Diseño algebraico de controladores PID de dos grados de libertad para sistemas FOPTD
Resumen
Palabras clave
Texto completo:
PDF (English)Referencias
Ai, B., Sentis, L., Paine, N., Han, S., Mok, A., and Fok, C. (2016). Stability and performance analysis of time-delayed actuator control systems, Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 5.
Alfaro, V., Vilanova, R., and Arrieta, O. (2010). Maximum sensitivity based robust tuning for two-degree-of-freedom proportional- integral controllers, Industrial & Engineering Chemistry Research, vol. 49, no. 11, pp. 5415-5423.
Araki, M. (1985). Two degree of freedom control system: part I, Systems and Control, vol. 29, pp. 649-656.
Araki, M., and Taguchi, H. (2003). Two-degree-of-freedom PID controllers, International Journal of Control, Automation, and Systems, vol. 1, no. 4, pp. 401-411.
Ariba, Y., Gouaisbaut, F., and Labit, Y. (2009). Feedback control for router management and TCP/IP network stability, IEEE Transactions on Network and Service Management, vol. 6, no. 4, pp. 255-266.
Åström, K., and Hagglund, T. (1995). PID controllers: Theory, design and tuning, NC: Instrument Society of America, Research Triangle Park.
Atherton, D. and Majhi, S. (2009). Limitations of PID controllers, Proc. of the 1999 American Control Conference (Cat. No. 99CH36251), vol. 6, pp. 3843-3847, IEEE.
Bi, M. (2020). Control of robot arm motion using trapezoid fuzzy two-degree-of-freedom PID algorithm, Symmetry, vol. 12, no. 4, p. 665.
Birs, I., Muresan, C., Nascu, I., and Ionescu, C. (2019). A survey of recent advances in fractional order control for time delay systems, IEEE Access, vol. 7, pp. 30951-30965.
Bresch-Pietri, D., Chauvin, J., and Petit, N. (2014). Prediction-based stabilization of linear systems subject to input-dependent input delay of integral-type, IEEE Transactions on Automatic Control, vol. 59, no. 9, pp. 2385-2399.
Desborough, L. and Miller, R. (2002). Increasing customer value of industrial control performance monitoring Honeywell's experience, AIChE symposium. New York; American Institute of Chemical Engineers, no. 326, pp. 169-189.
Dorf, R., and Bishop, R. (2017). Modern control systems, Pearson Prentice Hall.
El-Deen, A. Mahmoud, A. and El-Sawi, A. (2015). Optimal PID tuning for DC motor speed controller based on genetic algorithm, Int. Rev. Autom. Control, vol. 8, no. 1, pp. 80-85.
Goodwin, G., Graebe, S., and Salgado, M. (2001). Control system design, Upper Saddle River: Prentice Hall.
Gu, K. and Niculescu, S. I. (2003). Survey on recent results in the stability and control of time-delay systems, Journal of Dynamic Systems, Measurement, and Control, vol. 125, no. 2, pp. 158-165.
Gunawan, S., Yuwono, Y., Pratama, G., Cahyadi, A., and Winduratna, B. (2018). Optimal fractional-order PID for DC motor: Comparison study, Proc. 4th International Conference on Science and Technology (ICST), pp. 1-6, IEEE.
Hale, J. K., and Lunel, S. M. (2013). Introduction to functional differential equations, vol. 99, Springer Science & Business Media.
Hang, H., and Bi, Q. (1997). A frequency domain controller design method, Chemical Engineering Research and Design, vol. 75, no. 1, pp. 64-72.
Hanta, V. and Procházka, A. (2009). Rational approximation of time delay, Institute of Chemical Technology in Prague. Department of computing and control engineering. Technická, vol. 5, no. 166, p. 28.
Jin, Q., and Liu, Q. (2014). Analytical IMC-PID design in terms of performance/robustness tradeoff for integrating processes: From 2-Dof to 1-Dof, Journal of Process Control, vol. 24, no. 3, pp. 22-32.
Kuo, B. (1991). Automatic Control Systems, Sixth Ed. Prentice-Hall, New Jersey, p. 357.
Lee, J., Cho, W., and Edgar, T. (2014). Simple analytic PID controller tuning rules revisited, Industrial & Engineering Chemistry Research, vol. 53, no. 13, pp. 5038-5047.
Liu, G. and Daley, S. (2001). Optimal-tuning PID control for industrial systems, Control Engineering Practice, vol. 9, no. 11, pp. 1185-1194.
Mamat, R. (2013). A new tuning method for two-degree-of-freedom internal model control under parametric uncertainty, Chinese Journal of Chemical Engineering, vol. 21, no. 9, pp. 1030-1037.
O’Dwyer, A. (2009). Handbook of PI and PID Controller Tuning Rules, 3rd ed.; Imperial College Press: London, UK.
Persson, P., and Åström, K. (1992). Dominant pole design-a unified view of PID controller tuning, IFAC Proceedings Volumes, vol. 25, no. 14, pp. 377-382.
Richard, J. P. (2003). Time-delay systems: an overview of some recent advances and open problems, Automatica, vol. 39, no. 10, pp. 1667-1694.
Seuret, A., and Gouaisbaut, F. (2013). Wirtinger-based integral inequality: Application to time-delay systems, Automatica, vol. 49, no. 9, pp. 2860-2866.
Sharma, R., Gaur, P., and Mittal, A. (2015). Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload, ISA transactions, vol. 58, pp. 279-291.
Teppa-Garran, P., and Garcia, G. (2017). Design of an optimal PID controller for a coupled tanks system employing ADRC, IEEE Latin America Transactions, vol. 15, no. 2, pp. 189-196.
Teppa-Garran, P. and Vásquez, W. (2020). Desired Trajectory following by feedforward anticipation, IEEE Latin America Transactions, vol. 18, no. 8, pp. 1416-1424.
Teppa-Garran, P., Arzola, F., and Elyas, E. (2021). Ajuste óptimo de controladores PID mediante Matlab/Simulink, Anales de Ciencias Básicas, Físicas y Naturales, vol. 37, no. 15, pp. 15–32.
Teppa-Garran, P., Faggioni, M. and Garcia, G. (2023). Optimal tracking in two-degree-of-freedom control systems: Coupled tank system, Journal of Applied Research and Technology, vol. 21, no. 4, pp. 560-570.
Teppa-Garran, P., and El Gharib, G. (2024). Sintonización óptima asistida por computadora de controladores PI para sistemas no lineales con restricciones de amplitud en el actuador, Ciencia e Ingeniería,vol. 45, no. 1, pp. 1-10.
Teppa-Garran, P., Bohórquez, G., and Garcia, G. (2025 a). Optimal tuning of PID-type controllers, Journal of Applied Research and Technology, vol. 23, no. 2, pp. 145–154.
Teppa-Garran, P., Muñoz-de Escalona, D., and Zambrano, J. (2025 b). Liquid level tracking for a coupled tank system using quasi–LPV control, Ingenius, vol. 33, pp. 15-26.
Tewari, A. (2003). Modern control design with Matlab and Simulink, John Wiley & Sons, USA, p. 100.
Vilanova, R., Alfaro, V., and Arrieta, O. (2011). Analytical Robust Tuning Approach for Two Degree of Freedom PI/PID Controllers, Engineering Letters, vol. 19, no. 3.
Wang, X., Yan, X., Li, D., and Sun, L. (2018). An approach for setting parameters for two degree of freedom PID controllers, Algorithms, vol. 11, no. 4, p. 48.
Xing, Z., Zhu, Q., and Ding, Y. (2006). Two-degree-of-freedom IMC-PID design of missile servo system based on tuning gain and phase margin, J. Harbin Eng. Univ, vol. 27, pp. 404-407.
Yuce, A. (2023). Analytical design of PI controller for first order transfer function plus time delay: stability triangle approach, IEEE Access, vol. 11, pp. 70377-70386.
Zhang, M., Wang, J., and Li, D. (2010). Simulation analysis of PID control system based on desired dynamic equation, Proc. 8th World Congress on Intelligent Control and Automation, IEEE, pp. 3638-3644.
Zhang, X., Han, Q., Seuret, A., Gouaisbaut, F., and He, Y. (2019). Overview of recent advances in the stability of linear systems with time-varying delays, IET Control Theory & Applications, vol. 13, no. 1, pp. 1-16.
Zhang, X., Han, Q., and Ge, X. (2022). The construction of augmented Lyapunov-Krasovskii functionals and the estimation of their derivatives in stability analysis of time-delay systems: A survey, International Journal of Systems Science, vol. 53, no. 12, pp. 2480-2495.
Zhu, X. (2009). Practical PID controller implementation and the theory behind it, Proc. Second International Conference on Intelligent Networks and Intelligent Systems (pp. 58-61). IEEE.
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.
![]() | ![]() | ![]() |






