Aprovechamiento sostenible del lactosuero: oportunidades y desafíos para la economía circular
Resumen
El lactosuero es el mayor subproducto obtenido durante el procesamiento de la leche para la fabricación de queso, caracterizado por un alto contenido de nutrientes que se desaprovechan y que en su mayoría se vierten al medio ambiente sin pretratamientos, con sus consecuentes efectos sobre el ambiente. Con base en estas consideraciones, el objetivo principal de este estudio consistió en profundizar en aspectos fundamentales relacionados con la revalorización del lactosuero, por su alto contenido proteico y su importancia en los ámbitos agroalimentario y socioeconómico. La metodología empleada se basó en una revisión sistemática de la literatura científica, que incluyó una minuciosa evaluación de artículos científicos y fuentes estadísticas de los últimos seis años, empleando bases de datos como de alto impacto globales y regionales (Scielo, Redalyc, Scopus, FAO e INEC, entre otras), basado en los Elementos de Información Preferidos para Revisiones Sistemáticas y Metaanálisis (PRISMA, en inglés). Se analizaron los resultados y las discusiones pertinentes en relación con la producción de lactosuero en Ecuador y las tecnologías de procesamiento disponibles. Asimismo, se resaltó la trascendencia de encontrar aplicaciones sostenibles para el lactosuero, incluyendo su aprovechamiento en la fabricación de bioplásticos, bioproductos, biocombustibles y otros productos beneficiosos tanto para la industria alimentaria como para el medio ambiente. En este contexto, se identificaron y se discutieron algunas limitaciones y desafíos asociados con la utilización del lactosuero a nivel industrial, tales como la gestión de grandes volúmenes de este subproducto y la variabilidad en su valor comercial. Entre las conclusiones se destaca que el lactosuero contiene nutrientes de gran importancia procedentes de la leche, los cuales pueden ser ampliamente aprovechados por diversas industrias, como la alimentaria, química, cosmética y biomédica, según los estudios revisados. Acá es fundamental adoptar una visión completa en cuanto a las limitantes y desafíos relacionados con el aprovechamiento de esta valiosa proteína mediante métodos de extracción y purificación, así como sus aplicaciones en diferentes campos.
Palabras clave
Texto completo:
PDFReferencias
Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U. U., Soares, B. C. V., Souza, S. L. Q.,...Cruz, A. G. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science & Technology, 88, 361-372. https://doi.org/10.1016/j.tifs.2019.04.003
Arciello, A., Panzella, L., Dell’Olmo, E., Abdalrazeq, M., Moccia, F., Gaglione, R.,...Giosafatto, C. V. L. (2021). Development and characterization of antimicrobial and antioxidant whey protein-based films functionalized with Pecan (Carya illinoinensis) nut shell extract. Food Packaging and Shelf Life, 29, 100710. https://doi.org/10.1016/j.fpsl.2021.100710
Arpit Singh, T., Sharma, M., Sharma, M., Dutt Sharma, G., Kumar Passari, A., & Bhasin, S. (2022). Valorization of agro-industrial residues for production of commercial biorefinery products. Fuel, 322, 124284. https://doi.org/10.1016/j.fuel.2022.124284
Arshad, U. T., Hassan, A., Ahmad, T., Naeem, M., Chaudhary, M. T., Abbas, S. Q.,…Aadil, R. M. (2023). A recent glance on the valorisation of cheese whey for industrial prerogative: High-value-added products development and integrated reutilising strategies. International Journal of Food Science & Technology, 58(4), 2001-2013. https://doi.org/10.1111/ijfs.16168
Asas, C., Llanos, C., Matavaca, J., & Verdezoto, D. (2021). Whey: Environmental impact, uses and applications via biotechnology mechanisms. Agroindustrial Science, 11(1), 105-116. https://doi.org/10.17268/agroind.sci.2021.01.13
Asunis, F., Carucci, A., De Gioannis, G., Farru, G., Muntoni, A., Polettini, A.,...Spiga, D. (2022). Combined biohydrogen and polyhydroxyalkanoates production from sheep cheese whey by a mixed microbial culture. Journal of Environmental Management, 322, 116149. https://doi.org/10.1016/j.jenvman.2022.116149
Asunis, F., De Gioannis, G., Dessì, P., Isipato, M., Lens, P. N. L., Muntoni, A.,...Spiga, D. (2020). The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. Journal of Environmental Management, 276, 111240. https://doi.org/10.1016/j.jenvman.2020.111240
Awasthi, M. K., Paul, A., Kumar, V., Sar, T., Kumar, D., Sarsaiya, S., Liu, H., Zhang, Z., Binod, P., Sindhu, R., Kumar, V., & Taherzadeh, M. J. (2022). Recent trends and developments on integrated biochemical conversion processes for valorization of dairy waste to value-added bioproducts: A review. Bioresource Technology, 344(A), 126193. https://doi.org/10.1016/j.biortech.2021.126193
Ayed, L., M’hir, S., & Asses, N. (2023). Sustainable whey processing techniques: Innovations in derivative and beverage production. Food Bioscience, 53, 102642. https://doi.org/10.1016/j.fbio.2023.102642
BCE (Banco Central del Ecuador). (2023a). Cuenta Estadísticas Sector Real—Cuentas Cantonales. Quito, Ecuador: BCE. Recuperado dehttps://www.bce.fin.ec/informacioneconomica/sector-real
BCE (Banco Central del Ecuador). (2023b). Producto Interno Bruto. Quito, Ecuador: BCE. Recuperado dehttps://contenido.bce.fin.ec/documentos/Administracion/bi_menuCNAde_f.html
Barba, F. J. (2021). An Integrated Approach for the Valorization of Cheese Whey. Foods, 10(3), Article 3. https://doi.org/10.3390/foods10030564
Behm, K., Nappa, M., Aro, N., Welman, A., Ledgard, S., Suomalainen, M., & Hill, J. (2022). Comparison of carbon footprint and water scarcity footprint of milk protein produced by cellular agriculture and the dairy industry. The International Journal of Life Cycle Assessment, 27(8), 1017-1034. https://doi.org/10.1007/s11367-022-02087-0
Bintsis, T., & Papademas, P. (2023). Sustainable approaches in whey cheese production: A review. Dairy, 4(2), 249-270. https://doi.org/10.3390/dairy4020018
Borghesi, G., Stefanini, R., & Vignali, G. (2022). Life cycle assessment of packaged organic dairy product: A comparison of different methods for the environmental assessment of alternative scenarios. Journal of Food Engineering, 318, 110902. https://doi.org/10.1016/j.jfoodeng.2021.110902
Buchanan, D., Martindale, W., Romeih, E., & Hebishy, E. (2023). Recent advances in whey processing and valorisation: Technological and environmental perspectives. International Journal of Dairy Technology, 76(2), 291-312. https://doi.org/10.1111/1471-0307.12935
Buey, B., Layunta, E., Latorre, E., & Mesonero, J. E. (2023). Potential role of milk bioactive peptides on the serotonergic system and the gut-brain axis. International Dairy Journal, 137, 105534. https://doi.org/10.1016/j.idairyj.2022.105534
Caldeira, C., Vlysidis, A., Fiore, G., De Laurentiis, V., Vignali, G., & Sala, S. (2020). Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresource Technology, 312, 123575. https://doi.org/10.1016/j.biortech.2020.123575
Calva-Estrada, S. de J., Jiménez-Fernández, M., Vallejo-Cardona, A. A., Castillo-Herrera, G. A., & Lugo-Cervantes, E. del C. (2021). Cocoa nanoparticles to improve the physicochemical and functional properties of whey protein-based films to extend the shelf life of muffins. Foods, 10(11), 2672. https://doi.org/10.3390/foods10112672
Chalermthai, B., Giwa, A., Schmidt, J. E., & Taher, H. (2021). Life cycle assessment of bioplastic production from whey protein obtained from dairy residues. Bioresource Technology Reports, 15, 100695. https://doi.org/10.1016/j.biteb.2021.100695
Cochachin-Carrera, B., Moreno-Cuevas, J., & Carvajal-Mena, N. (2023). Effects of concentration by block freezing and vacuum evaporation on the physicochemical properties and digestibility of whey. CyTA - Journal of Food, 21(1), 313-320. https://doi.org/10.1080/19476337.2023.2196321
Conde Mejía, C., & Conde Báez, L. (2022). Biorefinery, an integrated concept: Analysis of bioethanol and aromas production from whey. En F. I. Gómez Castro & C. Gutiérrez-Antonio (Eds.), Biofuels and biorefining (pp. 447-471). Elsevier. https://doi.org/10.1016/B978-0-12-824116-5.00007-6
Contreras, M. D. M., Romero-García, J. M., López-Linares, J. C., Romero, I., & Castro, E. (2022). Residues from grapevine and wine production as feedstock for a biorefinery. Food and Bioproducts Processing, 134, 56-79. https://doi.org/10.1016/j.fbp.2022.05.005
Cossio Colque, Y., & Chipana Mendoza, G. J. (2022). Aprovechamiento industrial del suero lácteo. CIPyCOS, 1(2), 40-45.Recuperado de https://cipycos.umsa.bo/index.php/1/article/view/15
Culaba, A. B., Mayol, A. P., San Juan, J. L. G., Vinoya, C. L., Concepcion, R. S., Bandala, A. A,…Chang, J. S. (2022). Smart sustainable biorefineries for lignocellulosic biomass. Bioresource Technology, 344, 126215. https://doi.org/10.1016/j.biortech.2021.126215
Daniloski, D., Petkoska, A. T., Lee, N. A., Bekhit, A. E. D., Carne, A., Vaskoska, R., & Vasiljevic, T. (2021). Active edible packaging based on milk proteins: A route to carry and deliver nutraceuticals. Trends in Food Science & Technology, 111, 688-705. https://doi.org/10.1016/j.tifs.2021.03.024
Escalante, H., Castro, L., Amaya, M. P., Jaimes, L., & Jaimes-Estévez, J. (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711-718. https://doi.org/10.1016/j.wasman.2017.09.026
FAO (Food and Agriculture Organization of the United Nations). (2017). The future of food and agriculture – Trends and challenges. Roma, Italia: FAO. Recuperado de https://www.fao.org/3/i6583e/i6583e.pdf
FAO (Food and Agriculture Organization of the United Nations). (2019). (17 de septiembre de 2019). Comunicado oficial de la FAO respecto al suero de leche en Ecuador. Roma, Italia: FAO. Recuperado de https://www.fao.org/ecuador/noticias/detail-events/fr/c/1208560/
Fournaise, T., Burgain, J., Perroud-Thomassin, C., & Petit, J. (2021). Impact of the whey protein/casein ratio on the reconstitution and flow properties of spray-dried dairy protein powders. Powder Technology, 391, 275-281. https://doi.org/10.1016/j.powtec.2021.06.026
Gaffey, J., Rajauria, G., McMahon, H., Ravindran, R., Dominguez, C., Ambye-Jensen,…Sanders, J. P. M. (2023). Green Biorefinery systems for the production of climate-smart sustainable products from grasses, legumes and green crop residues. Biotechnology Advances, 66, 108168. https://doi.org/10.1016/j.biotechadv.2023.108168
Gaudio, M. T., Curcio, S., & Chakraborty, S. (2023). Design of an integrated membrane system to produce dairy by-product from waste processing. International Journal of Food Science & Technology, 58(4), 2104-2114. https://doi.org/10.1111/ijfs.15986
Giglio, B. M., Lobo, P. C. B., & Pimentel, G. D. (2023). Effects of whey protein supplementation on adiposity, body weight, and glycemic parameters: A synthesis of evidence. Nutrition, Metabolism and Cardiovascular Diseases, 33(2), 258-274. https://doi.org/10.1016/j.numecd.2022.09.014
Guo, N., Ye, S., Zhou, G., Zhang, Y., Zhang, F., Xu, J., Pan, S., Zhu, G., & Wang, Z. (2023). Effect of ultrasound treatment on interactions of whey protein isolate with rutin. Ultrasonics Sonochemistry, 95, 106387. https://doi.org/10.1016/j.ultsonch.2023.106387
Gómez Soto, J. A., & Sánchez Toro, Ó. J. (2019). Producción de galactooligosacáridos: Alternativa para el aprovechamiento del lactosuero. Una revisión. Ingeniería y Desarrollo, 37(1), 129-157. https://doi.org/10.14482/inde.37.1.637
Harwood, W. S., & Drake, M. A. (2022). Manufacture of milk and whey products: Impact of processing on sensory characteristics of milk and dairy products. En P. L. H. McSweeney & J. P. McNamara (Eds.), Encyclopedia of dairy sciences (pp. 103-117). (3a. ed.). Nueva York, EE.UU.: Academic Press. https://doi.org/10.1016/B978-0-12-818766-1.00110-0
Hashemi, S. S., Karimi, K., & Taherzadeh, M. J. (2022). Valorization of vinasse and whey to protein and biogas through an environmental fungi-based biorefinery. Journal of Environmental Management, 303, 114138. https://doi.org/10.1016/j.jenvman.2021.114138
Hebishy, E., Joubran, Y., Murphy, E., & O’Mahony, J. A. (2019). Influence of calcium-binding salts on heat stability and fouling of whey protein isolate dispersions. International Dairy Journal, 91, 71-81. https://doi.org/10.1016/j.idairyj.2018.12.003
Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2018). Metodología de la investigación (pp. 310-386). (4a. ed.).. Madrid, España: McGraw-Hill Interamericana.
Hierro-Iglesias, C., Chimphango, A., Thornley, P., & Fernández-Castané, A. (2022). Opportunities for the development of cassava waste biorefineries for the production of polyhydroxyalkanoates in Sub-Saharan Africa. Biomass and Bioenergy, 166, 106600. https://doi.org/10.1016/j.biombioe.2022.106600
INEC-ESPAC (Instituto Nacional de Estadística y Censos y Encuesta de Superficie y Producción Agropecuaria Continua). (2021). Producción diaria y destino de la leche por región y provincia. Quito, Ecuador: INEC. Recuperado de https://www.ecuadorencifras.gob.ec/encuesta-de-produccion-agropecuaria-continua/
INTI (Instituto Nacional de Tecnología Industrial). (2023). El aprovechamiento del lactosuero en Argentina (pp. 1-34). Buenos Aires, Argentina: INTA. Recuperado de https://www.inti.gob.ar/assets/uploads/files/economia-industrial/02-2023/lactosuero_argentina_final_v2.pdf
Jeong, G. T. (2022). Valorization of dairy by-products: Optimized synthesis of 5-hydroxymethylfurfural and levulinic acid from lactose and whey. Journal of Environmental Chemical Engineering, 10(5), 108413. https://doi.org/10.1016/j.jece.2022.108413
Jiang, Z., Wang, C., Li, T., Sun, D., Gao, H., Gao, Z., & Mu, Z. (2019). Effect of ultrasound on the structure and functional properties of transglutaminase-crosslinked whey protein isolate exposed to prior heat treatment. International Dairy Journal, 88, 79-88. https://doi.org/10.1016/j.idairyj.2018.08.007
Jin, T. Z., Yadav, M. P., & Qi, P. X. (2023). Antimicrobial and physiochemical properties of films and coatings prepared from bio-fiber gum and whey protein isolate conjugates. Food Control, 148, 109666. https://doi.org/10.1016/j.foodcont.2023.109666
Kadian, D., Dularia, C., & Chander, M. (2023). Potential aspects of whey proteins in dairy products: Chemistry, bio-functional characteristics, and their applications. En M. R. Goyal, S. Ranvir, & J. A. Malik (Eds.), The chemistry of milk and milk products (pp. 251-274). Florida , EE.UU.: Apple Academic Press.
Kandasamy, S., Yoo, J., Yun, J., Kang, H. B., Seol, K. H., Kim, H. W., & Ham, J. S. (2021). Application of whey protein-based edible films and coatings in food industries: An updated overview. Coatings, 11(9), 1056. https://doi.org/10.3390/coatings11091056
Kazimierowicz, J., Zielinski, M., Bartkowska, I., & Dębowski, M. (2022). Effect of acid whey pretreatment using ultrasonic disintegration on the removal of organic compounds and anaerobic digestion efficiency. International Journal of Environmental Research and Public Health, 19(18), 11362. https://doi.org/10.3390/ijerph191811362
Khan, I. T., Nadeem, M., Imran, M., Ullah, R., Ajmal, M., & Jaspal, M. H. (2019). Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids in Health and Disease, 18(1), 41. https://doi.org/10.1186/s12944-019-0969-8
Koirala, P., Dahal, M., Rai, S., Dhakal, M., Nirmal, N. P., Maqsood, S., Al-Asmari, F., & Buranasompob, A. (2023). Dairy Milk Protein–Derived Bioactive Peptides: Avengers Against Metabolic Syndrome. Current Nutrition Reports, 12(2), 308-326. https://doi.org/10.1007/s13668-023-00472-1
Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese whey processing: Integrated biorefinery concepts and emerging food applications. Foods, 8(8), 347. https://doi.org/10.3390/foods8080347
Leong, Y. K., & Chang, J. S. (2023). Waste stream valorization-based low-carbon bioeconomy utilizing algae as a biorefinery platform. Renewable and Sustainable Energy Reviews, 178, 113245. https://doi.org/10.1016/j.rser.2023.113245
Mabrouki, J., Abbassi, M. A., Khiari, B., Jellali, S., Zorpas, A. A., & Jeguirim, M. (2022). The dairy biorefinery: Integrating treatment process for Tunisian cheese whey valorization. Chemosphere, 293, 133567. https://doi.org/10.1016/j.chemosphere.2022.133567
MAG (Ministerio de Agricultura y Ganadería). (12 de noviembre de 2020). “Ecuador se nutre de leche” y el sector lácteo se fortalece con apoyo del Gobierno Nacional -Ministerio de Agricultura y Ganadería. Quito, Ecuador: MAG. https://www.agricultura.gob.ec/ecuador-se-nutre-de-leche-y-el-sector-lacteo-se-fortalece-con-apoyo-del-gobierno-nacional/
Marx, M., & Kulozik, U. (2018). Thermal denaturation kinetics of whey proteins in reverse osmosis and nanofiltration sweet whey concentrates. International Dairy Journal, 85, 270-279. https://doi.org/10.1016/j.idairyj.2018.04.009
Millati, R., Wikandari, R., Ariyanto, T., Hasniah, N., & Taherzadeh, M. J. (2023). Anaerobic digestion biorefinery for circular bioeconomy development. Bioresource Technology Reports, 21, 101315. https://doi.org/10.1016/j.biteb.2022.101315
Momen, S., Rodrigue, D., & Aider, M. (2023). Fabrication and characterization of heat-set composite gels obtained from complexation of electro-activated whey/canola proteins mixture. Food Hydrocolloids, 141, 108751. https://doi.org/10.1016/j.foodhyd.2023.108751
Mora Cortez, J. X., Patiño Portilla, D. A., Muñoz Paredes, J. F., & Vallejo Castillo, V. E. (2022). Lactosuero: Materia prima para la elaboración de productos con valor agregado. Boletín Informativo CEI, 9(1), 103-106. Recuperado de https://revistas.umariana.edu.co/index.php/BoletinInformativoCEI/article/view/3017
Muñoz Murillo, J. P. (2019). Reutilización del lactosuero y su efecto en la sostenibilidad ambiental de la Cooperativa de Producción Agropecuaria del Cantón Chone – Ecuador. (Tesis de doctorado inédita). Universidad Nacional Mayor de San Marcos, Ecuador. Recuperado de https://core.ac.uk/download/pdf/323352649.pdf
Muuronen, K., Partanen, R., Heidebrecht, H. J., & Kulozik, U. (2021). Effects of conventional processing methods on whey proteins in production of native whey powder. International Dairy Journal, 116, 104959. https://doi.org/10.1016/j.idairyj.2020.104959
Ning, J., Cao, X., Yue, X., & Yang, M. (2023). Quantitative phosphoproteome analysis reveals differential whey phosphoproteins of bovine milk during lactation. International Journal of Biological Macromolecules, 234, 123681. https://doi.org/10.1016/j.ijbiomac.2023.123681
Ozel, B., McClements, D. J., Arikan, C., Kaner, O., & Oztop, M. H. (2022). Challenges in dried whey powder production: Quality problems. Food Research International, 160, 111682. https://doi.org/10.1016/j.foodres.2022.111682
Oyarvide-Ramírez, H., Arce-Olivo, T., Loor-Reasco, W., & Quiñónez Monrroy, G. (2023). La soya en Ecuador: importancia y alternativas para su producción sustentable con rentabilidad económica. Revista Agroalimentaria, 28(55), 19-38. https://doi.org/10.22004/ag.econ.338819
Panghal, A., Patidar, R., Jaglan, S., Chhikara, N., Khatkar, S. K., Gat, Y., & Sindhu, N. (2018). Whey valorization: Current options and future scenario – A critical review. Nutrition & Food Science, 48(3), 520-535. https://doi.org/10.1108/NFS-01-2018-0017
Pantoja, L. S. G., Amante, E. R., Rodrigues, M. da C., & da Silva, L. H. M. (2022). World scenario for the valorization of byproducts of buffalo milk production chain. Journal of Cleaner Production, 364, 132605. https://doi.org/10.1016/j.jclepro.2022.132605
Peydayesh, M., Bagnani, M., Soon, W. L., & Mezzenga, R. (2023). Turning Food Protein Waste into Sustainable Technologies. Chemical Reviews, 123(5), 2112-2154. https://doi.org/10.1021/acs.chemrev.2c00236
Polanowska, K. (2023). Lactic acid bacteria in biorefineries. En D. Montet, R. C. Ray, V. A. De Carvalho Azevedo, & S. Paramithiotis (Eds.), Applied Biotechnology Reviews: Lactic Acid Bacteria as Cell Factories (pp. 49-76). Cambridge, Reino Unido: Woodhead Publishing. https://doi.org/10.1016/B978-0-323-91930-2.00018-3
Qazanfarzadeh, Z., & Kumaravel, V. (2023). Hydrophobisation approaches of protein-based bioplastics. Trends in Food Science & Technology, 138, 27-43. https://doi.org/10.1016/j.tifs.2023.06.002
Rasera, M. L., De Maria, A. L. A., & Tavares, G. M. (2023). Co-aggregation between whey proteins and carotenoids from yellow mombin (Spondias mombin): Impact of carotenoids’ self-aggregation. Food Research International, 169, 112855. https://doi.org/10.1016/j.foodres.2023.112855
Rastogi, Y., Priya, & Gogate, P. R. (2022). Intensified recovery of whey proteins using combination of enzyme in free or immobilized form with ultrafiltration. Chemical Engineering and Processing - Process Intensification, 179, 109076. https://doi.org/10.1016/j.cep.2022.109076
Rocha, J. M., & Guerra, A. (2020). On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: An overview. European Food Research and Technology, 246(11), 2161-2174. https://doi.org/10.1007/s00217-020-03580-2
Rocha-Mendoza, D., Kosmerl, E., Krentz, A., Zhang, L., Badiger, S., Miyagusuku-Cruzado, G.,...García-Cano, I. (2021). Invited review: Acid whey trends and health benefits. Journal of Dairy Science, 104(2), 1262-1275. https://doi.org/10.3168/jds.2020-19038
Rossi, E., Pasciucco, F., Iannelli, R., & Pecorini, I. (2022). Environmental impacts of dry anaerobic biorefineries in a Life Cycle Assessment (LCA) approach. Journal of Cleaner Production, 371, 133692. https://doi.org/10.1016/j.jclepro.2022.133692
Schaefer, J., Etges, B. I., & Schaefer, J. L. (2023). A literature database review of the competitive factors that influence the production and use of whey in the Brazilian dairy industry. Foods, 12(18), 3348. https://doi.org/10.3390/foods12183348
Schmid, M. (2013). Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate, and glycerol. Materials, 6(8), 3254-3269. https://doi.org/10.3390/ma6083254
SCPM (Superintendencia de Control del Poder del Mercado). (2021). Estudio de mercado del sector lácteo (Versión pública SCPM-IGT-INAC-002-2019). Quito, Ecuador: SCPM. Recuperado de https://www.sce.gob.ec/sitio/wp-content/uploads/2021/04/estudio_de_mercado_sector_lacteo_SCPM-IGT-INAC-002-2019.pdf
Shabir, I., Dash, K. K., Dar, A. H., Pandey, V. K., Fayaz, U., Srivastava, S., & R, N. (2023). Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods, 7, 100215. https://doi.org/10.1016/j.fufo.2023.100215
Sirmacekic, E., Atilgan, A., Rolbiecki, R., Jagosz, B., Rolbiecki, S., Gokdogan, O., Niemiec, M., & Kocięcka, J. (2022). Possibilities of using whey wastes in agriculture: Case of Turkey. Energies, 15(24), 9636. https://doi.org/10.3390/en15249636
Stamatelatou, K., Antonopoulou, G., Tremouli, A., & Lyberatos, G. (2011). Production of gaseous biofuels and electricity from cheese whey. Industrial & Engineering Chemistry Research, 50(2), 639-644. https://doi.org/10.1021/ie1002262
Talan, A., Pokhrel, S., Tyagi, R. D., & Drogui, P. (2022). Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards circular bioeconomy. Bioresource Technology Reports, 17, 100875. https://doi.org/10.1016/j.biteb.2021.100875
Tedesco, R., Villoslada Hidalgo, M. del C., Vardè, M., Kehrwald, N. M., Barbante, C., & Cozzi, G. (2021). Trace and rare earth elements determination in milk whey from the Veneto region, Italy. Food Control, 121, 107595. https://doi.org/10.1016/j.foodcont.2020.107595
Torres-Martínez, &Romero-León, K. (2020). Alternativas tecnológicas para uso del lactosuero: Valorización económica de residuos. Estudios Sociales. Revista de Alimentación Contemporánea y Desarrollo Regional, 30(55), 1-26. https://doi.org/10.24836/es.v30i55.908
Valdez Castillo, M., Laxman Pachapur, V., Brar, S. K., Naghdi, M., Arriaga, S., & Ávalos Ramirez, A. (2020). Yeast-driven whey biorefining to produce value-added aroma, flavor, and antioxidant compounds: Technologies, challenges, and alternatives. Critical Reviews in Biotechnology, 40(7), 930-950. https://doi.org/10.1080/07388551.2020.1792407
Verma, S. K., Iram, D., Sansi, M. S., Pandey, K. K., Vij, S., & Sood, S. K. (2023). Sustainable utilization of dairy waste paneer whey by Pediococcus pentosaceus NCDC 273 for lactic acid production. Biocatalysis and Agricultural Biotechnology, 47, 102588. https://doi.org/10.1016/j.bcab.2022.102588
Wasewar, K. L. (2023). Chapter 31 - Sustainability of biorefineries for waste management. En P. Singh, P. Verma, R. Singh, A. Ahamad, & A. C. S. Batalhão (Eds.), Waste Management and Resource Recycling in the Developing World (pp. 721-754). Ámsterdam, Países Bajos: Elsevier. https://doi.org/10.1016/B978-0-323-90463-6.00006-3
Wu, G., Hui, X., Gong, X., Tran, K. N., Stipkovits, L., Mohan, M. S., Brennan, M. A., & Brennan, C. S. (2021). Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends in Food Science & Technology, 110, 107-119. https://doi.org/10.1016/j.tifs.2021.01.072
Yaashikaa, P. R., Senthil Kumar, P., & Varjani, S. (2022). Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresource Technology, 343, 126126. https://doi.org/10.1016/j.biortech.2021.126126
Zhao, C., Chen, N., & Ashaolu, T. J. (2022). Whey proteins and peptides in health-promoting functions – A review. International Dairy Journal, 126, 105269. https://doi.org/10.1016/j.idairyj.2021.105269
Todos los documentos publicados en esta revista se distribuyen bajo una Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.