El catalizador de Jacobsen en síntesis asimétrica: estructura, mecanismo y aplicaciones
Resumen
El catalizador de Jacobsen se ha convertido en un referente en la síntesis asimétrica durante las últimas tres décadas, en particular en la epoxidación enantioselectiva de alquenos no funcionalizados. Este trabajo ofrece una revisión crítica de las características estructurales, los aspectos mecanísticos y las aplicaciones sintéticas del catalizador (R,R)-Jacobsen y sus análogos. Se hace especial énfasis en su capacidad para lograr altos excesos enantioméricos, su disponibilidad comer-cial y su amplio espectro de sustratos. Los avances recientes, como la sustitución metálica, la inmovilización heterogénea y la integración de enfoques computacionales, han ampliado aún más la utilidad del catalizador y mejorado su perfil de sos-tenibilidad. Ejemplos representativos de síntesis total de productos naturales y compuestos con actividad farmacológica destacan la vigencia de los sistemas tipo Jacobsen en la química contemporánea. En conjunto, el catalizador se erige como un modelo paradigmático de selectividad, eficiencia y adaptabilidad en la catálisis estereoselectiva moderna, de acuerdo con los principios de la química verde.
Palabras clave
Texto completo:
PDF (English)Referencias
Adam, W., Fell, R. T., Lévai, A., Patonay, T., Peters, K., Simon, A., Tóth, G. (1998). Enantioselective epoxida-tion of isoflavones by Jacobsen’s Mn(III)salen cata-lysts and dimethyldioxirane oxygen-atom source. Te-trahedron: Asymmetry, 9(7), 1121–1124. https://doi.org/10.1016/s0957-4166(98)00102-5
Adam, W., Jekö, J., Lévai, A., Majer, Z., Nemes, C., Pato-nay, T., Párkányi, L., Sebök, P. (1996). Determination of the absolute configuration of optically active 2,2-dimethyl-3,4-epoxychromans prepared by the catalytic enantioselective epoxidation with the dimethyldiox-irane/Jacobsen Mn(III)salen system. Tetrahedron: Asymmetry, 7(8), 2437–2446. https://doi.org/10.1016/0957-4166(96)00302-3
Adam, W., Jeko, J., Lévai, A., Nemes, C., Patonay, T., Sebok, P. (1995). Enantioselective epoxidation of 2,2-dimethyl-2H-chromenes by dimethyldioxirane and ja-cobsen’s Mn(III)salen catalysts. Tetrahedron Letters, 36(21), 3669–3672. https://doi.org/10.1016/0040-4039(95)00599-8
Anusha, B., Kothapalli, R. B., Victor Prem Sagar, M., Surendra, B., Subba Reddy, U. V. (2024). Concise re-view on isolation, biological activity, structure eluci-dation, and total synthetic approaches of 16-membered C2-symmetric macrolide pyrenophorol. Synthetic Communications, 54(5), 323-347. https://doi.org/10.1080/00397911.2023.2297966
Behera, P., Ramakrishna, D. S., Chandrasekhar, M. M., Ko-thakapu, S. R. (2023). A concise review on recent ad-vances in catalytic asymmetric hydrogenation. Chirali-ty, 35(8), 477-497. https://doi.org/10.1002/chir.23559
Borum, A. K., Chen, K. Y., Zakarian, A. (2024). Scalable Total Synthesis of (+)-Desmethylxestospongin B. The Journal of Organic Chemistry, 89(11), 8120-8130. https://doi.org/10.1021/acs.joc.4c00779
Brown, J. M., Davies, S. G. (1989). Chemical asymmetric synthesis. Nature, 342(6250), 631–636. doi:10.1038/342631a0
Chang, S., Lee, N. H., Jacobsen, E. N. (1993). Regio- and enantioselective catalytic epoxidation of conjugated polyenes. Formal synthesis of LTA4 methyl ester. The Journal of Organic Chemistry, 58(25), 6939–6941. https://doi.org/10.1021/jo00077a001
Chang, S., Galvin, J. M., Jacobsen, E. N. (1994). Effect of Chiral Quaternary Ammonium Salts on (salen)Mn-Catalyzed Epoxidation of cis-Olefins. A Highly Enan-tioselective, Catalytic Route to Trans-Epoxides. Jour-nal of the American Chemical Society, 116(15), 6937–6938. https://doi.org/10.1021/ja00094a059
Contreras, R.R., Cardozo. E., García-Molina. L.O.J. (2017a). Transformando la catálisis homogénea: cin-cuenta años del catalizador de Wilkinson. Avances en Química, 12(2-3), 61-67. https://doi.org/10.53766/AVANQUIM/2017.12.02.01
Contreras, R.R. (2017b), Química Verde. Caracas: Fondo Editorial OPSU.
Contreras, R.R., y Rojas-Pérez, Y. (2018). Ligandos tipo salen en química de coordinación. Una breve revisión. Revista Ciencia e Ingeniería, 39(3), 307?314. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/12994
Contreras, R.R., Cardozo-Villalba, E., y Fontal, B. (2020a). El complejo de Vaska y la química organometálica. NOVASINERGÍA, 3(1), 96?110. https://doi.org/10.37135/ns.01.05.10
Contreras, R.R., Cardozo-Villalba, E., Lacruz-Vielma, E., y Paparoni-Bruzual, G. (2020b). El catalizador de Grubbs. Una breve revisión. Revista Ciencia e Inge-niería, 41(3), 323?336. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/16419
Contreras, R.R., Urbina-Gutiérrez, J.A., y Rodríguez-Sulbarán, P.J. (2020c). El catalizador de Crabtree. Una breve revisión. Revista Ciencia e Ingeniería, 41(1), 3?14. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/15867
Contreras, R.R. (2021a). Catálisis homogénea con metales de transición: transformando el mundo de la química. Parte 1. Mérida: Publicaciones CDCHTA–ULA. https://doi.org/10.53766/BA/LIBULA/CatalisisI.2021
Contreras, R.R. (2021b). Polihidruros de cobre: una podero-sa herramienta en síntesis química. El reactivo de Stryker en perspectiva, Avances en Química, 16(2), 39?48. https://doi.org/10.53766/AVANQUIM/2021.16.02.01
Contreras, R.R., Bellandi, F., y Sánchez-Velasco, O. (2021c). Química organometálica aplicada. El reacti-vo de Schwartz. Revista Ciencia e Ingeniería, 42(2), 205?214. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/17011
Contreras, R.R., Fonseca, Y. (2023). El catalizador de Lind-lar. Una breve revisión. Revista Ciencia e Ingeniería, 44(1), 85?94. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/18589
Cozzi, P. G. (2004). Metal–Salen Schiff base complexes in catalysis: practical aspects. Chemical Society Reviews, 33(7), 410–421. https://doi.org/10.1039/b307853c
Cottle. S. (2024). Jacobsen receives 2024 Willard Gibbs Medal. Chemical & Engineering News, 102, 13, 36-37. https://cen.acs.org/acs-news/Jacobsen-receives-2024-Willard-Gibbs/102/i13
de Lima Neto, J., Menezes, P. H. (2023). Combretastatins D series and analogues: from isolation, synthetic chal-lenges and biological activities. Beilstein Journal of Organic Chemistry, 19(1), 399-427. https://doi.org/10.3762/bjoc.19.31
Caplan, S. M., Floreancig, P. E. (2018). Total Synthesis of Divergolides E and H. Angewandte Chemie, 130(48), 16092-16096. https://doi.org/10.1002/ange.201810336
Deng, L., Jacobsen, E. N. (1992). A practical, highly enan-tioselective synthesis of the taxol side chain via asymmetric catalysis. The Journal of Organic Chemis-try, 57(15), 4320–4323. https://doi.org/10.1021/jo00041a054
Fariña-Ramos, M., García, C., Martín, V. S., Álvarez-Méndez, S. J. (2021). Synthetic efforts on the road to marine natural products bearing 4-O-2, 3, 4, 6-tetrasubstituted THPs: an update. RSC Advances, 11(10), 5832-5858. https://doi.org/10.1039/d0ra10755g
Gaddam, J., Reddy, A. V. V., Sarma, A. V., Yadav, J. S., Mohapatra, D. K. (2020). Total synthesis and structur-al revision of greensporone F and dechlorogreen-sporone F. The Journal of Organic Chemistry, 85(19), 12418-12429. https://doi.org/10.1021/acs.joc.0c01644
Gualandi, A., Calogero, F., Potenti, S., Cozzi, P.G. (2019). Al(Salen) Metal Complexes in Stereoselective Cataly-sis. Molecules, 24(9), 1716. https://doi.org/10.3390/molecules24091716
Guedes, D. F. C., Leod, T. C. O. M., Gotardo, M. C. A. F., Schiavon, M. A., Yoshida, I. V. P., Ciuffi, K. J., Assis, M. D. (2005). Investigation of a new oxidative catalyt-ic system involving Jacobsen’s catalyst in the absence of organic solvents. Applied Catalysis A: General, 296(1), 120–127. https://doi.org/10.1016/j.apcata.2005.08.045
Guo, L., Yan, T., Zhang, R., Yi, L., Wang, Z., He, G., Chen, J., Wu, X. (2023). Ultra-low Mn (salen) supported on lignin and selective epoxidation of olefins. Chemis-trySelect, 8(48), e202303634. https://doi.org/10.1002/slct.202303634
Hanna, R. D., Naro, Y., Deiters, A., Floreancig, P. E. (2018). Potent and readily accessible bistramide a ana-logues through diverted total synthesis. Chemistry–A European Journal, 24(61), 16271-16275. https://doi.org/10.1002/chem.201804417
Hanson, J. (2001). Synthesis and use of Jacobsen’s catalyst: Enantioselective epoxidation in the introductory or-ganic laboratory. Journal of Chemical Education, 78(9), 1266?1268. https://doi.org/10.1021/ed078p1266
Hargittai, I. (2022). The 2021 chemistry Nobel laureates and asymmetric organocatalysis. Structural Chemistry, 33(1), 303-305. https://doi.org/10.1007/s11224-021-01857-0
Hosoya, N., Hatayama, A., Irie, R., Sasaki, H., Katsuki, T. (1994). Rational design of Mn-Salen epoxidation cata-lysts: Preliminary results. Tetrahedron, 50(15), 4311–4322. https://doi.org/10.1016/s0040-4020(01)89368-6
Huang, J., Liu, S., Ma, Y., Cai, J. (2019). Chiral salen Mn (III) immobilized on ZnPS-PVPA through alkoxyl-triazole for superior performance catalyst in asymmet-ric epoxidation of unfunctionalized olefins. Journal of Organometallic Chemistry, 886, 27-33. https://doi.org/10.1016/j.jorganchem.2019.02.008
Imayoshi, A., Lakshmi, B. V., Ueda, Y., Yoshimura, T., Matayoshi, A., Furuta, T., Kawabata, T. (2021). Enan-tioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy. Nature Com-munications, 12(1), 404. https://doi.org/10.1038/s41467-020-20372-0
Jacobsen, E. N., Zhang, W., Muci, A. R., Ecker, J. R., Deng, L. (1991). Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. Jour-nal of the American Chemical Society, 113(18), 7063–7064. https://doi.org/10.1021/ja00018a068
Jacobsen, E. N., Deng, L., Furukawa, Y., Martínez, L. E. (1994). Enantioselective catalytic epoxidation of cin-namate esters. Tetrahedron, 50(15), 4323–4334. https://doi.org/10.1016/s0040-4020(01)89369-8
Jacobsen, E. N. (2000). Asymmetric catalysis of epoxide ring-opening reactions. Accounts of Chemical Re-search, 33(6), 421-431. https://doi.org/10.1021/ar960061v
Jang, D., Lee, Y., Shin, Y., Park, S., Jo, C., Kim, Y. H., Park, S. (2020). Coordination structure of Jacobsen catalyst with N-modified graphene and their electro-catalytic properties for reducing oxygen molecules. Applied Catalysis B: Environmental, 263, 118337. https://doi.org/10.1016/j.apcatb.2019.118337
Kang, S. M., Song, X., Zhang, T. T., Xu, L., Zhu, Y. Y., Wu, Z. Q. (2023). Cobalt (III)–salen decorated stere-oregular optically active helical polyisocyanides ena-ble highly effective cooperative asymmetric catalysis toward the kinetic resolution of epoxides. Inorganic Chemistry Frontiers, 10(11), 3345-3358. https://doi.org/10.1039/D3QI00384A
Kaur, N. (2018). Green synthesis of three- to five-membered O-heterocycles using ionic liquids. Synthet-ic Communications, 48(13), 1588–1613. https://doi.org/10.1080/00397911.2018.1458243
Kemper, S., Hrobárik, P., Kaupp, M., Schlo¨rer, N. E. (2009). Jacobsen’s catalyst for hydrolytic kinetic reso-lution: structure elucidation of paramagnetic Co(III) salen complexes in solution via combined NMR and quantum chemical studies. Journal of the American Chemical Society, 131(12), 4172-4173. https://doi.org/10.1021/ja806151g
Kumar, P., Fernandes, R. A., Ahmad, M. N., Chopra, S. (2021). Catalytic d-hydroxyalkynone rearrangement in the stereoselective total synthesis of centrolobine, engelheptanoxides A and C and analogues. Tetrahe-dron, 96, 132375. https://doi.org/10.1021/ja806151g10.1016/j.tet.2021.132375
Larrow, J. F., Jacobsen, E. N. (2003). (R,R)-N,N’-Bis(3, 5-di-tert-butylsalicylidene)-1,2-Cyclohexanediamino Manganese(III) Chloride, A Highly Enantioselective Epoxidation Catalyst. Organic Syntheses, 75, 1. https://doi.org/10.1002/0471264180.os075.01
Lee, N. H., Muci, A. R., Jacobsen, E. N. (1991). Enantio-merically Pure Epoxychromans via Asymmetric Ca-talysis. Tetrahedron Letters, 32(38), 5055–5058. https://doi.org/10.1016/s0040-4039(00)93426-9
Lv, C., Xu, D., Wang, S., Miao, C.-X., Xia, C., Sun, W. (2011). A practical Ti-salen catalyst based on dimeric salen ligand for asymmetric addition of trimethylsilyl cyanide to aldehydes. Catalysis Communications, 12(13), 1242–1245. https://doi.org/10.1016/j.catcom.2011.04.022
Martinez, A., Hemmert, C., Meunier, B. (2005). A macro-cyclic chiral manganese(III) Schiff base complex as an efficient catalyst for the asymmetric epoxidation of olefins. Journal of Catalysis, 234(2), 250-255. https://doi.org/10.1016/j.jcat.2005.06.021
Ma, S.-H., Su Kim, Y., Min Jung, J., Reddy Boggu, P., Chan Kim, S., Su Kim, I., Hoon Jung, Y. (2019). Total Synthesis of Chromanol 293B and Cromakalim via Stereoselective Amination of Chiral Benzylic Ethers. Tetrahedron Letters, 151431. https://doi.org/10.1016/j.tetlet.2019.151431
McGarrigle, E. M., Gilheany, D. G. (2005). Chromium- and Manganese-salen Promoted Epoxidation of Al-kenes. Chemical Reviews, 105(5), 1563–1602. https://doi.org/10.1021/cr0306945
Mishra, V. K., Buter, J., Blevins, M. S., Witte, M. D., Van Rhijn, I., Moody, D. B., Brodbelt, J. S., Minnaard, A. J. (2019). Total Synthesis of an Immunogenic Treha-lose Phospholipid from Salmonella Typhi and Elucida-tion of Its sn-Regiochemistry by Mass Spectrometry. Organic Letters, 21(13), 5126–5131 https://doi.org/10.1021/acs.orglett.9b01725
Mohan, C., Krishna, R. B., Sivanandan, S. T., Ibnusaud, I. (2021). Synthesis of Pyrrolo [2, 1-a] isoquinoline Class of Natural Product Crispine A. European Journal of Organic Chemistry, 2021(35), 4911-4926. https://doi.org/10.1002/ejoc.202100738
Mohapatra, D. K., Gaddam, J., Reddy, G. S., Kanakaraju, M., Kunwar, A. C., Yadav, J. S. (2019). Total synthe-sis and stereochemical revision of Relgro and 10?-Oxorelgro. Organic & Biomolecular Chemistry. 17(22), 5601-5614. https://doi.org/10.1039/c9ob00838a
Noyori, R. (2002). Asymmetric catalysis: science and op-portunities (Nobel lecture). Angewandte Chemie In-ternational Edition, 41(12), 2008-2022. https://doi.org/10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4
Palucki, M., Hanson, P., Jacobsen, E. N. (1992). Asymmet-ric oxidation of sulfides with H2O2 catalyzed by (salen)Mn(III) complexes. Tetrahedron Letters, 33(47), 7111–7114. https://doi.org/10.1016/s0040-4039(00)60849-3
Periasamy, M. (2002). 2001 chemistry nobel prize. Reso-nance, 7(2), 55–65. https://doi.org/10.1007/bf02867269
Pietikäinen, P. (1995). Asymmetric epoxidation of unfunc-tionalized alkenes with periodates catalyzed by chiral (salen)Mn(III) complexes. Tetrahedron
Letters, 36(2), 319–322. https://doi.org/10.1016/0040-4039(94)02240-c
Rahman, M. A., Haque, A., Yadav, J. S. (2020). Stereose-lective total synthesis of (-)-galantinic acid and 1-deoxy-5-hydroxysphingolipids via prins cyclization. Tetrahedron Letters, 61(30), 152149. https://doi.org/10.1016/j.tetlet.2020.152149
Reddy, A. V. V., Choudhury, U. M., Sarma, A. V., Moha-patra, D. K. (2023). Asymmetric Total Synthesis of (2E)-Macrolactin 3. Synlett, 34(01), 67-72. https://doi.org/10.1055/a-1957-3966
Reddy, G. S., Padhi, B., Bharath, Y., Mohapatra, D. K. (2017). Total Synthesis of Four Isomers of the Pro-posed Structures of Cryptorigidifoliol K. Organic Let-ters, 19(24), 6506–6509. https://doi.org/10.1021/acs.orglett.7b03174
Regalla, V. R., Addada, R. R., Puli, V. S., Saxena, A. S., Chatterjee, A. (2017). A short and concise route to to-tal synthesis of Dendrodolide L. Tetrahedron Letters, 58(24), 2344–2346. https://doi.org/10.1016/j.tetlet.2017.04.097
Rodríguez, A. R., Spur, B. W. (2005). First total synthesis of 7(S),17(S)-Resolvin D5, a potent anti-inflammatory docosanoid. Tetrahedron Letters, 46(21), 3623–3627. https://doi.org/10.1016/j.tetlet.2005.03.175
Sasaki, H., Irie, R., Hamada, T., Suzuki, K., Katsuki, T. (1994). Rational design of Mn-salen catalyst (2): Highly enantioselective epoxidation of conjugated cis olefins. Tetrahedron, 50(41), 11827–11838. https://doi.org/10.1016/s0040-4020(01)89298-x
Samuelsen, S. V., Santilli, C., Ahlquist, M. S., Madsen, R. (2019). Development and mechanistic investigation of the manganese(III) salen-catalyzed dehydrogenation of alcohols. Chemical Science, 10(4), 1150-1157. https://doi.org/10.1039/c8sc03969k
Schmidt, F., Viswanathan Ammanath, A., Götz, F., Maier, M. E. (2023). Synthesis of berkeleylactone A by ring-closing alkyne metathesis. European Journal of Organic Chemistry, 26(36), e202300615. https://doi.org/10.1002/ejoc.202300615
Sigurjónsson, S., Lúthersson, E., Gudmundsson, H. G., Haraldsdóttir, H., Kristinsdóttir, L., Haraldsson, G. G. (2022). Asymmetric Synthesis of Methoxylated Ether Lipids: A Glyceryl Glycidyl Ether Key Building Block Design, Preparation, and Synthetic Application. The Journal of Organic Chemistry, 87(18), 12306-12314. https://doi.org/10.1021/acs.joc.2c01515
Silva, A. R., Freire, C., de Castro, B. (2004). Jacobsen cata-lyst anchored onto an activated carbon as an enantiose-lective heterogeneous catalyst for the epoxidation of alkenes. Carbon, 42(14), 3027–3030. https://doi.org/10.1016/j.carbon.2004.06.037
Shaw, S., White, J. D. (2019). Asymmetric Catalysis Using Chiral Salen–Metal Complexes: Recent Advances. Chemical Reviews. 119(16), 9381–9426 https://doi.org/10.1021/acs.chemrev.9b00074
Srinivas, B., Reddy, D. S., Mallampudi, N. A., Mohapatra, D. K. (2018). A General Diastereoselective Strategy for Both cis-and trans-2, 6-Disubstituted Tetrahydro-pyrans: Formal Total Synthesis of (+)-Muconin. Or-ganic Letters, 20(21), 6910-6914. https://doi.org/10.1021/acs.orglett.8b03053
Subhas Bose, D., Venkat Narsaiah, A. (2005). An efficient asymmetric synthesis of (S)-atenolol: using hydrolytic kinetic resolution. Bioorganic & Medicinal Chemistry, 13(3), 627–630. https://doi.org/10.1016/j.bmc.2004.10.057
Teixeira, F., Mosquera, R. A., Melo, A., Freire, C., Cordei-ro, M. N. D. (2014). Effects of axial coordination on immobilized Mn (salen) catalysts. The Journal of Physical Chemistry A, 118(45), 10788-10796. https://doi.org/10.1021/jp506206b
Van Eck, N. J., Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
Wang, H. Y., Blaszczyk, S. A., Xiao, G., Tang, W. (2018). Chiral reagents in glycosylation and modification of carbohydrates. Chemical Society Reviews, 47(3), 681-701. https://doi.org/10.1039/C7CS00432J
Wang, L. (2016). Arthur C. Cope Award: Eric N. Jacobsen. Chemical & Engineering News, 94(2), 33-35. https://cen.acs.org/articles/94/i2/Arthur-C-Cope-Award-Eric.html
Wang, W., Li, C., Pi, Y., Wang, J., Tan, R., Yin, D. (2019). Chiral salen Cr(III) complexes encapsulated in ther-mo-responsive polymer nanoreactors for asymmetric epoxidation of alkenes in water. Catalysis Science & Technology, 9(20), 5626-5635. https://doi.org/10.1039/C9CY01398A
Yang, Q., Guo, R., Wang, J. (2019). Catalytic Asymmetric Synthesis of 2-Aryl Chromenes. Asian Journal of Or-ganic Chemistry, 8(10), 1742-1765. https://doi.org/10.1002/ajoc.201900360
Zhang, W., Jacobsen, E. N. (1991). Asymmetric olefin epoxidation with sodium hypochlorite catalyzed by easily prepared chiral manganese(III) salen complexes. The Journal of Organic Chemistry, 56(7), 2296–2298. https://doi.org/10.1021/jo00007a012
Zhang, W., Loebach, J. L., Wilson, S. R., Jacobsen, E. N. (1990). Enantioselective epoxidation of unfunctional-ized olefins catalyzed by salen manganese complexes. Journal of the American Chemical Society, 112(7), 2801–2803. https://doi.org/10.1021/ja00163a052
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.
![]() | ![]() | ![]() |






