Un enfoque sintético para la obtención de 1,4-bis(cinamil)piperazinas sustituidas simétricamente
Resumen
Se ha diseñado una vía de tres pasos para la preparación de 1,4-bis(cinamil)piperazinas sustituidas simétricamente a partir de β-aminocetonas. El enfo-que comprende la bis-N-alquilación de piperazina con clorhidratos de bases de Mannich de cetonas basadas en dimetilamina, la reducción de las aminocetonas resultantes que contienen piperazina con NaBH4 y la posterior deshidratación catalizada por ácido de los γ-aminoalcoholes secundarios intermedios. El método propuesto para obtener las piperazinas del título se ha vali-dado mediante la síntesis de cuatro análogos que tienen restos fenilo, 4-clorofenilo, 4-bromofenilo o 2-naftalenilo como parte aromática del fragmento cinamilo.
Recibido: 05/12/2024 Revisado: 27/12/2024 Aceptado: 31/12/2024
Palabras clave
Texto completo:
PDFReferencias
M Faizan, R Kumar, A Mazumder, Salahuddin, N Kukreti, A Ku-mar, et al. The medicinal chemistry of piperazines: A review. Chemical Biology & Drug Design, 103(6), e14537 (2024).
MN Romanelli, D Manetti, L Braconi, S Dei, A Gabellini, E Teodori. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opinion on Drug Discovery, 17(9), 969–984 (2022).
A Rafiq, S Aslam, NA Mohsin, M Ahmad. Synthetic routes for the development of piperazine-based acetanilides and their medic-inal importance. Polycyclic Aromatic Compounds, 44(7), 4979–5007 (2023).
AK Rathi, R Syed, HS Shin, RV Patel. Piperazine derivatives for therapeutic use: a patent review (2010-present). Expert Opinion on Therapeutic Patents, 26(7), 777–797 (2016).
A Sharma, S Wakode, F Fayaz, S Khasimbi, FH Pottoo, A Kaur. An overview of piperazine scaffold as promising nucleus for dif-ferent therapeutic targets. Current Pharmaceutical Design, 26(35), 4373–4385 (2020).
A Rathore, V Asati, SK Kashaw, S Agarwal, D Parwani, S Bhattacharya, et al. The recent development of piperazine and pi-peridine derivatives as antipsychotic agents. Mini-Reviews in Medicinal Chemistry, 21(3), 362–379 (2021).
RR Kumar, B Sahu, S Pathania, PK Singh, MJ Akhtar, B Kumar. Piperazine, a key substructure for antidepressants: Its role in devel-opments and structure-activity relationships. ChemMedChem, 16(12), 1878–1901 (2021).
D Zolotareva, A Zazybin, A Dauletbakov, Y Belyankova, B Giner Parache, S Tursynbek, et al. Morpholine, piperazine, and piperi-dine derivatives as antidiabetic agents. Molecules, 29(13), 3043 (2024).
A Jain, J Chaudhary, H Khaira, B Chopra, A Dhingra. Piperazine: A promising scaffold with analgesic and anti-inflammatory poten-tial. Drug Research (Stuttgart, Germany), 71(2), 62–72 (2021).
K Walayat, NA Mohsin, S Aslam, N Rasool, M Ahmad, A Rafiq, et al. Recent advances in the piperazine based antiviral agents: A remarkable heterocycle for antiviral research. Arabian Journal of Chemistry, 16(12), 105292 (2023).
CA Salubi, HS Abbo, N Jahed, S Titinchi. Medicinal chemistry perspectives on the development of piperazine-containing HIV-1 inhibitors. Bioorganic & Medicinal Chemistry, 99, 117605 (2024).
V Sharma, R Das, D Sharma, S Mujwar, DK Mehta. Green chem-istry approach towards piperazine: Anticancer agents, Journal of Molecular Structure, 1292, 136089 (2023).
K Walayat, NA Mohsin, S Aslam, M Ahmad. An insight into the therapeutic potential of piperazine-based anticancer agents. Turk-ish Journal of Chemistry, 43(1), 1–23 (2019).
F Gomes Pernichelle, E Tavares Marcelino Alves, RA Massarico Serafim, E Igne Ferreira. The importance of the piperazine ring for the development of trypanomicide compounds. ChemistrySelect, 8(33), e202302697 (2023).
PS Girase, S Dhawan, V Kumar, SR Shinde, MB Palkar, R Kar-poormath. An appraisal of anti-mycobacterial activity with struc-ture-activity relationship of piperazine and its analogues: A re-view. European Journal of Medicinal Chemistry, 210, 112967 (2021).
S Begum, M Rashida Anjum, G Poojitha Harisree, N Sivalakshmi, P Priyanka, K Bharathi. Antioxidant activity of piperazine com-pounds: A brief review. Asian Journal of Chemistry, 32(9), 2105–2118 (2020).
AK Laskowska, AK Puszko, P Sosnowski, K Różycki, P Kosson, J Matalińska, et al. Opioid tripeptides hybridized with trans-1-cin-namylpiperazine as proliferation inhibitors of pancreatic cancer cells in two- and three-dimensional in vitro models. ChemMedChem, 12(19), 1637–1644 (2017).
C Hu, Z-G Sun, C-X Wei, Z-S Quan. Synthesis and anticonvulsant activity of some cinnamylpiperazine derivatives. Letters in Drug Design & Discovery, 7(9), 661–664 (2010).
H Raza, MA Abbasib, Aziz-ur-Rehman, SZ Siddiquib, M Hassan, Q Abbas, et al. Synthesis, molecular docking, dynamic simula-tions, kinetic mechanism, cytotoxicity evaluation of N-(substi-tuted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl} butanamides as tyrosinase and melanin inhibitors: In vitro, in vivo and in silico approaches. Bioorganic Chemistry, 94, 103445 (2020).
J Velcicky, W Miltz, B Oberhauser, D Orain, A Vaupel, K Weigand, et al. Development of selective, orally active GPR4 an-tagonists with modulatory effects on nociception, inflammation, and angiogenesis. Journal of Medicinal Chemistry, 60(9), 3672−3683 (2017).
MA Abbasi, M Nazir, Aziz-ur-Rehman, SZ Siddiqui, SAA Shah,
M Shahid. Synthesis and structure-activity relationship of 1-[(E)-3-phenyl-2-propenyl] piperazine derivatives as suitable antibacte-rial agents with mild hemolysis. Scientia Iranica, Transaction C: Chemistry, Chemical Engineering, 26(6), 3375–3386 (2019).
H-Y Lee, Y Jung, W Kim, JH Kim, M-S Suh, SK Shin, et al. Structure–activity relationship studies of the chromosome segre-gation inhibitor, Incentrom A. Bioorganic & Medicinal Chemis-try Letters, 18(16), 4670–4674 (2008).
D Brossard, L El Kihel, M Clément, W Sebbahi, M Khalid, C Roussakis, et al. Synthesis of bile acid derivatives and in vitro cy-totoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carci-noma (HCT-116) human cell lines. European Journal of Medic-inal Chemistry, 45(7), 2912–2918 (2010).
S Dei, M Coronnello, G Bartolucci, D Manetti, MN Romanelli, C Udomtanakunchai, et al. Design and synthesis of new potent N,N-bis(arylalkyl)piperazine derivatives as multidrug resistance (MDR) reversing agents. European Journal of Medicinal Chemistry, 147, 7–20 (2018).
MD Arbo, ML Bastos, HF Carmo. Piperazine compounds as drugs of abuse. Drug and Alcohol Dependence, 122(3), 174–185 (2012).
MM Vandeputte, A Cannaert, P Christophe, CP Stove. In vitro functional characterization of a panel of non‑fentanyl opioid new psychoactive substances. Archives of Toxicology, 94(11), 3819–3830 (2020).
JB Zawilska, P Adamowicz, M Kurpeta, J Wojcieszak. Non-fen-tanyl new synthetic opioids – An update. Forensic Science Inter-national, 349, 111775 (2023).
H Cai, W Chen, J Jiang, H Wen, X Luo, J Li, et al. Artificial intel-ligence-assisted optimization of antipigmentation tyrosinase in-hibitors: De novo molecular generation based on a low activity lead compound. Journal of Medicinal Chemistry, 67(9), 7260–7275 (2024).
J Penjisević, V Sukalović, D Andrić, S Kostić-Rajacić, V Soskić, G Roglić. 1-Cinnamyl-4-(2-methoxy-phenyl)piperazines: Synthe-sis, binding properties, and docking to dopamine (D2) and seroto-nin (5-HT1A) receptors. Archiv der Pharmazie (Weinheim, Germany), 340(9), 456–465 (2007).
JI Andrés, J Alcázar, JM Alonso, RM Alvarez, MH Bakker, I Bi-esmans, et al. Discovery of a new series of centrally active tricy-clic isoxazoles combining serotonin (5-HT) reuptake inhibition with α2-adrenoceptor blocking activity. Journal of Medicinal Chemistry, 48(6), 2054–2071 (2005).
S Paudel, S Acharya, G Yoon, K-M Kim, SH Cheon. Design, syn-thesis and in vitro activity of 1,4-disubstituted piperazines and pi-peridines as triple reuptake inhibitors. Bioorganic & Medicinal Chemistry, 25(7), 2266–2276 (2017).
L Liu, R Luo, J Tong, J Liao. Iridium-catalysed reductive allylic amination of α,β-unsaturated aldehydes. Organic & Biomolecu-lar Chemistry, 22(3), 585–589 (2023).
A Wu, Y Xu, X Qian, J Wang, J Liu. Novel naphthalimide deriv-atives as potential apoptosis-inducing agents: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 44(11), 4674–4680 (2009).
S Boutin, R Maltais, J Roy, D Poirier. Synthesis of 17β-hydroxys-teroid dehydrogenase type 10 steroidal inhibitors: Selectivity, met-abolic stability and enhanced potency. European Journal of Me-dicinal Chemistry, 209, 112909 (2021).
IA Moussa, SD Banister, FN Akladios, SW Chua, M Kassiou. Ef-fects of linker elongation in a series of N-(2-benzofuranylmethyl)-N′-(methoxyphenylalkyl)piperazine σ1 receptor ligands. Bioor-ganic & Medicinal Chemistry Letters, 21(19), 5707–5710 (2011).
DB Lewis, D Matecka, Y Zhang, L-W Hsin, CM Dersch, D Staf-ford, et al. Oxygenated analogues of 1-[2-(diphenyl-meth-oxy)ethyl]- and 1-[2-[bis(4-fluorophenyl)-methoxy]ethyl]-4-(3-phenylpropyl)piperazines (GBR 12935 and GBR 12909) as po-tential extended-action cocaine-abuse therapeutic agents. Journal of Medicinal Chemistry, 42(24), 5029–5042 (1999).
M Kurokawa, F Sato, Y Masuda, T Yoshida, Y Ochi, K Zushi, et al. Synthesis and biological activity of 11-[4-(cinnamyl)-1-piper-azinyl]-6,11-dihydrodibenz[b,e]oxepin derivatives, potential agents for the treatment of cerebrovascular disorders. Chemical & Pharmaceutical Bulletin, 39(10), 2564–2573 (1991).
M Tramontini. Advances in the chemistry of Mannich bases. Syn-thesis, 1973(12), 703–775 (1973).
MM Hammouda, KM Elattar. Recent progress in the chemistry of β-aminoketones. RSC Advances, 12(38), 24681–24712 (2022).
H Lv, Y Du, H Zhang, Y Zheng, Z Yan, N Dong. Advances in Mannich-type reactions based on the classification of compounds with activated α-H. ChemistrySelect, 8(21), e202300173 (2023).
G Roman. Novel aminobenzenesulfonamides as potential inhibi-tors of carbonic anhydrases. Revue Roumaine de Chimie, 69(3–4), 111–117 (2024).
C Mannich, D Lammering. Über die Synthese von β-Keto-basen aus fett-aromatischen Ketonen, Formaldehyd und sekundären Aminen. Chemische Berichte, 55(10), 3510–3526 (1922).
V Valenta, M Bartošová, M Protiva. 1-[3-(2-Alkoxyphenoxy)-3-phenylpropyl]piperazines and some related compounds. Collec-tion of Czechoslovak Chemical Communications, 46(5), 1280–1287 (1981).
RE Lutz, NH Shearer. Antimalarials. Some piperazine derivatives. Journal of Organic Chemistry, 12(6), 771–775 (1947).
H. Terayama, T Naruke, S Kasai, M Numata, H Nakayama, T Saito, et al. Studies on analgesic agents. XIII. Metabolic fate of 1-butyryl-4-cinnamylpiperazine hydrochloride (BCP-HCl) in rats. Chemical & Pharmaceutical Bulletin, 21(1), 12–20 (1973).
S Huecas, L Araújo-Bazán, FM Ruiz, LB Ruiz-Ávila, RF Mar-tínez, A Escobar-Peña, et al. Targeting the FtsZ allosteric binding site with a novel fluorescence polarization screen, cytological and structural approaches for antibacterial discovery. Journal of Me-dicinal Chemistry, 64(9), 5730–5745 (2021).
F Lehmann, A Pettersen, EA Currier, V Sherbukhin, R Olsson, U Hacksell, et al. Novel potent and efficacious nonpeptidic urotensin
II receptor agonists. Journal of Medicinal Chemistry, 49(7), 2232–2240 (2006).
J Wang, D Liu, Y Liu, W Zhang. Asymmetric hydrogenation of β-amino ketones with the bimetallic complex RuPHOX-Ru as the chiral catalyst. Organic & Biomolecular Chemistry, 11(23), 3855–3861 (2013).
MB Widegren, ML Clarke. Towards practical earth abundant re-duction catalysis: Design of improved catalysts for manganese cat-alysed hydrogenation. Catalysis Science & Technology, 9(21), 6047–6058 (2019).
X Zhao, Z Yang, Y Cheng, A Huang, F Hu, F Ling, et al. Diver-gent synthesis of β-hydroxy amides (esters) and γ-amino alcohols via Ir/f-diaphos catalyzed asymmetric hydrogenation. Advanced Synthesis & Catalysis, 364(17), 3074–3080 (2022).
T Magdziarz, B Lozowicka, R Gieleciak, A Bak, J Polanski, Z Chilmonczyk. 3D QSAR study of hypolipidemic asarones by comparative molecular surface analysis. Bioorganic & Medici-nal Chemistry, 14(5), 1630–1643 (2006).
E Rudinger-Adler, J Büchi. Synthese einiger Benzyloxyphenyl-Derivative mit lokalanaesthetischer Wirkung. Arzneimittel-For-schung, 29(9), 1326–1331 (1979).
H Igarashi, T Kurihara. Synthesis and pharmacology of basic sec-, tert-alcohols and derivatives (in Japanese). Yakugaku Zasshi, 93(5), 554–565 (1973).
H Ohtaka, M Miyake, T Kanazawa, K Ito, G Tsukamoto. Ben-zylpiperazine derivatives. I. Syntheses and biological activities of 1-(2,3,4-trimethoxybenzyl)piperazine derivatives. Chemical & Pharmaceutical Bulletin, 35(7), 2774–2781 (1987).
NJ Bunce. Photolysis of aryl chlorides with aliphatic amines. Journal of Organic Chemistry, 47(10), 1948–1955 (1982).
M Van der Auweraer, A Vannerem, FC De Schryver. The elec-tronic structures of intramolecular exciplexes with aliphatic amines as donors. Journal of Molecular Structure, 84, 343–352 (1982).
V Valenta, M Vlkova, M Valchar, K Dobrovsky, Z Polivka. Po-tential antidepressants: 3-Aryl-3-(arylthio)propylamines as selec-tive inhibitors of 5-hydroxytryptamine re-uptake in the brain. Col-lection of Czechoslovak Chemical Communications, 56(7), 1525–1533 (1991).
J Hine, MJ Skoglund. Double-bond-stabilizing abilities of 1-me-thyl-2-pyrrolyl, 9-anthryl, and o-tolyl substituents. Journal of Organic Chemistry, 47(24), 4758–4766 (1982).
AF Casy, JL Myers, P Pocha. Studies of the elimination of 1,2-diaryl-4-dimethylaminobutan-2-ols—I: Acid-catalysed elimina-tion of 1,2-diaryl-4-dimethylamino-3-methylbutan-2-ols and base-catalysed elimination of related 2-chloro derivatives. Tetra-hedron, 22(3), 1001–1009 (1966).
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.