Hidrogeles: una revisión de su historia

Cristóbal Lárez Velásquez

Resumen


Se presentan los resultados de una investigación documental sobre las principales etapas del desarrollo de los materiales denominados hidrogeles, desde unos inicios que pudieran establecerse en las dispersiones de nanopartículas de oro y plata usadas en cristalería entre los años 290-325 D.C., cuyas formulaciones estuvieron aparentemente basadas en conocimiento puramente empírico, pasando por los hidratos líquidos y gelatinosos del ácido silícico que Graham definió como “hidrosol” e “hidrogel”, respectivamente. La etapa siguiente se desarrolló paralelamente al surgimiento de los polímeros sintéticos, aprovechándolos para la obtención de hidrogeles con características reproducibles y controladas. Posteriormente, los estudios teóricos predijeron cambios de volumen debido a transiciones de fase en estos materiales, en respuesta a algunos estímulos externos, llevando al surgimiento de los hidrogeles responsivos o inteligentes. Más recientemente, el desarrollo de diversas áreas relacionadas con su preparación y aplicación, como la química clic, las reacciones bio-ortogonales, la ingeniería genética, la nanotecnología, la bio-nanotecnología, etc., que a su vez han sido impulsadas por los hidrogeles, ha permitido obtener materiales más sostenibles, biocompatibles y con respuestas cada vez más específicas, es decir, materiales mucho más inteligentes. Por ello, para distinguirlos de sus predecesores, quizás sea conveniente en el futuro llamarlos “hidrogeles hiper inteligentes”.

 

Recibido: 10 de noviembre de 2023
Aceptado: 20 de marzo de 2024




Palabras clave


Química sostenible; Nanohidrogeles; Inicios de los hidrogeles; Materiales inteligentes; Transición de fase; Estímulo externo

Texto completo:

PDF

Referencias


Antonii, F. (1618). Panacea aurea sive Tractatus duo de ipsius auro potabili. Ex Bibliopolio Frobeniano. https://books.google.es/books?id=msREAAAAcAAJ&printsec=frontcover&dq=Panacea+aurea+sive+Tractatus+duo+de+ipsius+auro+potabili.Ex+Bibliopolio+Frobeniano+(1618).&hl=es&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwiesurToveEAxVNgf0HHWfQBPQQ6AF6BAgKEAI

Beneke, K., y Lagaly, G. (2005). Jakob Maarten van Bemmelen (November 3, 1830 Amelo March 13, 1911 Leiden) and the history of the theory of adsorption from solution. https://doi.org/www.unikiel.de/anorg/lagaly/group/klausSchiver/bemmelen.pdf.

Berkowitch, J., Charlesby, A., Desreux, V. (1957). Radiation effects on aqueous solutions of polyvinyl alcohol, Journal of Polymer Science, 25(111), pp.490-492.

Bian, Q., Fu, L., Li, H. (2022). Engineering shape memory and morphing protein hydrogels based on pro-tein unfolding and folding, Nature Communications 13(1), pp. 137.

Blow, M. y Stamberger, P. (1929). The influence of the amount of the surplus liquid on the swelling maximum of rubber jellies, Rec. Trav. Chim. Pays Bas.,48, pp. 64.

Buwalda, S.J., Boere, K.W., Dijkstra, P.J., Feijen, J., Vermonden, J.H., Hennink, W.E. (2014). Hydrogels in a historical perspective: From simple networks to smart materials, Journal of Controlled Release, 190, pp. 254-273.

Charlesby, A. y Alexander, P. (1955). Réticulation des polymères en solution aqueuse par les rayons gamma, Journal de Chimie Physique, 52, pp. 699-709.

Cheng, L., He, Y., Yang, Y., Chen, J., He, H., Liu, Y., Lin, Z., Hong, G. (2022). Highly reproducible and sensitive electrochemical biosensor for Chlamydia trachomatis detection based on duplex-specific nuclease-assisted target-responsive DNA hydrogels and bovine serum albumin carrier platform, Ana-lytical Chimica Acta, 1197, 339496.

Correa, S., Grosskopf, A.K., Lopez-Hernández, H., Chan, D., Yu, A.C., Stapleton, L.M., Appel, E.A. (2021). Translational applications of hydrogels, Chemical Reviews, 121(18), pp. 11385-11457.

Davis, J. y Ornstein, L. (1959). A New High Resolution Electrophoresis Method. Presented at The Society for the Study of Blood, New York Academy of Medicine, March 24.

Echeverria, C., Fernandes, S.N., Godinho, M.H., Borges, J.P., Soares, P.I. (2018). Functional stimuliresponsive gels: Hydrogels and microgels, Gels, 4(2), pp. 54.

Ehrick, J.D., Deo, S.K., Browning, T.W., Bachas, L.G., Madou, M.J., Daunert, S. (2005). Genetically engineered protein in hydrogels tailors timuliresponsive characteristics, Nature Materials, 4(4), pp. 298-302.

Eleuthere Irenee du Pont de Nemours & Company. (1936). Methacrylate Resins. Industrial & Engineering Chemistry, 29, pp. 1160 1163.

Erfkamp, J., Guenther, M., Gerlach, G. (2019). Hydrogelbased sensors for ethanol detection in alcoholic beverages, Sensors, 19(5), pp. 1199.

Etimologías de Chile. http://etimologias.dechile.net/?gelatina Consultado: 14/05/2024.

Flory, P.J. (1941). Molecular size distribution in threedimensional polymers I Gelation. Journal of Ameri-can Chemical Society, 63, pp. 3083 3090.

Flory, P.J. (1942) Constitution of Three-dimensional Polymers and the Theory of Gelation, Journal of Phys-ical Chemistry, 46(1), pp. 132-140.

Flory, P.J. y Rehner, J. (1943). Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling. Journal of Chemical Physics, 11, pp. 521-526.

Flory, P.J. (1950). Statistical mechanics of swelling of network structures. Journal of Chemical Physics, 18, 108-pp. 111.

Garlaschelli, L., Ramaccini, F., Delia-Sala, S. (1991). Working bloody miracles, Nature, 353(6344), 507-507.

González-Gamboa, I., Velázquez-Lam, E., Lobo-Zegers, M.J., Frías-Sánchez, A.I., Tavares-Negrete, J.A., Monroy-Borrego, A., Menchaca-Arrendondo, J.L., Williams, L., Lunello, P., Ponz, F., Alvarez, M.M., Trujillo-de Santiago, G. (2022). Gelatinmethacryloyl hydrogels containing turnip mosaic virus for fabrication of nanostructured materials for tissue engineering, Frontiers in Bioengineering and Biotechnology 10, 907601.

González-Sáiz, J.M. y Pizarro-Millán, C. (1994), Geles poliméricos: II Aplicaciones en biotecnología, Zubía 12, pp. 159-179.

Graham, T. (1861a). Liquid Diffusion Applied to Analysis, Proceedings of the Royal Society of London, 11, pp. 243-247.

Graham, T. (1861b). Liquid Diffusion Applied to Analysis, Philosophical Transactions of the Royal Society of London, 151, pp. 183-224.

Graham, T. (1864). On the Properties of the Silicic Acid and Other Colloidal Substances, Journal of the Chemical Society, 17, pp. 318-327.

Hermans, J.J. (1947). Deformation and swelling of polymer networks containing comparatively long chains. Transactions of the Faraday Society, 43, 591-600.

Hjertén, S. (1961). Agarose as an anticonvection agent in zone electrophoresis, Biochimica et Biophysica Acta, 53(3), 514-517.

Hjertén, S. (1988). The history of the development of electrophoresis in Uppsala, Electrophoresis, 9(1),pp. 3-15.

Hirokawa, Y. y Tanaka, T. (1984). Volume phase transition in a non-ionic gel. AIP Conference Proceedings, American Institute of Physics. Vol. 107,No. 1, pp. 203-208.

Horbett, T.A., Kost, J., Ratner, B.D. (1984). Swelling Behavior of Glucose Sensitive Membranes. En Pol-ymers as Biomaterials, Shalaby, S.W., Hoffman, A.S., Ratner, B.D., Horbett, T.A. (Editores) Spring-er, Boston MA.

James, H.M. y Guth, E. (1947). Theory of the Increase in Rigidity of Rubber during Cure. Journal of Chemical Physics, 15(9), pp. 669 683.

Jiang, Y., Chen, J., Deng, C., Suuronen, E.J., Zhong, Z. (2014). Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue

engineering, Biomaterials, 35(18), pp. 4969 4985.

Jin, Y., Li, Y., Song, S., Ding, Y., Dong, Y., Lu, Y., Liu, D., Zhang, C. (2022). DNA supramolecular hy-drogel as a biocompatible artificial vitreous substitute, Advanced Materials Interfaces, 9(5), 2101321. Jonker, A.M. (2016). Bio-inspired cross-linking methods for hydrogel formation (Doctoral dissertation, Sl: sn). Radboud Universiteit Nijmegen, Países Bajos. https://repository.ubn.ru.nl/handle/2066/150248

Katchalsky, A. (1949). Rapid swelling and deswelling of reversible gels of polymeric acids, by deionization, Experientia (Basel), 5, 319 320.

Katime, I., Guerrero, L.G., Mendizabal, E. (2012). Size matters: smart copolymeric nanohydrogels: synthesis and applications, Frontiers in Bioscience-Elite, 4(4), pp. 1314-1334.

Kirchhof, F. (1914a). The influence of the solvent on the viscosity of India rubber sols, Kolloid-Z, 15, pp. 30.

Kirchhof, F. (1914b). Swelling of vulcanized cautchouc, Kolloidchem Beihefte, 6, pp. 1-22.

Kuhn, W. (1949). Reversible Dehnung und Kontraktion bei Änderung der Ionisation eines Netzwerks polyvalenter Fadenmolekülionen, Experientia, 5, pp.

-319.

Lárez-Velásquez, C. (2019). Sobre la confusión actual acerca del origen del término hidrogel, Avances en Química, 14(2), 79-81. http://erevistas.saber.ula.ve/index.php/avancesenquimica/article/download/15589/21921926687

Lathe, G.H. y Ruthven, C.R.J. (1956). The separation of substances and estimation of their relative molecular sizes by the use of columns of starch in water, Biochemical Journal, 62, pp. 665-674.

Lee, S.C., Kwon, I.K., Park, K. (2013). Hydrogels for delivery of bioactive agents: a historical perspective, Advanced Drug Delivery Review, 65, pp. 17-20.

Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., Wang, J., Zou, Y., Anderson, G.J., Han, J.Y., Chang, Y., Liu, Y., Zhang, C., Chen, L., Zhou, G., Nie, G., Yan, H., Ding, B., Zhao, Y. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo, Nature

Biotechnology, 36(3), pp. 258 264.

Li, Y., Zhu, C., Dong, Y., Liu, D. (2020). Supramolecular hydrogels: Mechanical strengthening with dynamics, Polymer, 210, 122993.

Lipowitz, A. (1841). Versuche und Resultate über die Löslichkeit der Harnsäure, Justus Liebigs Ann. Chem. Pharm., 38, pp. 348-355.

Liu, R., Huang, Y., Ma, Y., Jia, S., Gao, M., Li, J., Zhang, H., Xu, D., Wu, M., Chen, Y., Zhu, Z., Yang, C. (2015). Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Applied Materials & Interfaces, 7(12), pp. 6982-6990.

Lulnski, P. y Woznica, M. (2017) Molecularly Imprinted Hydrogels for the Selective Release of Therapeutics. En: Functional Hydrogels in Drug Delivery, Spizzirri, U.R. y Cirillo, G. (Editors), CRC Press, pp. 64-87.

Mamada, A., Tanaka, T., Kungwatchakun, D., Irie, M. (1990). Photoinduced Phase Transition of Gels, Macromolecules, 23, pp.1517.

Masters, B. R. (2020). Superresolution Optical Microscopy. Springer Series in Optical Sciences. ISBN 978-3-030-21690-0

Milcovich, G., Lettieri, S., Antunes, F.E., Medronho, B., Fonseca, A.C., Coelho, J.F., Marizza, P., Perrone, F., Farra, R., Dapas, D., Grassi, G., Grassi, M., Giordani, S. (2017). Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot, Advances in Colloid and Interface Science 249, pp. 163-180.

Mohamed, M.A., Fallahi, A., El-Sokkary, A.M., Salehi, S., Akl, M.A., Jafari, A., Tamayol, A., Fenniri, H., Khademhosseini, A. (2019). Stimuli-responsive

hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology, Progress in Polymer Science, 98, 101147.

Mokhtarinia, K., Rezvanian, P., Masaeli, E. (2023). Sustainable hydrogel-based cell therapy. En Sustaina-ble Hydrogels, Elsevier, Ch 16 pp. 443- 470

Neumann, M., di Marco, G., Iudin, D., Viola, M., van Nostrum, C.F., van Ravensteijn, B.G.P., Vermonden, T. (2023). Stimuli-Responsive Hydrogels: The

Dynamic Smart Biomaterials of Tomorrow, Macromolecules, 56(21), pp. 8377-8392.

Ng, V.W., Chan, J.M., Sardon, H., Ono, R.J., García, J.M., Yang, Y.Y., Hedrick, J.L. (2014). Antimicrobial hydrogels: A new weapon in the arsenal against

multidrug-resistant infections, Advanced Drug Delivery Reviews, 78, pp. 46-62.

Owen, S.C., Fisher, S.A., Tam, R.Y., Nimmo, C.M., Shoichet, M.S. (2013). Hyaluronic Acid Click Hydro-gels Emulate the Extracellular Matrix,

Langmuir 29(24), pp. 7393 7400.

Parodi, A., Khaled, S.M., Yazdi, I.K., Evangelopoulos, M., Furman, N.E., Wang, E., Urzi, F., Hmaidan, S., Hartman, K.A., Tasciotti. E. (2016). Smart Hydrogels. En: Encyclopedia of Nanotechnology, Springer Dordrecht, pp. 3735 3747.

Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Advanced Materials, 18(11), pp. 1345-1360.

Phul, I.C. y Bhaw-Luximon, A. (2023). Sustainable Nanotechnology for Targeted Therapies using Cell-Encapsulated Hydrogels. En Synthetic Nanotechnology-Based Methodologies for Sustainable Green Applications, Poinern, G.E.J., Tripathy, S., Fawcett (Editors), Taylor & Francis Group, Ch 7 pp. 133.

Poole Jr., C.P. y Owens, F.J. (2007). Introducción a la Nanotecnología. Reverté, Barcelona España Porath, J. (1979). Molecular-Sieving and Non-Ionic Adsorption in Polysaccharide Gels, Biochemical Society Transactions, 7, pp. 1197-1222.

Puig, L.J., Sanchez-Díaz, J.C., Villacampa, M., Mendizabal, E., Puig, J.E., Aguiar, A., Katime, I. (2001). Microstructured polyacrylamide hydrogels

prepared via inverse microemulsion polymerization, Journal of Colloid & Interface Science, 235(2), pp. 278-282.

Puttasakul, T., Pintavirooj, C., Sangma, C., Sukjee, W. (2019). Hydrogel based-electro-chemical gas sensor for explosive material detection, IEEE

Sensors Journal, 19(19), pp. 8556-8562.

Pyarasani, R.D., Jayaramudu, T., John, A.J. (2019). Polyaniline-based conducting hydrogels, Journal of Materials Science, 54(2), pp. 974-996.

Raymond, S. y Weintraub, L. (1959). Acrylamide gel as a supporting medium for zone electrophoresis, Science, 130(3377), pp. 711-711.

Rijke, A.M. y Prins, W. (1962). The swelling of cellulose acetate networks obtained by crosslinking in solution. Journal of Polymer Science, 59(167), pp.

190.

Rizwan, M., Yahya, R., Hassan, A., Yar, M., Azzahari, A.D., Selvanathan, V., Selvanathan, Y., Sonsudin, F., Abouloula, C.N. (2017). pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications, Polymers, 9,137 32 pags.

Sánchez-Fernández, J.A. (2023). Structural strategies for supramolecular hydrogels and their applications, Polymers 15(6), 1365.

Sandhu, A. y Bhatia, T. (2023). Hydrogels: From Design to Applications in Forensic Investigations, ChemistrySelect, 8(8), e202204228.

Scheele, C.V. (1774). Om Brunsten eller magnesia nigra och des Segenskaper, K svenska Vetensk Akad Handl, 35, pp. 177.

Scott, J.R. (1929). The swelling of vulcanized rubber, Transactions of the Institution of the Rubber Industry, 5(2), pp. 95-116

Smithies, O. (1955). Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults, Biochemical Journal 61(4), pp. 629-641.

Staudinger, H. (1920). Über polymerization, Ber. Dtsch. Chem. Ges., 53(6), pp. 1073 1085. Staudinger, H. y Fritschi, J. (1922). Über Isopren und

des Kautschuks und über seine Konstitution, Helv Chim. Acta, 5(5), pp. 785-806

Staudinger, H. y Heuer, W. (1934). Über hochpolymere Verbindungen, 94. Mitteil.: Über ein unlösliches Gesellschaft (A and B Series), 67(7), pp. 1164-

Stevens, H.P. (1921a). Sols and Gels of Vulcanized Rubber, Journal of the Society of Chemical Industry, 40(16), pp. 186t-190t.

Stevens, H.P. (1921b). Vulcanization of Rubber in Sol and Gel Forms, The Rubber Age, 9(8), pp. 295-297.

Sun, X., Ding, C., Qin, M., Li, J. (2023). Biosensors for Bacterial Infections, Small, 2306960.

Suzuki, A. y Tanaka, T. (1990). Phase Transition in Polymer Gels Induced by Visible Light, Nature, 346, pp. 345-347.

Tanaka, T. (1978). Collapse of gels and the critical endpoint, Physical Review Letters, 40(12), 820-823.

Tanaka, T., Nishio, I., Sun. S.T., Ueno-Nishio, S. (1982). Collapse of gels in an electric field, Science 218, pp. 467 469.

Thakur, S., Thakur, V.K., Arotiba, O.A. (2018). History, Classification, Properties and Application of Hydrogels: An Overview. En: Hydrogels, Gels

Horizons: From Science to Smart Materials. Thakur, V.K. (Editor), Chapter 2. ©Springer Nature Singapore Pte Ltd.

The Nobel Prize. (1974). https://www.nobelprize.org/prizes/chemistry/1974/summary/

Treolar, L.R.G. (1952). The thermodynamic study of rubber-like elasticity. Proceedings of the Royal Society of London, Series B-Biological Sciences, 139, pp. 506 521.

Van Bemmelen, J.M. (1881). Das Hydrogel und das Hydrat des Berylloxyds und des Magnesiumoxyds, Kon Akad v Wetensch, 24 Sept. Amsterdam.

Van Bemmelen, J.M. (1882). Das Hydrogel und das Hydrat des Berylloxyds und des Magnesium-oxyds, Journal für Praktische Chemie Leipzig Bd, 26, pp. S227.

Van Bemmelen, J.M. (1888). L´hydrogel de l´acide silicique, Rec. Trav. Chim. Pays-Bas, 7, pp. 69.

Van Bemmelen, J.C. (1894a). Der Hydrogel und das kristallinische Hydrat des Kupferoxydes, Z. Anorg. Chem., 5, pp. 466-483. Trav. Chim. Pays-Bas, 13(8), pp. 271 274.

Vesterberg, O. (1989). History of electrophoretic methods. Journal of Chromatography, A480, pp. 3-19.

Wang, J., Li, Z., Willner, I. (2023). Dynamic reconfigurable DNA nanostructures, networks and materials, Angewandte Chemie 135(18), e202215332.

Whitby, G.S., Evans, A.B., Pasternack, D.S. (1942). The influence of the chemical structure on the imbibition of liquids by rubber. I, Transaction of the

Faraday Society, 38, pp. 269.

Wichterle, O., Lim, D. (1960). Hydrophilic gels for biological use, Nature, 185, pp. 117 118.

Wichterle, O. (1964). Hydrogel contact lenses. US Patent 3,496,254. August.

Williams, I. (1937). Swelling and Solvation of Rubber in Different Solvents, Industrial & Engineering Chemistry, 29, pp. 172-174.

Xin, F., Lu, Q., Liu, B., Yuan, S., Zhang, R., Wu, Y., Yu, Y. (2018). Metal-ion-mediated hydrogels with thermo-responsiveness for smart windows,

European Polymer Journal, 99, pp. 65-71.

Zhan, P., Peil, A., Jiang, Q., Wang, D., Mousavi, S., Xiong, Q., Shen, Q., Shang, Y., Ding, B., Lin, C., Ke, Y., Liu, N. (2023). Recent advances in DNA origamiengineered nanomaterials and applications, Chemical Reviews 123(7), pp. 3976-4050.

Zhang, X., Li, Y., Hu, Z., Li, C., Littler, C.L. (1994). Infrared-light induced volume phase transition in N-isopropylacrylamide gel. En Proceedings of

Second International Conference on Intelligent Materi-als, Rogers CA, Wallace GG (Editores), pp. 1341.

Zhang, X., Li, Y., Hu, Z., Li, C., Littler, C.L. (1995). in-fluence of infrared light, Journal of Chemical Physics, 102(1), pp. 551-555.

Zsigmondy, R.A. (1922). Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution, Helv. Chim. Acta,

(5), pp. 785 806.

Zsigmondy, R.A. (1926). Nobel Lecture (1926). https://www.nobelprize.org/uploads/2017/03/zsigmondy-lecture.pdf




Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.