Una revisión sobre andamios bioactivos en ingeniería biomé-dica: Funcionalización con nanopartículas y biomoléculas
Resumen
Los andamios bioactivos funcionalizados con nanopartículas y biomoléculas representan una estrategia fundamental en la ingeniería de tejidos, al proporcionar señales estructurales, bioquímicas y mecanobiológicas que favorecen la regenera-ción tisular. Estos sistemas emulan funciones esenciales de la matriz extracelular (MEC), modulando la adhesión, prolife-ración, diferenciación y la formación de nueva matriz. Esta revisión integra las principales categorías de biomateriales y evalúa cómo las estrategias de funcionalización mejoran su desempeño mecánico, bioactividad y capacidad de respuesta biológica. Las nanopartículas aportan ventajas únicas, como propiedades antimicrobianas, liberación controlada de agen-tes terapéuticos, refuerzo mecánico y mayor potencial osteogénico o angiogénico; mientras que las biomoléculas, incluidas péptidos, factores de crecimiento y proteínas de la MEC, fortalecen las interacciones célula–material. Las aplicaciones en la regeneración ósea, cartilaginosa y cardiovascular demuestran el potencial de estos sistemas para superar las limitacio-nes de los andamios convencionales. No obstante, persisten retos relacionados con la vascularización, la modulación in-munológica, el control de la degradación, la reproducibilidad y los procesos regulatorios. Las tendencias emergentes, co-mo la bioimpresión 4D, los materiales sensibles a estímulos, los andamios activados por genes, las interfaces bioelectrónicas y el diseño asistido por inteligencia artificial, ofrecen nuevas oportunidades para desarrollar plataformas regenerativas personalizadas y clínicamente viables.
Palabras clave
Texto completo:
PDF (English)Referencias
Aftab, M., Ikram, S., Ullah, M., Khan, S. U., Wahab, A., & Naeem, M. (2025). Advancement of 3D Bi-oprinting Towards 4D Bioprinting for Sustained Drug Delivery and Tissue Engineering from Bi-opolymers. Journal of Manufacturing and Materi-als Processing, 9(8), 285. https://doi.org/10.3390/jmmp9080285
Anusiya, G., & Jaiganesh, R. (2022). A review on fab-rication methods of nanofibers and a special focus on the application of cellulose nano-fibers. Carbohydrate Polymer Technologies and Applications, 4, 100262. https://doi.org/10.1016/j.carpta.2022.100262
Bal, Z., Kaito, T., Korkusuz, F., & Yoshikawa, H. (2020). Bone regeneration with hydroxyapatite-based biomaterials. Emergent Materials, 3(4), 521-544. https://doi.org/10.1007/s42247-019-00063-3
Bolívar-Monsalve, E. J., Alvarez, M. M., Hosseini, S., Espinosa-Hernandez, M. A., Ceballos-González, C. F., Sanchez-Dominguez, M., ... & Trujillo-de Santiago, G. (2021). Engineering bioactive syn-thetic polymers for biomedical applications: A re-view with emphasis on tissue engineering and con-trolled release. Materials Advances, 2(14), 4447-4478. https://doi.org/10.1039/D1MA00092F
Carbajal-De la Torre, G., Zurita-Méndez, N. N., Balles-teros-Almanza, M. L., Mendoza, K., Espinosa-Medina, M. A., & Ortiz-Ortiz, J. (2021). Synthesis and characterization of polylac-tic/polycaprolactone/hydroxyapatite(PLA/PCL/HAp) scaffolds. MRS Advances, 6(39), 903-906. https://doi.org/10.1557/s43580-021-00145-7
Chen, M., Jiang, R., Deng, N., Zhao, X., Li, X., & Guo, C. (2022). Natural polymer-based scaffolds for soft tissue repair. Frontiers in Bioengineering and Bio-technology, 10. https://doi.org/10.3389/fbioe.2022.954699
Delfi, M., Ghomi, M., Zarrabi, A., Mohammadinejad, R., Taraghdari, Z. B., Ashrafizadeh, M., Zare, E. N., Agarwal, T., Padil, V. V., Mokhtari, B., Rossi,
F., Perale, G., Sillanpaa, M., Borzacchiello, A., Kumar Maiti, T., & Makvandi, P. (2020). Func-tionalization of polymers and nanomaterials for bi-omedical applications: Antimicrobial platforms and drug carriers. Prosthesis, 2(2), 117–139. https://doi.org/10.3390/prosthesis2020012
Dovedytis, M., Liu, Z. J., & Bartlett, S. (2020). Hyalu-ronic acid and its biomedical applications: A re-view. Engineered Regeneration, 1, 102–113. https://doi.org/10.1016/j.engreg.2020.10.001
Devillard, C. D., & Marquette, C. A. (2021). Vascular tissue engineering: Challenges and requirements for an ideal large-scale blood vessel. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.721843
Eker, F., Duman, H., Akdasçi, E., Bolat, E., Saritas, S., Karav, S., & Witkowska, A. M. (2024). A compre-hensive review of nanoparticles: from classifica-tion to application and toxicity. Molecules, 29(15), 3482. https://doi.org/10.3390/molecules29153482
Eldeeb, A. E., Salah, S., & Elkasabgy, N. A. (2022). Biomaterials for tissue engineering applications and current updates in the field: A comprehensive review. AAPS PharmSciTech, 23(7). https://doi.org/10.1208/s12249-022-02419-1
Eltom, A., Zhong, G., & Muhammad, A. (2019). Scaf-fold techniques and designs in tissue engineering functions and purposes: A review. Advances in Materials Science and Engineering, 2019, 1–13. https://doi.org/10.1155/2019/3429527
Fermani, M., Platania, V., Kavasi, R.-M., Karavasili, C., Zgouro, P., Fatouros, D., Chatzinikolaidou, M., & Bouropoulos, N. (2021). 3D-printed scaffolds from alginate/methyl cellulose/trimethyl chi-tosan/silicate glasses for bone tissue engineering. Applied Sciences, 11(18), 8677. https://doi.org/10.3390/app11188677
Ghosh, S., & Webster, T. J. (2021). Metallic nanoscaf-folds as osteogenic promoters: Advances, chal-lenges and scope. Metals, 11(9), 1356. https://doi.org/10.3390/met11091356
Hosseini, M., & Shafiee, A. (2021). Engineering bioac-tive scaffolds for skin regeneration. Small, 17(41). https://doi.org/10.1002/smll.202101384
Jeraj, A. R., & Zameer, Z. (2025). AI-Enhanced Bioac-tive 3D-Printed Scaffolds for Tissue Regeneration: Innovations in Healing and Functional Addi-tives. Journal of Computing & Biomedical Infor-matics, 8(02). https://jcbi.org/index.php/Main/article/view/863
Kamatar, A., Gunay, G., & Acar, H. (2020). Natural and synthetic biomaterials for engineering multi-cellular tumor spheroids. Polymers, 12(11), 2506. https://doi.org/10.3390/polym12112506
Khalili, A., & Ahmad, M. (2015). A review of cell ad-hesion studies for biomedical and biological appli-cations. International Journal of Molecular Sci-ences, 16(8), 18149–18184. https://doi.org/10.3390/ijms160818149
Khursheed, R., Dua, K., Vishwas, S., Gulati, M., Jha, N. K., Aldhafeeri, G. M., ... & Singh, S. K. (2022). Biomedical applications of metallic nanoparticles in cancer: Current status and future perspec-tives. Biomedicine & pharmacotherapy, 150, 112951. https://doi.org/10.1016/j.biopha.2022.112951
Kim, Y. H., Vijayavenkataraman, S., & Cidonio, G. (2024). Biomaterials and scaffolds for tissue engi-neering and regenerative medicine. BMC Met-hods, 1(1), 2. https://doi.org/10.1186/s44330-024-00002-7
Krishani, M., Shin, W. Y., Suhaimi, H., & Sambudi, N. S. (2023). Development of scaffolds from bio-based natural materials for tissue regeneration ap-plications: a review. Gels, 9(2), 100. https://doi.org/10.3390/gels9020100
Lauritano, D., Limongelli, L., Moreo, G., Favia, G., & Carinci, F. (2020). Nanomaterials for periodontal tissue engineering: Chitosan-based scaffolds. A systematic review. Nanomaterials, 10(4), 605. https://doi.org/10.3390/nano10040605
Liu, J., Castillo-Hair, S. M., Du, L. Y., Wang, Y., Carte, A. N., Colomer-Rosell, M., ... & Schier, A. F. (2024). Dissecting the regulatory logic of speci-fication and differentiation during vertebrate em-bryogenesis. BioRxiv. https://doi.org/10.1101/2024.08.27.609971
Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., ... & Orive, G. (2022). Pro-gress in gelatin as biomaterial for tissue engineer-ing. Pharmaceutics, 14(6), 1177. https://doi.org/10.3390/pharmaceutics14061177
Lutzweiler, G., Ndreu Halili, A., & Engin Vrana, N. (2020). The overview of porous, bioactive scaf-folds as instructive biomaterials for tissue regener-ation and their clinical translation. Pharmaceutics, 12(7), 602. https://doi.org/10.3390/pharmaceutics12070602
Ma, Z., Wang, Q., Xie, W., Ye, W., Zhong, L., Huge, J., & Wang, Y. (2021). Performance of 3D printed PCL/PLGA/HA biological bone tissue engineering scaffold. Polymer Composites, 42(7), 3593-3602. https://doi.org/10.1002/pc.26061
Patel, H., Bonde, M., & Srinivasan, G. (2011). Biode-gradable polymer scaffold for tissue engineering. Trends in Biomaterials and Artificial Organs, 25(1), 20–29.
Ramos-Zúñiga, R., Segura-Duran, I., González-Castañeda, R. E., & Rios, J. G. (2022). The chal-lenges of the bioactive scaffolds in nervous sys-tem: from their molecular conformation to their therapeutic efficiency. Neurology Perspectives, 2, S3-S18. https://doi.org/10.1016/j.neurop.2021.07.007
Rawojc, K., Tadeusiewicz, R., & Zych-Stodolak, E. (2025). Advancements in Chitosan-Based Scaf-folds for Chondrogenic Differentiation and Knee Cartilage Regeneration: Current Trends and Future Perspectives. Bioengineering, 12(7), 740. https://doi.org/10.3390/bioengineering12070740
Rayat Pisheh, H., Nojabaei, F. S., Darvishi, A., Rayat Pisheh, A., & Sani, M. (2024). Cardiac tissue en-gineering: an emerging approach to the treatment of heart failure. Frontiers in Bioengineering and Biotechnology, 12, 1441933. https://doi.org/10.3389/fbioe.2024.1441933
Razavi, Z. S., Soltani, M., Mahmoudvand, G., Farokhi, S., Karimi-Rouzbahani, A., Farasati-Far, B., ... & Afkhami, H. (2024). Advancements in tissue engi-neering for cardiovascular health: a biomedical en-gineering perspective. Frontiers in Bioengineering and Biotechnology, 12, 1385124. https://doi.org/10.3389/fbioe.2024.1385124
Ressler, A. (2022). Chitosan-based biomaterials for bone tissue engineering applications: A short re-view. Polymers, 14(16), 3430. https://doi.org/10.3390/polym14163430
Rondón, J.; Sánchez Martínez, V.; Lugo, C.; González-Lizardo, A. (2025). Tissue engineering: Advance-ments, challenges and future perspectives. Ciencia e Ingeniería, 46 (1), 19–28. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/20607.
Rondón, J., Vázquez, J., & Lugo, C. (2023). Biomateri-als used in tissue engineering for the manufacture of scaffolds. Ciencia e Ingeniería, 44(3), 297–308. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/19221
Satchanska, G., Davidova, S., & Petrov, P. D. (2024). Natural and synthetic polymers for biomedical and environmental applications. Polymers, 16(8), 1159. https://doi.org/10.3390/polym16081159
Shams, F., Jamshidian, M., Shaygani, H., Maleki, S., Soltani, M., & Shamloo, A. (2025). A study on the cellular adhesion properties of a hybrid scaffold for vascular tissue engineering through molecular dynamics simulation. Scientific Reports, 15(1), 16433. https://doi.org/10.1038/s41598-025-01545-7
Sindhi, K., Pingili, R. B., Beldar, V., Bhattacharya, S., Rahaman, J., & Mukherjee, D. (2025). The role of biomaterials-based scaffolds in advancing skin tis-sue construct. Journal of Tissue Viability, 100858. https://doi.org/10.1016/j.jtv.2025.100858
Todd, E. A., Mirsky, N. A., Silva, B. L. G., Shinde, A. R., Arakelians, A. R., Nayak, V. V., ... & Coelho, P. G. (2024). Functional scaffolds for bone tissue regeneration: a comprehensive review of materials, methods, and future directions. Journal of Fun-ctional Biomaterials, 15(10), 280. https://doi.org/10.3390/jfb15100280
Trebunova, M., Cajkova, J., & Bacenkova, D. (2025). Hydrogels as bioactive scaffolds in biomedical en-gineering. Acta Tecnología, 11(2), 75–79. https://doi.org/10.22306/atec.v11i2.272
Wang, F., Cai, X., Shen, Y., & Meng, L. (2023). Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioactive Materi-als, 23, 16-44. https://doi.org/10.1016/j.bioactmat.2022.10.029
Williams, D. F. (2022). Biocompatibility pathways and mechanisms for bioactive materials: The bioactivi-ty zone. Bioactive Materials, 10, 306–322. https://doi.org/10.1016/j.bioactmat.2021.08.014
Wong, S. K., Yee, M. M., Chin, K.-Y., & Ima-Nirwana, S. (2023). A review of the application of natural and synthetic scaffolds in bone regeneration. Jour-nal of Functional Biomaterials, 14(5), 286. https://doi.org/10.3390/jfb14050286
Wu, E., Huang, L., Shen, Y., Wei, Z., Li, Y., Wang, J., & Chen, Z. (2024). Application of gelatin-based composites in bone tissue engineer-ing. Heliyon, 10(16). https://doi.org/10.1016/j.heliyon.2024.e36258
Wu, J., & Yue, B. (2024). Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. Biomedicine & Pharma-cotherapy, 174, 116563. https://doi.org/10.1016/j.biopha.2024.116563
Wulf, A., Mendgaziev, R. I., Fakhrullin, R., Vinokurov, V., Volodkin, D., & Vikulina, A. S. (2022). Porous alginate scaffolds designed by calcium carbonate leaching technique. Advanced Functional Materi-als, 32(14), 2109824. https://doi.org/10.1002/adfm.202109824
Xue, N., Ding, X., Huang, R., Jiang, R., Huang, H., Pan, X., ... & Wang, Y. (2022). Bone tissue engi-neering in the treatment of bone de-fects. Pharmaceuticals, 15(7), 879. https://doi.org/10.3390/ph15070879
Yameny, A. A. (2024). A Comprehensive Review on Nanoparticles: Definition, Preparation, Characteri-zation, Types, and Medical Applications. Journal of Medical and Life Science, 6(4), 663-672. https://doi.org/10.21608/jmals.2024.419629
Yang, X., Chung, E., Johnston, I., Ren, G., & Cheong, Y. K. (2021). Exploitation of antimicrobial nano-particles and their applications in biomedical engi-neering. Applied Sciences, 11(10), 4520. https://doi.org/10.3390/app11104520
Ye, J., Miao, B., Xiong, Y., Guan, Y., Lu, Y., Jia, Z., Wu, Y., Sun, X., Guan, C., He, R., Xiong, X., Jia, H., Jiang, H., Liu, Z., Zhang, Y., Wei, Y., Lin, W., Wang, A., Wang, Y., … Peng, J. (2025). 3D print-ed porous magnesium metal scaffolds with bioac-tive coating for bone defect repair: enhancing an-giogenesis and osteogenesis. Journal of Nanobiotechnology, 23(1). https://doi.org/10.1186/s12951-025-03222-3
Zhang, G., Zhen, C., Yang, J., Wang, J., Wang, S., Fang, Y., & Shang, P. (2024). Recent advances of nanoparticles on bone tissue engineering and bone cells. Nanoscale Advances, 6(8), 1957-1973. https://doi.org/10.1039/D3NA00851G
Zielinska, A., Karczewski, J., Eder, P., Kolanowski, T., Szalata, M., Wielgus, K., ... & Souto, E. B. (2023). Scaffolds for drug delivery and tissue engineering: The role of genetics. Journal of Controlled Relea-se, 359, 207-223. https://doi.org/10.1016/j.jconrel.2023.05.042
![]()
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.
![]() | ![]() | ![]() |






