/10.1016/j.petrol.2018.03.014

Wong, S.F., Lim, J.S., Dol, S.S., 2015a. Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions. J. Pet. Sci. Eng. 135, 498–504. https://doi.org/10.1016/j.petrol.2015.10.006

Wong, S.F., Lim, J.S., Dol, S.S., 2015b. Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions. J. Pet. Sci. Eng. 135, 498–504. https://doi.org/10.1016/j.petrol.2015.10.006

Xie, L., Lu, Q., Tan, X., Liu, Q., Tang, T., Zeng, H., 2019. Interfacial behavior and interaction mechanism of pentol/water interface stabilized with asphaltenes. J. Colloid Interface Sci. 553, 341–349. https://doi.org/10.1016/j.jcis.2019.06.035

Zolfaghari, R., Fakhru’l-Razi, A., Abdullah, L.C., Elnashaie, S.S.E.H., Pendashteh, A., 2016. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep. Purif. Technol. 170, 377–407. https://doi.org/10.1016/j.seppur.2016.06.026




Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.