Panorama de los mecanismos moleculares y celulares que subyacen la esclerosis lateral amiotrófica
Overview of the molecular and cellular mechanisms underlying amyotrophic lateral sclerosis
Resumen
RESUMEN
La Esclerosis Lateral Amiotrófica (ELA) es una patología neurodegenerativa caracterizada por la pérdida progresiva de motoneuronas, su pronóstico de vida se limita a los 3-5 años tras el inicio de los síntomas. En la fisiopatología de la enfermedad se identifican varios mecanismos moleculares y celulares alterados que contribuyen a su progresión como la enzima superóxido dismutasa 1 (SOD1), la proteína de unión al ADN TAR (TARDBP) y la proteína de unión al ARN fusionada en sarcoma (FUS) y el gen C9ORF72, sin embargo, los mecanismos subyacentes aún no se comprenden totalmente. Como objetivo nos planteamos proporcionar una revisión actualizada de los mecanismos moleculares y celulares que subyacen la esclerosis lateral amiotrófica (ELA). Se realizó mediante una búsqueda bibliográfica en las siguientes bases de datos: Medline, Web of Science y Scopus, priorizando estudios recientes y de alto impacto de los últimos 5 años. Se analizaron los posibles biomarcadores diagnósticos y los mecanismos moleculares asociados. Los resultados destacan la utilidad potencial de marcadores como neurofilamentos (NfL, pNfH), quitinasas y microRNAs (miR-206, miR-133a). Además, se destaca la importancia de los biomarcadores de inflamación, de estrés oxidativo, bioquímicos como pruebas diagnósticas complementarias. Se identificaron nuevas variantes genéticas en poblaciones asiáticas y se exploró la relación entre el eje intestino-cerebro y la progresión de la enfermedad. En conclusión, los mecanismos moleculares y vías de señalización siguen sin esclarecerse. La identificación de marcadores es clave para el diagnóstico temprano y mejorar el pronóstico de los pacientes.
ABSTRACT
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of motor neurons, and its life expectancy is limited to 3-5 years after the onset of symptoms. Several altered molecular and cellular mechanisms have been identified in the pathophysiology of the disease that contribute to its progression, such as the enzyme superoxide dismutase 1 (SOD1), the TAR DNA-binding protein (TARDBP), the fused sarcoma RNA-binding protein (FUS), and the C9ORF72 gene. However, the underlying mechanisms are still not fully understood. Our objective was to provide an updated review of the molecular and cellular mechanisms underlying amyotrophic lateral sclerosis (ALS). This was done through a bibliographic search in the following databases: Medline, Web of Science, and Scopus, prioritizing recent and high-impact studies from the last 5 years. Possible diagnostic biomarkers and associated molecular mechanisms were analyzed. The results highlight the potential usefulness of markers such as neurofilaments (NfL, pNfH), chitinases and microRNAs (miR-206, miR-133a). In addition, the importance of inflammatory, oxidative stress and biochemical biomarkers as complementary diagnostic tests is highlighted. New genetic variants were identified in Asian populations and the relationship between the gut-brain axis and disease progression was explored. In conclusion, molecular mechanisms and signaling pathways remain unclear. The identification of markers is key for early diagnosis and improving patient prognosis.
Recibido: 10-01-2025
Aprobado: 19-02-2025
Publicado: 28-02-2025
Palabras clave
Texto completo:
PDFReferencias
Bottero, V., Santiago, J. A., Quinn, J. P., & Potashkin, J. A. (2022). Key Disease Mechanisms Linked to Amyotrophic Lateral Sclerosis in Spinal Cord Motor Neurons. Frontiers in molecular neuroscience, 15, 825031. https://doi.org/10.3389/fnmol.2022.825031
Cheng, Y., Chen, Y., & Shang, H. (2021). Aberrations of biochemical indicators in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Translational neurodegeneration, 10(1), 3. https://doi.org/10.1186/s40035-020-00228-9
Darabi, S., Ariaei, A., Rustamzadeh, A., Afshari, D., Charkhat Gorgich, E. A., & Darabi, L. (2024). Cerebrospinal fluid and blood exosomes as biomarkers for amyotrophic lateral sclerosis; a systematic review. Diagnostic pathology, 19(1), 47. https://doi.org/10.1186/s13000-024-01473-6
Dhakal, B., Sapkota, S., Parajuli, A., Khadka, B., Subedi, B., Paudel, R., Thapa, R., & Rimal, S. (2022). A novel TFG variant of uncertain significance in amyotrophic lateral sclerosis: A case report and review of literature. Annals of medicine and surgery (2012), 84, 104840. https://doi.org/10.1016/j.amsu.2022.104840
Gomes, B. C., Peixinho, N., Pisco, R., Gromicho, M., Pronto-Laborinho, A. C., Rueff, J., de Carvalho, M., & Rodrigues, A. S. (2023). Differential Expression of miRNAs in Amyotrophic Lateral Sclerosis Patients. Molecular neurobiology, 60(12), 7104–7117. https://doi.org/10.1007/s12035-023-03520-7
Goutman, S. A., Hardiman, O., Al-Chalabi, A., Chió, A., Savelieff, M. G., Kiernan, M. C., & Feldman, E. L. (2022). Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. The Lancet. Neurology, 21(5), 465–479. https://doi.org/10.1016/S1474-4422(21)00414-2
Heckler, I., & Venkataraman, I. (2022). Phosphorylated neurofilament heavy chain: a potential diagnostic biomarker in amyotrophic lateral sclerosis. Journal of neurophysiology, 127(3), 737–745. https://doi.org/10.1152/jn.00398.2021
Hop, P. J., Zwamborn, R. A. J., Hannon, E., Shireby, G. L., Nabais, M. F., Walker, E. M., van Rheenen, W., van Vugt, J. J., Dekker, A. M., Westeneng, H. J., Tazelaar, G. H. P., van Eijk, K. R., Moisse, M., Baird, D., Al Khleifat, A., Iacoangeli, A., Ticozzi, N., Ratti, A., Cooper-Knock, J., Morrison, K. E., … Veldink, J. H. (2022). Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science translational medicine, 14(633), eabj0264. https://doi.org/10.1126/scitranslmed.abj0264
Hu, Y., Chen, W., Wei, C., Jiang, S., Li, S., Wang, X., & Xu, R. (2024). Pathological mechanisms of amyotrophic lateral Sclerosis. Neural regeneration research, 19(5), 1036–1044. https://doi.org/10.4103/1673-5374.382985
Iacoangeli, A., Al Khleifat, A., Jones, A. R., Sproviero, W., Shatunov, A., Opie-Martin, S., Alzheimer’s Disease Neuroimaging Initiative, Morrison, K. E., Shaw, P. J., Shaw, C. E., Fogh, I., Dobson, R. J., Newhouse, S. J., & Al-Chalabi, A. (2019). C9orf72 intermediate expansions of 24-30 repeats are associated with ALS. Acta neuropathologica communications, 7(1), 115. https://doi.org/10.1186/s40478-019-0724-4
Janse van Mantgem, M. R., van Rheenen, W., Hackeng, A. V., van Es, M. A., Veldink, J. H., van den Berg, L. H., & van Eijk, R. P. A. (2023). Association Between Serum Lipids and Survival in Patients With Amyotrophic Lateral Sclerosis: A Meta-analysis and Population-Based Study. Neurology, 100(10), e1062–e1071. https://doi.org/10.1212/WNL.0000000000201657
Jericó, I., Vicuña-Urriza, J., Blanco-Luquin, I., Macias, M., Martinez-Merino, L., Roldán, M., Rojas-Garcia, R., Pagola-Lorz, I., Carbayo, A., De Luna, N., Zelaya, V., & Mendioroz, M. (2023). Profiling TREM2 expression in amyotrophic lateral sclerosis. Brain, behavior, and immunity, 109, 117–126. https://doi.org/10.1016/j.bbi.2023.01.013
Kharel, S., Ojha, R., Preethish-Kumar, V., & Bhagat, R. (2022). C-reactive protein levels in patients with amyotrophic lateral sclerosis: A systematic review. Brain and behavior, 12(3), e2532. https://doi.org/10.1002/brb3.2532
Liu, H., Lan, S., Shi, X. J., Fan, F. C., Liu, Q. S., Cong, L., & Cheng, Y. (2023). Systematic review and meta-analysis on microRNAs in amyotrophic lateral sclerosis. Brain research bulletin, 194, 82–89. https://doi.org/10.1016/j.brainresbull.2023.01.005
Loh, J. S., Mak, W. Q., Tan, L. K. S., Ng, C. X., Chan, H. H., Yeow, S. H., Foo, J. B., Ong, Y. S., How, C. W., & Khaw, K. Y. (2024). Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal transduction and targeted therapy, 9(1), 37. https://doi.org/10.1038/s41392-024-01743-1
Lualdi, M., Shafique, A., Pedrini, E., Pieroni, L., Greco, V., Castagnola, M., Cucina, G., Corrado, L., Di Pierro, A., De Marchi, F., Camillo, L., Colombrita, C., D'Anca, M., Alberio, T., D'Alfonso, S., & Fasano, M. (2021). C9ORF72 Repeat Expansion Affects the Proteome of Primary Skin Fibroblasts in ALS. International journal of molecular sciences, 22(19), 10385. https://doi.org/10.3390/ijms221910385
Moțățăianu, A., Șerban, G., & Andone, S. (2023). The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review. International journal of molecular sciences, 24(20), 15094. https://doi.org/10.3390/ijms242015094
Murthy, M., Fodder, K., Miki, Y., Rambarack, N., De Pablo Fernandez, E., Pihlstrøm, L., Mill, J., Warner, T. T., Lashley, T., & Bettencourt, C. (2024). DNA methylation patterns in the frontal lobe white matter of multiple system atrophy, Parkinson's disease, and progressive supranuclear palsy: a cross-comparative investigation. Acta neuropathologica, 148(1), 4. https://doi.org/10.1007/s00401-024-02764-4
Nakamura, R., Misawa, K., Tohnai, G., Nakatochi, M., Furuhashi, S., Atsuta, N., Hayashi, N., Yokoi, D., Watanabe, H., Watanabe, H., Katsuno, M., Izumi, Y., Kanai, K., Hattori, N., Morita, M., Taniguchi, A., Kano, O., Oda, M., Shibuya, K., Kuwabara, S.,… Sobue, G. (2020). A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis. Communications biology, 3(1), 526. https://doi.org/10.1038/s42003-020-01251-2
Sayed, F. A., Kodama, L., Fan, L., Carling, G. K., Udeochu, J. C., Le, D., Li, Q., Zhou, L., Wong, M. Y., Horowitz, R., Ye, P., Mathys, H., Wang, M., Niu, X., Mazutis, L., Jiang, X., Wang, X., Gao, F., Brendel, M., Telpoukhovskaia, M., … Gan, L. (2021). AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation. Science translational medicine, 13(622), eabe3947. https://doi.org/10.1126/scitranslmed.abe3947
Shahim, P., Norato, G., Sinaii, N., Zetterberg, H., Blennow, K., Chan, L., & Grunseich, C. (2024). Neurofilaments in Sporadic and Familial Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Genes, 15(4), 496. https://doi.org/10.3390/genes15040496
Su, W. M., Gu, X. J., Duan, Q. Q., Jiang, Z., Gao, X., Shang, H. F., & Chen, Y. P. (2022). Genetic factors for survival in amyotrophic lateral sclerosis: an integrated approach combining a systematic review, pairwise and network meta-analysis. BMC medicine, 20(1), 209. https://doi.org/10.1186/s12916-022-02411-3
Van Damme, P., Veldink, J. H., van Blitterswijk, M., Corveleyn, A., van Vught, P. W., Thijs, V., Dubois, B., Matthijs, G., van den Berg, L. H., & Robberecht, W. (2011). Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology, 76(24), 2066–2072. https://doi.org/10.1212/WNL.0b013e31821f445b
Vasilopoulou, C., McDaid-McCloskey, S. L., McCluskey, G., Duguez, S., Morris, A. P., & Duddy, W. (2023). Genome-Wide Gene-Set Analysis Identifies Molecular Mechanisms Associated with ALS. International journal of molecular sciences, 24(4), 4021. https://doi.org/10.3390/ijms24044021
Wang, Z., Bai, Z., Qin, X., & Cheng, Y. (2019). Aberrations in Oxidative Stress Markers in Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Oxidative medicine and cellular longevity, 2019, 1712323. https://doi.org/10.1155/2019/1712323
Xu, A., Luo, Y., Tang, Y., Yang, F., Gao, X., Qiao, G., Zhu, X., & Zhou, J. (2024). Chitinases as a potential diagnostic and prognostic biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 45(6), 2489–2503. https://doi.org/10.1007/s10072-024-07301-5
Enlaces refback
- No hay ningún enlace refback.
Depósito Legal Electrónico: ME2016000090
ISSN Electrónico: 2610-797X
DOI: https://doi.org/10.53766/GICOS
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Se encuentra actualmente registrada y aceptada en las siguientes base de datos, directorios e índices: | |||
![]() | ![]() | ![]() | |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() |
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.